1
|
Huang Y, Zhao J, Zhou Z, Guo X, Xu Y, Huang T, Meng S, Cao Z, Xu D, Zhao Q, Yin Z, Jiang H, Yu L, Wang H. Persistent hypertension induces atrial remodeling and atrial fibrillation through DNA damage and ATM/CHK2/p53 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167534. [PMID: 39366645 DOI: 10.1016/j.bbadis.2024.167534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, with hypertension emerging as an independent risk factor. Previous literature has established associations between DNA damage response (DDR) and autophagy in relation to the pathogenesis of AF. The aim of this study was to evaluate the effect of atrial DNA damage response in persistent hypertension-induced atrial electrical and structural remodeling, and to further explore the potential therapeutic targets. Patient samples, spontaneous hypertensive rats (SHR) and angiotensin II (Ang II)-challenged HL-1 cells were employed to elucidate the detailed mechanisms. Bioinformatics analysis and investigation on human atrial samples revealed a critical role of DDR in the pathogenesis of AF. The markers of atrial DNA damage, DDR, autophagy, inflammation and fibrosis were detected by western blot, immunofluorescence, monodansyl cadaverine (MDC) assay and transmission electron microscopy. Compared with the control group, SHR exhibited significant atrial electrical and structural remodeling, abnormal increase of autophagy, inflammation, and fibrosis, which was accompanied by excessive activation of DDR mediated by the ATM/CHK2/p53 pathway. These detrimental changes were validated by in vitro experiments. Ang II-challenged HL-1 cells also exhibited significantly elevated γH2AX expression, and markers related to autophagy, inflammation as well as structural remodeling. Additionally, inhibition of ATM with KU55933 (a specific ATM inhibitor) significantly reversed these effects. Collectively, these data demonstrate that DNA damage and the subsequently overactivated ATM/CHK2/p53 pathway play critical roles in hypertension-induced atrial remodeling and the susceptibility to AF. Targeting ATM/CHK2/p53 signaling may serve as a potential therapeutic strategy against AF.
Collapse
Affiliation(s)
- Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaodong Guo
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yinli Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Dengyue Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Qiusheng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zongtao Yin
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hui Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
2
|
Yao F, Liu C, Luo D, Zhou Y, Li Q, Huang H, Xu H. Metabolites of Microbiota: A Novel Therapy for Heart Disease. FOOD REVIEWS INTERNATIONAL 2024:1-17. [DOI: 10.1080/87559129.2024.2437410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Fei Yao
- School of Mental Health, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chao Liu
- Department of Electrocardiogram, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Duo Luo
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qianqing Li
- Department of Electrocardiogram, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Hu HJ, Wang XH, Zhang ZZ, Ou Y, Ning ZH, Yang JY, Huang H, Tang HF, Jiang ZS. SIRT3 sulfhydration using hydrogen sulfide inhibited angiotensin II-induced atrial fibrosis and vulnerability to atrial fibrillation via suppression of the TGF-β1/smad2/3 signalling pathway. Eur J Pharmacol 2024; 982:176900. [PMID: 39168432 DOI: 10.1016/j.ejphar.2024.176900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Atrial fibrosis is associated with the occurrence of atrial fibrillation (AF) and regulated by the transforming growth factor-β1 (TGF-β1)/Smad2/3 signalling pathway. Unfortunately, the mechanisms of regulation of TGF-β1/Smad2/3-induced atrial fibrosis and vulnerability to AF remain still unknown. Previous studies have shown that sirtuin3 (SIRT3) sulfhydration has strong anti-fibrotic effects. We hypothesised that SIRT3 sulfhydration inhibits angiotensin II (Ang-II)-induced atrial fibrosis via blocking the TGF-β1/Smad2/3 signalling pathway. In this study, we found that SIRT3 expression was decreased in the left atrium of patients with AF compared to that in those with sinus rhythm (SR). In vitro, SIRT3 knockdown by small interfering RNA significantly expanded Ang-II-induced atrial fibrosis and TGF-β1/Smad2/3 signalling pathway activation, whereas supplementation with Sodium Hydrosulfide (NaHS, exogenous hydrogen sulfide donor and sulfhydration agonist) and SIRT3 overexpression using adenovirus ameliorated Ang-II-induced atrial fibrosis. Moreover, we observed suppression of the TGF-β1/Smad2/3 pathway when Ang-II was combined with NaHS treatment, and the effect of this co-treatment was consistent with that of Ang-II combined with LY3200882 (Smad pathway inhibitor) on reducing atrial fibroblast proliferation and cell migration in vitro. Supplementation with dithiothreitol (DTT, a sulfhydration inhibitor) and adenovirus SIRT3 shRNA blocked the ameliorating effect of NaHS and AngII co-treatment on atrial fibrosis in vitro. Finally, continued treatment with NaHS in rats ameliorated atrial fibrosis and remodelling, and further improved AF vulnerability induced by Ang-II, which was reversed by DTT and adenovirus SIRT3 shRNA, suggesting that SIRT3 sulfhydration might be a potential therapeutic target in atrial fibrosis and AF.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China; Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiu-Heng Wang
- Department of Medical-record, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Zhi-Zhu Zhang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Yun Ou
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Zhi-Hong Ning
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Jia-Yan Yang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Hong Huang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, PR China; Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, Hunan, 421001, PR China; Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
4
|
Wang XH, Ning ZH, Xie Z, Ou Y, Yang JY, Liu YX, Huang H, Tang HF, Jiang ZS, Hu HJ. SIRT3/AMPK Signaling Pathway Regulates Lipid Metabolism and Improves Vulnerability to Atrial Fibrillation in Dahl Salt-Sensitive Rats. Am J Hypertens 2024; 37:901-908. [PMID: 39023012 DOI: 10.1093/ajh/hpae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3)/AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF. METHODS The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). Then DSH group was administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of Systolic blood pressure (SBP), the expression levels of lipid metabolism-related biomarkers, pathological examination of atrial fibrosis, and lipid accumulation, as well as AF inducibility and AF duration. RESULTS DSH decrease SIRT3, phosphorylation-AMPK, and very long-chain acyl-CoA dehydrogenase, (VLCAD) expression, increased FASN and FABP4 expression and concentrations of free fatty acid and triglyceride, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4. CONCLUSIONS We have confirmed that a high-salt diet can result in hypertension, and associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.
Collapse
Affiliation(s)
- Xiu-Heng Wang
- Department of Medical-Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhi-Hong Ning
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhong Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yun Ou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Jia-Yang Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yun-Xi Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Hong Huang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Hui-Fang Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhi-Sheng Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Heng-Jing Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
5
|
Guo S, Zhang Y, Lian J, Su C, Wang H. The role of hydrogen sulfide in the regulation of necroptosis across various pathological processes. Mol Cell Biochem 2024:10.1007/s11010-024-05090-1. [PMID: 39138751 DOI: 10.1007/s11010-024-05090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Necroptosis is a programmed cell death form executed by receptor-interacting protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain-like protein (MLKL), which assemble into an oligomer called necrosome. Accumulating evidence reveals that necroptosis participates in many types of pathological processes. Hence, clarifying the mechanism of necroptosis in pathological processes is particularly important for the prevention and treatment of various diseases. For over 300 years, hydrogen sulfide (H2S) has been widely known in the scientific community as a toxic and foul-smelling gas. However, after discovering the important physiological and pathological functions of H2S, human understanding of this small molecule changed, believing that H2S is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO). H2S plays an important role in various diseases, but the related mechanisms are not yet fully understood. In recent years, more and more studies have shown that H2S regulation of necroptosis is involved in various pathological processes. Herein, we focus on the recent progress on the role of H2S regulation of necroptosis in different pathological processes and profoundly analyze the related mechanisms.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chunqi Su
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
6
|
Wang XH, Zhang ZZ, Ou Y, Ning ZH, Yang JY, Huang H, Tang HF, Jiang ZS, Hu HJ. High-Salt Diet Inhibits the Expression of Bmal1 and Promotes Atrial Fibrosis and Vulnerability to Atrial Fibrillation in Dahl Salt-Sensitive Rats. Am J Hypertens 2024; 37:726-733. [PMID: 38761040 DOI: 10.1093/ajh/hpae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Hypertension is a risk factor for atrial fibrillation (AF), and brain and muscle arnt-like protein 1 (Bmal1) regulate circadian blood pressure and is implicated in several fibrotic disorders. Our hypothesis that Bmal1 inhibits atrial fibrosis and susceptibility to AF in salt-sensitive hypertension (SSHT) and our study provides a new target for the pathogenesis of AF induced by hypertension. METHODS The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). An experimental model was used to measure systolic blood pressure (SBP), left atrial ejection fraction (LAEF), left atrial end-volume index (LAEVI), left atrial index (LAFI), AF inducibility, AF duration, and atrial fibrosis pathological examination and the expression of Baml1 and fibrosis-related proteins (TNF-α and α-SMA) in left atrial tissue. RESULTS DSH increased TNF-α and α-SMA expression in atrial tissue, level of SBP and LAESVI, atrial fibrosis, AF induction rate, and AF duration, and decreased Bmal1 expression in atrial tissue, the circadian rhythm of hypertension, and level of LAEF and LAFI. Our results also showed that the degree of atrial fibrosis was negatively correlated with Bmal1 expression, but positively correlated with the expression of TNF-α and α-SMA. CONCLUSIONS We demonstrated that a high-salt diet leads to circadian changes in hypertension due to a reduction of Bmal1 expression, which plays a crucial role in atrial fibrosis and increased susceptibility to AF in SSHT rats.
Collapse
Affiliation(s)
- Xiu-Heng Wang
- Department of Medical-Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhi-Zhu Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Yun Ou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhi-Hong Ning
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Jia-Yang Yang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Hong Huang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Hui-Fang Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Zhi-Sheng Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| | - Heng-Jing Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
- Department of Cardiovascular Disease and Key Lab for Atherosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, P.R. China
| |
Collapse
|
7
|
Yin C, Zhang M, Cheng L, Ding L, Lv Q, Huang Z, Zhou J, Chen J, Wang P, Zhang S, You Q. Melatonin modulates TLR4/MyD88/NF-κB signaling pathway to ameliorate cognitive impairment in sleep-deprived rats. Front Pharmacol 2024; 15:1430599. [PMID: 39101143 PMCID: PMC11294086 DOI: 10.3389/fphar.2024.1430599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Sleep deprivation (SD) is commonplace in today's fast-paced society. SD is a severe public health problem globally since it may cause cognitive decline and even neurodegenerative disorders like Alzheimer's disease. Melatonin (MT) is a natural chemical secreted by the pineal gland with neuroprotective effects. The purpose of this study was to investigate the protective effect and mechanism of MT on chronic sleep deprivation-induced cognitive impairment. A 3-week modified multi-platform method was used to create the SD rat model. The Morris water maze test (MWM), Tissue staining (including Hematoxylin and Eosin (H & E) staining, Nissl staining, and immunofluorescence), Western blot, Enzyme-linked immunosorbent assay (ELISA), and Quantitative real-time polymerase chain reaction (qPCR) were used to investigate the protective effect and mechanism of MT in ameliorating cognitive impairment in SD rats. The results showed that MT (50 and 100 mg/kg) significantly improved cognitive function in rats, as evidenced by a shortening of escape latency and increased time of crossing the platform and time spent in the quadrant. Additionally, MT therapy alleviated hippocampus neurodegeneration and neuronal loss while lowering levels of pathogenic factors (LPS) and inflammatory indicators (IL-1β, IL-6, TNF-α, iNOS, and COX2). Furthermore, MT treatment reversed the high expression of Aβ42 and Iba1 as well as the low expression of ZO-1 and occludin, and inhibited the SD-induced TLR4/MyD88/NF-κB signaling pathway. In summary, MT ameliorated spatial recognition and learning memory dysfunction in SD rats by reducing neuroinflammation and increasing neuroprotection while inhibiting the TLR4/MyD88/NF-κB signaling pathway. Our study supports the use of MT as an alternate treatment for SD with cognitive impairment.
Collapse
Affiliation(s)
- Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Meiya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zixuan Huang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaqi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| | - Shunbo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Rao SP, Dobariya P, Bellamkonda H, More SS. Role of 3-Mercaptopyruvate Sulfurtransferase (3-MST) in Physiology and Disease. Antioxidants (Basel) 2023; 12:antiox12030603. [PMID: 36978851 PMCID: PMC10045210 DOI: 10.3390/antiox12030603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
3-mercaptopyruvate sulfurtransferase (3-MST) plays the important role of producing hydrogen sulfide. Conserved from bacteria to Mammalia, this enzyme is localized in mitochondria as well as the cytoplasm. 3-MST mediates the reaction of 3-mercaptopyruvate with dihydrolipoic acid and thioredoxin to produce hydrogen sulfide. Hydrogen sulfide is also produced through cystathionine beta-synthase and cystathionine gamma-lyase, along with 3-MST, and is known to alleviate a variety of illnesses such as cancer, heart disease, and neurological conditions. The importance of cystathionine beta-synthase and cystathionine gamma-lyase in hydrogen sulfide biogenesis is well-described, but documentation of the 3-MST pathway is limited. This account compiles the current state of knowledge about the role of 3-MST in physiology and pathology. Attempts at targeting the 3-MST pathway for therapeutic benefit are discussed, highlighting the potential of 3-MST as a therapeutic target.
Collapse
|
9
|
Yu Y, Fang R, Jin H, Wang B, Gao F, He B. Correlation between Serum Myosin Light Chain 4 Levels and Recurrence after Radiofrequency Ablation in Patients with Atrial Fibrillation. Int Heart J 2023; 64:632-640. [PMID: 37518344 DOI: 10.1536/ihj.22-560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia that is harmful to human health. This study aims to explore the relationship between myosin light chain 4 (MYL4) and AF recurrence after radiofrequency ablation (RFA). Patients with AF (n = 85) were enrolled, and healthy subjects (n = 90) with normal sinus rhythm and no previous history of AF were selected as controls. The serum levels of MYL4, transforming growth factor (TGF) -β1, and procollagen type-I C-terminal propeptide (PICP) were determined. The correlation between MYL4 and atrial fibrosis remodeling indicators (TGF-β1/PICP) and left atrial diameter (LAD) was analyzed. The influence of MYL4 on AF recurrence after RFA was evaluated, and the independent correlation between them was assessed. Patients with AF and the controls showed no significant differences in age, gender, body mass index, systolic blood pressure, diastolic blood pressure, left ventricular ejection fraction, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, white blood cell count, neutrophil/lymphocyte ratio, brain natriuretic peptide, and history of smoking, drinking, hypertension, and diabetes (P > 0.05), but with increased LAD in patients with AF (P < 0.01). Serum MYL4 level was reduced in patients with AF (0.6 ± 0.2) compared with that of controls (0.1 ± 0.6) (P < 0.01), and it was negatively correlated with TGF-β1, PICP, and LAD (r = -0.2389, P < 0.05; r = -0.5174, P < 0.01; r = -0.3191; P < 0.01). Low levels of MYL4 increased the risk of AF recurrence after RFA (χ2 = 16.64; P < 0.0001). A low MYL4 level in patients with AF showed a poorer prognosis. Serum MYL4 level and AF type were independent risk factors affecting AF recurrence after RFA.
Collapse
Affiliation(s)
- Yibo Yu
- Department of Cardiology, Ningbo First Hospital
| | | | - He Jin
- Department of Cardiology, Ningbo First Hospital
| | - Binhao Wang
- Department of Cardiology, Ningbo First Hospital
| | - Fang Gao
- Department of Cardiology, Ningbo First Hospital
| | - Bin He
- Department of Cardiology, Ningbo First Hospital
| |
Collapse
|
10
|
Wang R, Qi YF, Ding CH, Zhang D. Sulfur-containing amino acids and their metabolites in atrial fibrosis. Front Pharmacol 2022; 13:1063241. [DOI: 10.3389/fphar.2022.1063241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Atrial fibrosis, a symbol of atrial structural remodelling, is a complex process involved in the occurrence and maintenance of atrial fibrillation (AF). Atrial fibrosis is regulated by multiple factors. Sulfur containing amino acids and their metabolites, such as hydrogen sulfide (H2S) and taurine, can inhibit the process of atrial fibrosis and alleviate atrial remodeling. However, homocysteine can promote the activation of atrial fibroblasts and further promote atrial fibrosis. In this review, we will focus on the recent progress in atrial structural changes and molecular mechanisms of atrial fibrosis, as well as the regulatory roles and possible mechanisms of sulfur containing amino acids and their metabolites in atrial fibrosis. It is expected to provide new ideas for clarifying the mechanism of atrial fibrosis and finding targets to inhibit the progress of atrial fibrosis.
Collapse
|
11
|
Jiang F, Zhang W, Lu H, Tan M, Zeng Z, Song Y, Ke X, Lin F. Prediction of herbal medicines based on immune cell infiltration and immune- and ferroptosis-related gene expression levels to treat valvular atrial fibrillation. Front Genet 2022; 13:886860. [PMID: 36246656 PMCID: PMC9554472 DOI: 10.3389/fgene.2022.886860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory immune response is apparently one of the determinants of progressive exacerbation of valvular atrial fibrillation(VAF). Ferroptosis, an iron-dependent modality of regulated cell death, is involved in the immune regulation of cardiovascular disease. However, the relevant regulatory mechanisms of immune infiltration and ferroptosis in VAF have been less studied. In the current study, a highly efficient system for screening immunity- and ferroptosis-related biomarkers and immunomodulatory ability of herbal ingredients has been developed with the integration of intelligent data acquisition, data mining, network pharmacology, and computer-assisted target fishing. VAF patients showed higher infiltration of neutrophils and resting stage dendritic cells, while VSR patients showed higher infiltration of follicular helper T cells. In addition, six (e.g., PCSK2) and 47 (e.g., TGFBR1) ImmDEGs and one (SLC38A1) and four (TGFBR1, HMGB1, CAV1, and CD44) FerDEGs were highly expressed in patients with valvular sinus rhythm (VSR) and VAF, respectively. We further identified a core subnetwork containing 34 hub genes, which were intersected with ImmDEGs and FerDEGs to obtain the key gene TGFBR1. Based on TGFBR1, 14 herbs (e.g., Fructus zizyphi jujubae, Semen Juglandis, and Polygonum cuspidatum) and six herbal ingredients (curcumin, curcumine, D-glucose, hexose, oleovitamin A, and resveratrol) were predicted. Finally, TGFBR1 was found to dock well with curcumin and resveratrol, and it was further verified that curcumin and resveratrol could significantly reduce myocardial fibrosis. We believe that herbs rich in curcumin and resveratrol such as Rhizoma curcumae longae and Curcuma kwangsiensis, mitigate myocardial fibrosis to improve VAF by modulating the TGFβ/Smad signaling pathway. This strategy provides a prospective approach systemically characterizing phenotype-target-herbs relationships based on the tissue-specific biological functions in VAF and brings us new insights into the searching lead compounds from Chinese herbs.
Collapse
Affiliation(s)
- Feng Jiang
- Cardiology Department, Affiliated Baoan TCM Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Weiwei Zhang
- Cardiology Department, Affiliated Baoan TCM Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Hongdan Lu
- Cardiology Department, Affiliated Baoan TCM Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Meiling Tan
- Wenhua Community Health Service Center, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - Zhicong Zeng
- Cardiology Department, Affiliated Baoan TCM Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Yinzhi Song
- Cardiology Department, Affiliated Baoan TCM Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen(Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
- *Correspondence: Fengxia Lin, ; Xiao Ke,
| | - Fengxia Lin
- Cardiology Department, Affiliated Baoan TCM Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Fengxia Lin, ; Xiao Ke,
| |
Collapse
|
12
|
Mao D, Xu M, Jiang Q, Sun H, Sun F, Yang R, Chai Y, Li X, Li B, Li Y. A Single Nucleotide Mixture Enhances the Antitumor Activity of Molecular-Targeted Drugs Against Hepatocellular Carcinoma. Front Pharmacol 2022; 13:951831. [PMID: 35833031 PMCID: PMC9271877 DOI: 10.3389/fphar.2022.951831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
New strategies for molecular-targeted drug therapy for advanced hepatocellular carcinoma (HCC) ignore the contribution of the nutritional status of patients and nutritional support to improve physical status and immunity. We aimed to elucidate the role of a single nucleotide mixture (SNM) in the anti-tumor therapy of HCC, and to explore the importance of a SNM as adjuvant therapy for HCC. Compared with a lipid emulsion (commonly used nutritional supplement for HCC patients), the SNM could not induce metabolic abnormalities in HCC cells (Warburg effect), and did not affect expression of metabolic abnormality-related factors in HCC cells. The SNM could also attenuate the lymphocyte injury induced by antitumor drugs in vitro and in vivo, and promote the recruitment and survival of lymphocytes in HCC tissues. Using HCC models in SCID (server combined immune-deficiency) mice or BalB/c mice, the SNM had anti-tumor activity, and could significantly upregulate the antitumor activity of molecular-targeted drugs (tyrosine-kinase inhibitors [TKI] and immune-checkpoint inhibitors [ICI]) against HCC. We employed research models in vivo and in vitro to reveal the anti-tumor activity of the SNM on HCC. Our findings expand understanding of the SNM and contribute to HCC (especially nutritional support) therapy.
Collapse
Affiliation(s)
- Da Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruichuang Yang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Boan Li
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yong Li, ; Boan Li,
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- *Correspondence: Yong Li, ; Boan Li,
| |
Collapse
|