1
|
Moxon JV, Pretorius C, Trollope AF, Mittal P, Klingler-Hoffmann M, Hoffmann P, Golledge J. A systematic review and in silico analysis of studies investigating the ischemic penumbra proteome in animal models of experimental stroke. J Cereb Blood Flow Metab 2024; 44:1709-1722. [PMID: 38639008 PMCID: PMC11504113 DOI: 10.1177/0271678x241248502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Ischaemic stroke results in the formation of a cerebral infarction bordered by an ischaemic penumbra. Characterising the proteins within the ischaemic penumbra may identify neuro-protective targets and novel circulating markers to improve patient care. This review assessed data from studies using proteomic platforms to compare ischaemic penumbra tissues to controls following experimental stroke in animal models. Proteins reported to differ significantly between penumbra and control tissues were analysed in silico to identify protein-protein interactions and over-represented pathways. Sixteen studies using rat (n = 12), mouse (n = 2) or primate (n = 2) models were included. Heterogeneity in the design of the studies and definition of the penumbra were observed. Analyses showed high abundance of p53 in the penumbra within 24 hours of permanent ischaemic stroke and was implicated in driving apoptosis, cell cycle progression, and ATM- MAPK- and p53- signalling. Between 1 and 7 days after stroke there were changes in the abundance of proteins involved in the complement and coagulation pathways. Favourable recovery 1 month after stroke was associated with an increase in the abundance of proteins involved in wound healing. Poor recovery was associated with increases in prostaglandin signalling. Findings suggest that p53 may be a target for novel therapeutics for ischaemic stroke.
Collapse
Affiliation(s)
- Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Cornea Pretorius
- Townsville University Hospital, Angus Smith Drive, Douglas, Townsville, Australia
| | - Alexandra F Trollope
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Parul Mittal
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Manuela Klingler-Hoffmann
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Peter Hoffmann
- Mass Spectrometry and Proteomics Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Australia
| |
Collapse
|
2
|
Azhari HF. Advancing stroke diagnosis and management through nuclear medicine: a systematic review of clinical trials. Front Med (Lausanne) 2024; 11:1425965. [PMID: 39224610 PMCID: PMC11368133 DOI: 10.3389/fmed.2024.1425965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Despite advancements in stroke care, challenges persist in timely triage and treatment initiation to prevent the burden of stroke-related disabilities. Although nuclear medicine has shown promise, no imaging technique has yet provided a sufficiently rapid, precise, and cost-effective approach to routine stroke management. This study aims to review the clinical application of nuclear medicine in stroke diagnosis and treatment. Methods A systematic search of the Cochrane, EU Clinical Trials Register, ISRCTN, the International Stroke Trial, and the ClinicalTrials.gov database was conducted to find all registered trials reporting nuclear medicine's clinical applications in stroke up to June 07, 2024. Results Among the 220 screened trials, 51 (36 interventional; 15 observational) met the eligibility criteria. Participants were older than 18 years old, with only six studies including pediatric under 17 years old, with a total of 11,262 stroke (9,232 ischemic; 2,030 haemorrhagic) participants. The bias risk varied across trials but remained mostly low to moderate. Discussion The review highlighted nuclear medicine's significant contributions to stroke diagnosis and management, notably through mobile stroke units, pre-hospital acute stroke magnetic resonance image (MRI) based biomarkers, and MRI-based stroke mechanisms for 4D flow nuclear imaging. These advancements have generally reduced treatment delays and enhance clinical outcomes post-stroke. Specifically, radiopharmaceutical radiotracers can effectively discriminate between strokes and mimics, particularly in high-risk patients. Integrating novel positron emission tomography (PET) radiotracer 18F glycoprotein 1 and radionuclide angiography may improve sensitivity and specificity in thrombi detection for decisions regarding stenting or carotid endarterectomy, and the single-photon emission computed tomography and PET integration with ferumoxytol radiotracer-enhanced MRI enables functional imaging for evaluating cerebral perfusion, metabolic activity, and neuroinflammatory markers post-stroke. Overall, the integration of nuclear medicine into multimodal imaging equipment like computed-tomography PET and MRI-PET offers a more comprehensive picture of the brain. Nevertheless, further research is needed on novel stroke imaging techniques and standardization across stroke centers for optimal performance. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024541680, identifier PROSPERO CRD(42024541680).
Collapse
Affiliation(s)
- Hala F. Azhari
- College of Medicine and Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Tuo J, Peng Y, Linghu Y, Tao M, Huang S, Xu Z. Natural products regulate mitochondrial function in cognitive dysfunction-A scoping review. Front Pharmacol 2023; 14:1091879. [PMID: 36959855 PMCID: PMC10027783 DOI: 10.3389/fphar.2023.1091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Medicines from natural products can not only treat neurodegenerative diseases but also improve the cognitive dysfunction caused by treatments with western medicines. This study reviews the literature related to the regulation of mitochondrial participation in cognitive function by natural products. In this study, we focused on English articles in PubMed, Web of Science, and Google Scholar, from 15 October 2017, to 15 October 2022. Fourteen studies that followed the inclusion criteria were integrated, analyzed, and summarized. Several studies have shown that natural products can improve or reduce cognitive dysfunction by ameliorating mitochondrial dysfunction. These results suggest that natural products may serve as new therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yan Peng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yushuang Linghu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Tao
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shiming Huang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Shiming Huang, ; Zucai Xu,
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Shiming Huang, ; Zucai Xu,
| |
Collapse
|
5
|
Liu L, Chen D, Zhou Z, Yuan J, Chen Y, Sun M, Zhou M, Liu Y, Sun S, Chen J, Zhao L. Traditional Chinese medicine in treating ischemic stroke by modulating mitochondria: A comprehensive overview of experimental studies. Front Pharmacol 2023; 14:1138128. [PMID: 37033646 PMCID: PMC10073505 DOI: 10.3389/fphar.2023.1138128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Ischemic stroke has been a prominent focus of scientific investigation owing to its high prevalence, complex pathogenesis, and difficulties in treatment. Mitochondria play an important role in cellular energy homeostasis and are involved in neuronal death following ischemic stroke. Hence, maintaining mitochondrial function is critical for neuronal survival and neurological improvement in ischemic stroke, and mitochondria are key therapeutic targets in cerebral stroke research. With the benefits of high efficacy, low cost, and high safety, traditional Chinese medicine (TCM) has great advantages in preventing and treating ischemic stroke. Accumulating studies have explored the effect of TCM in preventing and treating ischemic stroke from the perspective of regulating mitochondrial structure and function. In this review, we discuss the molecular mechanisms by which mitochondria are involved in ischemic stroke. Furthermore, we summarized the current advances in TCM in preventing and treating ischemic stroke by modulating mitochondria. We aimed to provide a new perspective and enlightenment for TCM in the prevention and treatment of ischemic stroke by modulating mitochondria.
Collapse
Affiliation(s)
- Lu Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Daohong Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziyang Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingsheng Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mengdi Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shiqi Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiao Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- *Correspondence: Ling Zhao, ; Jiao Chen,
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- *Correspondence: Ling Zhao, ; Jiao Chen,
| |
Collapse
|
6
|
Ma Y, Chen J, Huang X, Liu Y. The efficacy and safety of mecobalamin combined with Chinese medicine injections in the treatment of diabetic peripheral neuropathy: A systematic review and Bayesian network meta-analysis of randomized controlled trials. Front Pharmacol 2022; 13:957483. [DOI: 10.3389/fphar.2022.957483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background: In recent years, people pay more and more attention to diabetic peripheral neuropathy (DPN). As a neurotrophic agent, mecobalamin is able to repaire nerves, which has already become a consensus among experts. However, it has been found that mecobalamin has poor effect to increase nerve conduction velocity, which is an important indicator. Clinical data have shown that Chinese medicine injection, combined with mecobalamin injection, can significantly improve nerve conduction velocity of the limbs. Nevertheless, several kinds of Chinese medicine injections have been used to treat DPN. The effect of these Chinese medicine injections for DPN are various. Therefore, it is necessary to evaluate the effectiveness of Chinese medicine injections combined with mecobalamin in the treatment of DPN.Methods: All relevant articles published before 12 March 2022 were searched in eight electronic databases. Randomized controlled trials (RCTs) on Chinese medicine injections plus Mecobalamin for DPN were identified according to inclusion criteria, and were assessed using the revised Cochrane risk of bias tool (ROB2.0). R software and stata15 was used to create the ranking probabilities and network meta-analysis.Results: A total of 80 RCTs involving 6,980 patients were included. The results showed that mecobalamin plus Dengzhanxixin injection (ME + DZXX) ranked first in overall response rate [RR = 1.64, 95% CI (1.26, 2.21)] and median motor nerve conduction velocity [MD = 9.46, 95% CI (5.67, 13.28)]. Then, mecobalamin plus Kudiezi Injection (ME + KDZ) had the best effect in median sensory nerve conduction velocity [MD = 10.41, 95% CI (−13.31, −7.52)], and mecobalamin plus Honghua injection (ME + HH) ranked highest in common peroneal motor nerve conduction velocity [MD = 6.8, 95% CI (4.13, 9.49)] and common peroneal sensory nerve conduction velocity [MD = −6.25, 95% CI (−8.85, −3.65)].Conclusion: This study determined the efficacy of different Chinese medicine injections combined with mecobalamin. DZXX may be the best adjunctive Chinese medicine injection for DPN patients. However, due to potential risk of bias and limited RCTs, our results need to be treated with reservations.
Collapse
|
7
|
Yang L, Tao Y, Luo L, Zhang Y, Wang X, Meng X. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114988. [PMID: 35032588 DOI: 10.1016/j.jep.2022.114988] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Xixin injection (DX), a preparation of extracts from traditional Chinese medicine Erigeron breviscapus (Vaniot) Hand.-Mazz., has been widely used in clinical treatment of cerebral ischemia sequelae in China for a long history. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The objective of this present study aimed to investigate the therapeutic effects of DX on cerebral ischemia/reperfusion (I/R) injury in a rat model. Meanwhile, its underlying molecular mechanisms on mitochondrial protection were further interpreted. MATERIALS AND METHODS The major components of DX were detected by high-performance liquid chromatography analysis. The model of cerebral I/R injury was established by middle cerebral artery occlusion (MCAO) in SD rats. We firstly performed neurobehavioral score, the regional cerebral blood flow (rCBF) assay, and TTC, HE and Nissl staining for evaluating the effects of DX on I/R injury. And then, the cortical levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were determined by commercial kits. Whereafter, real time-PCR and transmission electron microscopy were employed to investigate the relative copy number of mitochondrial DNA (mtDNA) and neuronal ultrastructure changes, respectively. Further, the potential interactions of major components in DX with mitophagy/apoptosis-related proteins were predicted by Schrodinger molecular docking. The expression of mitophagy-related proteins LC3, p62, TOM20, PINK1 and Parkin was estimated by western blot and immunofluorescence analyses. Furthermore, TUNEL staining and western blot were used to detect the apoptotic phenomenon and the protein expression of Bax, Bcl-2, Cytochrome c (Cyto-c) and cleaved Caspase-3. RESULTS DX mainly contains scutellarin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, caffeic acid and 5-O-caffeoylquinic acid. Compared with the model group, DX could remarkably relieve ischemia-provoked neurological deficit, rCBF deficiency and cerebral infarction. Pathological changes and neuronal loss in a MCAO model of rats were memorably ameliorated by DX administration. Meanwhile, DX reduced the surged ROS and MDA, while increased the level of SOD. Notably, DX treatment conversed the collapse of ATP and MMP, along with decreased in the relative copy number of mtDNA, contributing to the maintaining of mitochondrial ultrastructure via the increased number of autophagy lysosomes. The representative ingredients in DX had a potential bind with the active sites of mitophagy/apoptosis-related proteins. DX stimulated the protein expression of LC3, PINK1 and Parkin, while reduced the levels of p62 and TOM20. In addition, DX confined TUNEL-positive cell rate with the decreased expressions of Bax, Cyto-c and cleaved Caspase-3 as well as the increased Bcl-2 level. CONCLUSIONS We demonstrated that the protection of DX against brain ischemia could attribute to alleviating mitochondrial damage by upregulating mitophagy and inhibiting mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|