1
|
Xu F, Cai W, Liu B, Qiu Z, Zhang X. Natural L-type calcium channels antagonists from Chinese medicine. Chin Med 2024; 19:72. [PMID: 38773596 PMCID: PMC11107034 DOI: 10.1186/s13020-024-00944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
L-type calcium channels (LTCCs), the largest subfamily of voltage-gated calcium channels (VGCCs), are the main channels for Ca2+ influx during extracellular excitation. LTCCs are widely present in excitable cells, especially cardiac and cardiovascular smooth muscle cells, and participate in various Ca2+-dependent processes. LTCCs have been considered as worthy drug target for cardiovascular, neurological and psychological diseases for decades. Natural products from Traditional Chinese medicine (TCM) have shown the potential as new drugs for the treatment of LTCCs related diseases. In this review, the basic structure, function of LTCCs, and the related human diseases caused by structural or functional abnormalities of LTCCs, and the natural LTCCs antagonist and their potential usages were summarized.
Collapse
Affiliation(s)
- Fangfang Xu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Wanna Cai
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Bo Liu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Xiaoqi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
2
|
Synergistic Effects of Ginsenoside Rb3 and Ferruginol in Ischemia-Induced Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232415935. [PMID: 36555577 PMCID: PMC9785845 DOI: 10.3390/ijms232415935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Previous research shows that ginsenoside Rb3 (G-Rb3) exhibit significant protective effects on cardiomyocytes and is considered a promising treatment for myocardial infraction (MI). However, how to improve its oral bioavailability and reduce its dosage remains to be studied. Previous studies suggest that Ferruginol (FGL) may have synergistic effects with G-Rb3. However, the underlying mechanisms remain to be explored. In this study, left anterior descending branch (LAD) coronary artery ligation or oxygen-glucose deprivation-reperfusion (OGD/R) were used to establish MI models in vivo and in vitro. Subsequently, the pharmacological effects and mechanisms of G-Rb3-FGL were explored by in vitro studies. The results showed that the G-Rb3-FGL co-treatment improved heart functions better than the G-Rb3 treatment alone in MI mice models. Meanwhile, the G-Rb3-FGL co-treatment can upregulate fatty acids oxidation (FAO) and suppress oxidative stress in the heart tissues of MI mice. In vitro studies demonstrated that the synergistic effect of G-Rb3-FGL on FAO, oxidation and inflammation was abolished by RXRα inhibitor HX531 in the H9C2 cell model. In summary, we revealed that G-Rb3 and FGL have a synergistic effect against MI. They protected cardiomyocytes by promoting FAO, inhibiting oxidative stress, and suppressing inflammation through the RXRα-Nrf2 signaling pathway.
Collapse
|
3
|
Shi X, Cao Y, Zhang X, Gu C, Liang F, Xue J, Ni HW, Wang Z, Li Y, Wang X, Cai Z, Hocher B, Shen LH, He B. Comprehensive Analysis of N6-Methyladenosine RNA Methylation Regulators Expression Identify Distinct Molecular Subtypes of Myocardial Infarction. Front Cell Dev Biol 2021; 9:756483. [PMID: 34778266 PMCID: PMC8578940 DOI: 10.3389/fcell.2021.756483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Myocardial infarction (MI) is one of the leading threats to human health. N6-methyladenosine (m6A) modification, as a pivotal regulator of messenger RNA stability, protein expression, and cellular processes, exhibits important roles in the development of cardiac remodeling and cardiomyocyte contractile function. Methods: The expression levels of m6A regulators were analyzed using the GSE5406 database. We analyzed genome-wide association study data and single-cell sequencing data to confirm the functional importance of m6A regulators in MI. Three molecular subtypes with different clinical characteristics were established to tailor treatment strategies for patients with MI. We applied pathway analysis and differentially expressed gene (DEG) analysis to study the changes in gene expression and identified four common DEGs. Furthermore, we constructed the protein–protein interaction network and confirmed several hub genes in three clusters of MI. To lucubrate the potential functions, we performed a ClueGO analysis of these hub networks. Results: In this study, we identified that the levels of FTO, YTHDF3, ZC3H13, and WTAP were dramatically differently expressed in MI tissues compared with controls. Bioinformatics analysis showed that DEGs in MI were significantly related to modulating calcium signaling and chemokine signaling, and m6A regulators were related to regulating glucose measurement and elevated blood glucose levels. Furthermore, genome-wide association study data analysis showed that WTAP single-nucleotide polymorphism was significantly related to the progression of MI. In addition, single-cell sequencing found that WTAP is widely expressed in the heart tissues. Moreover, we conducted consensus clustering for MI in view of the dysregulated m6A regulators’ expression in MI. According to the expression levels, we found MI patients could be clustered into three subtypes. Pathway analysis showed the DEGs among different clusters in MI were assigned to HIF-1, IL-17, MAPK, PI3K-Akt signaling pathways, etc. The module analysis detected several genes, including BAG2, BAG3, MMP2, etc. We also found that MI-related network was significantly related to positive and negative regulation of angiogenesis and response to heat. The hub networks in MI clusters were significantly related to antigen processing and ubiquitin-mediated proteolysis, RNA splicing, and stability, indicating that these processes may contribute to the development of MI. Conclusion: Collectively, our study could provide more information for understanding the roles of m6A in MI, which may provide a novel insight into identifying biomarkers for MI treatment and diagnosis.
Collapse
Affiliation(s)
- Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaochen Cao
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiaobin Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Liang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jieyuan Xue
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Han-Wen Ni
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zi Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Berthold Hocher
- 5th Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Rheumatology), University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ling-Hong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|