1
|
Bergmann T, Vakitbilir N, Gomez A, Islam A, Stein KY, Sainbhi AS, Froese L, Zeiler FA. Artifact Management for Cerebral Near-Infrared Spectroscopy Signals: A Systematic Scoping Review. Bioengineering (Basel) 2024; 11:933. [PMID: 39329675 PMCID: PMC11428271 DOI: 10.3390/bioengineering11090933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Artifacts induced during patient monitoring are a main limitation for near-infrared spectroscopy (NIRS) as a non-invasive method of cerebral hemodynamic monitoring. There currently does not exist a robust "gold-standard" method for artifact management for these signals. The objective of this review is to comprehensively examine the literature on existing artifact management methods for cerebral NIRS signals recorded in animals and humans. A search of five databases was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The search yielded 806 unique results. There were 19 articles from these results that were included in this review based on the inclusion/exclusion criteria. There were an additional 36 articles identified in the references of select articles that were also included. The methods outlined in these articles were grouped under two major categories: (1) motion and other disconnection artifact removal methods; (2) data quality improvement and physiological/other noise artifact filtering methods. These were sub-categorized by method type. It proved difficult to quantitatively compare the methods due to the heterogeneity of the effectiveness metrics and definitions of artifacts. The limitations evident in the existing literature justify the need for more comprehensive comparisons of artifact management. This review provides insights into the available methods for artifact management in cerebral NIRS and justification for a homogenous method to quantify the effectiveness of artifact management methods. This builds upon the work of two existing reviews that have been conducted on this topic; however, the scope is extended to all artifact types and all NIRS recording types. Future work by our lab in cerebral NIRS artifact management will lie in a layered artifact management method that will employ different techniques covered in this review (including dynamic thresholding, autoregressive-based methods, and wavelet-based methods) amongst others to remove varying artifact types.
Collapse
Affiliation(s)
- Tobias Bergmann
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
| | - Nuray Vakitbilir
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Abrar Islam
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
| | - Kevin Y. Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
| | - Logan Froese
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada; (N.V.); (A.I.); (K.Y.S.); (A.S.S.)
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada;
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Pan Am Clinic Foundation, Winnipeg, MB R3M 3E4, Canada
| |
Collapse
|
2
|
Hiwaki O. Whole-Head Noninvasive Brain Signal Measurement System with High Temporal and Spatial Resolution Using Static Magnetic Field Bias to the Brain. Bioengineering (Basel) 2024; 11:917. [PMID: 39329659 PMCID: PMC11428585 DOI: 10.3390/bioengineering11090917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Noninvasive brain signal measurement techniques are crucial for understanding human brain function and brain-machine interface applications. Conventionally, noninvasive brain signal measurement techniques, such as electroencephalography, magnetoencephalography, functional magnetic resonance imaging, and near-infrared spectroscopy, have been developed. However, currently, there is no practical noninvasive technique to measure brain function with high temporal and spatial resolution using one instrument. We developed a novel noninvasive brain signal measurement technique with high temporal and spatial resolution by biasing a static magnetic field emitted from a coil on the head to the brain. In this study, we applied this technique to develop a groundbreaking system for noninvasive whole-head brain function measurement with high spatiotemporal resolution across the entire head. We validated this system by measuring movement-related brain signals evoked by a right index finger extension movement and demonstrated that the proposed system can measure the dynamic activity of brain regions involved in finger movement with high spatiotemporal accuracy over the whole brain.
Collapse
Affiliation(s)
- Osamu Hiwaki
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima 731-3194, Japan
| |
Collapse
|
3
|
Argun G, Has Selmi N, Sahin H. Effects of intraoperative body temperature, blood pressure, cerebral tissue oxygenation, and anesthesia type on postoperative cognitive functions in geriatric arthroplasty surgery for hip fracture. Jt Dis Relat Surg 2024; 35:662-673. [PMID: 39189577 PMCID: PMC11411885 DOI: 10.52312/jdrs.2024.1782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVES This study aimed to explore the effects of cerebral oxygenation, body temperature, hemodynamic changes, and anesthesia type on postoperative cognitive dysfunction (POCD) in geriatric patients undergoing hip fracture surgery. PATIENTS AND METHODS One hundred five elderly patients (59 males, 46 females; mean age: 76.7±8.8 years; range, 65 to 95 years) who were scheduled for hip fracture surgery under general or spinal anesthesia between March 2021 and March 2023 were enrolled in the prospective observational study. The cognitive functions were evaluated using the Mini-Mental State Examination (MMSE). Postoperative MMSE values <24 were considered indicative of POCD. Cerebral oxygenation was evaluated before and during the operation using near-infrared spectroscopy (NIRS), and body temperature was measured using a tympanic thermometer, with values <36℃ considered hypothermia. The relationship between decreases in blood pressure ≥30% and POCD was investigated. The relationship between decreases in NIRS of 25% and POCD was also investigated. RESULTS Postoperative cognitive dysfunction was observed in 29 (27.25%) of the 105 patients. The MMSE value was 24 in 67.06% of 29 patients, and all these patients developed POCD. The incidence of POCD in patients with a preoperative MMSE1 score of 30 was 12.30% (p=0.001). No relationship was identified between MMSE changes and anesthesia type, hypotension, and decreases in the NIRS (p=0.439, p=0.399). Hypothermia was found to be significantly related to POCD (p=0.013). The degree of hypothermia decreased the postoperative MMSE value at different rates. A 1°C body temperature decrease caused a 16.7%, 44.4%, and 50% decrease in MMSE scores of one, one, and two patients, respectively. CONCLUSION Hypothermia was found to be significantly related to POCD. The same degree of hypothermia caused different MMSE changes. Since the number of patients with POCD was very low, the effect of amounts of body temperature changes on clinically significant MMSE changes could not be supported by logistic regression. The preoperative MMSE values, MMSE change rates, and age were found to be effective in POCD. Maintaining the body temperature throughout the operation will ensure the preservation of postoperative cognitive functions.
Collapse
Affiliation(s)
- Guldeniz Argun
- SBÜ, Dr. Abdurrahman Yurtaslan Ankara Onkoloji Eğitim ve Araştırma Hastanesi, Anesteziyoloji ve Reanimasyon Kliniği, Ankara, Türkiye.
| | | | | |
Collapse
|
4
|
Vakitbilir N, Bergmann T, Froese L, Gomez A, Sainbhi AS, Stein KY, Islam A, Zeiler FA. Multivariate modeling and prediction of cerebral physiology in acute traumatic neural injury: A scoping review. Comput Biol Med 2024; 178:108766. [PMID: 38905893 DOI: 10.1016/j.compbiomed.2024.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Traumatic brain injury (TBI) poses a significant global public health challenge necessitating a profound understanding of cerebral physiology. The dynamic nature of TBI demands sophisticated methodologies for modeling and predicting cerebral signals to unravel intricate pathophysiology and predict secondary injury mechanisms prior to their occurrence. In this comprehensive scoping review, we focus specifically on multivariate cerebral physiologic signal analysis in the context of multi-modal monitoring (MMM) in TBI, exploring a range of techniques including multivariate statistical time-series models and machine learning algorithms. Conducting a comprehensive search across databases yielded 7 studies for evaluation, encompassing diverse cerebral physiologic signals and parameters from TBI patients. Among these, five studies concentrated on modeling cerebral physiologic signals using statistical time-series models, while the remaining two studies primarily delved into intracranial pressure (ICP) prediction through machine learning models. Autoregressive models were predominantly utilized in the modeling studies. In the context of prediction studies, logistic regression and Gaussian processes (GP) emerged as the predominant choice in both research endeavors, with their performance being evaluated against each other in one study and other models such as random forest, and decision tree in the other study. Notably among these models, random forest model, an ensemble learning approach, demonstrated superior performance across various metrics. Additionally, a notable gap was identified concerning the absence of studies focusing on prediction for multivariate outcomes. This review addresses existing knowledge gaps and sets the stage for future research in advancing cerebral physiologic signal analysis for neurocritical care improvement.
Collapse
Affiliation(s)
- Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
| | - Tobias Bergmann
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Abrar Islam
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada; Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK; Pan Clinic Foundation, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Gomez A, Griesdale D, Froese L, Yang E, Thelin EP, Raj R, Aries M, Gallagher C, Bernard F, Kramer AH, Zeiler FA. Temporal Statistical Relationship between Regional Cerebral Oxygen Saturation (rSO 2) and Brain Tissue Oxygen Tension (PbtO 2) in Moderate-to-Severe Traumatic Brain Injury: A Canadian High Resolution-TBI (CAHR-TBI) Cohort Study. Bioengineering (Basel) 2023; 10:1124. [PMID: 37892854 PMCID: PMC10604223 DOI: 10.3390/bioengineering10101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Brain tissue oxygen tension (PbtO2) has emerged as a cerebral monitoring modality following traumatic brain injury (TBI). Near-infrared spectroscopy (NIRS)-based regional cerebral oxygen saturation (rSO2) can non-invasively examine cerebral oxygen content and has the potential for high spatial resolution. Past studies examining the relationship between PbtO2 and NIRS-based parameters have had conflicting results with varying degrees of correlation. Understanding this relationship will help guide multimodal monitoring practices and impact patient care. The aim of this study is to examine the relationship between PbtO2 and rSO2 in a cohort of TBI patients by leveraging contemporary statistical methods. A multi-institutional retrospective cohort study of prospectively collected data was performed. Moderate-to-severe adult TBI patients were included with concurrent rSO2 and PbtO2 monitoring during their stay in the intensive care unit (ICU). The high-resolution data were analyzed utilizing time series techniques to examine signal stationarity as well as the cross-correlation relationship between the change in PbtO2 and the change in rSO2 signals. Finally, modeling of the change in PbtO2 by the change in rSO2 was attempted utilizing linear methods that account for the autocorrelative nature of the data signals. A total of 20 subjects were included in the study. Cross-correlative analysis found that changes in PbtO2 were most significantly correlated with changes in rSO2 one minute earlier. Through mixed-effects and time series modeling of parameters, changes in rSO2 were found to often have a statistically significant linear relationship with changes in PbtO2 that occurred a minute later. However, changes in rSO2 were inadequate to predict changes in PbtO2. In this study, changes in PbtO2 were found to correlate most with changes in rSO2 approximately one minute earlier. While changes in rSO2 were found to contain information about future changes in PbtO2, they were not found to adequately model them. This strengthens the body of literature indicating that NIRS-based rSO2 is not an adequate substitute for PbtO2 in the management of TBI.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Donald Griesdale
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Eleen Yang
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eric P. Thelin
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, 6211 Maastricht, The Netherlands
| | - Clare Gallagher
- Section of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Andreas H. Kramer
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
6
|
Gomez A, Sainbhi AS, Stein KY, Vakitbilir N, Froese L, Zeiler FA. Statistical properties of cerebral near infrared and intracranial pressure-based cerebrovascular reactivity metrics in moderate and severe neural injury: a machine learning and time-series analysis. Intensive Care Med Exp 2023; 11:57. [PMID: 37635181 PMCID: PMC10460757 DOI: 10.1186/s40635-023-00541-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Cerebrovascular reactivity has been identified as a key contributor to secondary injury following traumatic brain injury (TBI). Prevalent intracranial pressure (ICP) based indices of cerebrovascular reactivity are limited by their invasive nature and poor spatial resolution. Fortunately, interest has been building around near infrared spectroscopy (NIRS) based measures of cerebrovascular reactivity that utilize regional cerebral oxygen saturation (rSO2) as a surrogate for pulsatile cerebral blood volume (CBV). In this study, the relationship between ICP- and rSO2-based indices of cerebrovascular reactivity, in a cohort of critically ill TBI patients, is explored using classical machine learning clustering techniques and multivariate time-series analysis. METHODS High-resolution physiologic data were collected in a cohort of adult moderate to severe TBI patients at a single quaternary care site. From this data both ICP- and rSO2-based indices of cerebrovascular reactivity were derived. Utilizing agglomerative hierarchical clustering and principal component analysis, the relationship between these indices in higher dimensional physiologic space was examined. Additionally, using vector autoregressive modeling, the response of change in ICP and rSO2 (ΔICP and ΔrSO2, respectively) to an impulse in change in arterial blood pressure (ΔABP) was also examined for similarities. RESULTS A total of 83 patients with 428,775 min of unique and complete physiologic data were obtained. Through agglomerative hierarchical clustering and principal component analysis, there was higher order clustering between rSO2- and ICP-based indices, separate from other physiologic parameters. Additionally, modeled responses of ΔICP and ΔrSO2 to impulses in ΔABP were similar, indicating that ΔrSO2 may be a valid surrogate for pulsatile CBV. CONCLUSIONS rSO2- and ICP-based indices of cerebrovascular reactivity relate to one another in higher dimensional physiologic space. ΔICP and ΔrSO2 behave similar in modeled responses to impulses in ΔABP. This work strengthens the body of evidence supporting the similarities between ICP-based and rSO2-based indices of cerebrovascular reactivity and opens the door to cerebrovascular reactivity monitoring in settings where invasive ICP monitoring is not feasible.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Karolinksa Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Sainbhi AS, Marquez I, Gomez A, Stein KY, Amenta F, Vakitbilir N, Froese L, Zeiler FA. Regional disparity in continuously measured time-domain cerebrovascular reactivity indices: a scoping review of human literature. Physiol Meas 2023; 44:07TR02. [PMID: 37336236 DOI: 10.1088/1361-6579/acdfb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Objective: Cerebral blood vessels maintaining relatively constant cerebral blood flow (CBF) over wide range of systemic arterial blood pressure (ABP) is referred to as cerebral autoregulation (CA). Impairments in CA expose the brain to pressure-passive flow states leading to hypoperfusion and hyperperfusion. Cerebrovascular reactivity (CVR) metrics refer to surrogate metrics of pressure-based CA that evaluate the relationship between slow vasogenic fluctuations in cerebral perfusion pressure/ABP and a surrogate for pulsatile CBF/cerebral blood volume.Approach: We performed a systematically conducted scoping review of all available human literature examining the association between continuous CVR between more than one brain region/channel using the same CVR index.Main Results: In all the included 22 articles, only handful of transcranial doppler (TCD) and near-infrared spectroscopy (NIRS) based metrics were calculated for only two brain regions/channels. These metrics found no difference between left and right sides in healthy volunteer, cardiac surgery, and intracranial hemorrhage patient studies. In contrast, significant differences were reported in endarterectomy, and subarachnoid hemorrhage studies, while varying results were found regarding regional disparity in stroke, traumatic brain injury, and multiple population studies.Significance: Further research is required to evaluate regional disparity using NIRS-based indices and to understand if NIRS-based indices provide better regional disparity information than TCD-based indices.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Izabella Marquez
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Karolinksa Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Sainbhi AS, Vakitbilir N, Gomez A, Stein KY, Froese L, Zeiler FA. Non-Invasive Mapping of Cerebral Autoregulation Using Near-Infrared Spectroscopy: A Study Protocol. Methods Protoc 2023; 6:58. [PMID: 37368002 DOI: 10.3390/mps6030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The ability of cerebral vessels to maintain a fairly constant cerebral blood flow is referred to as cerebral autoregulation (CA). Using near-infrared spectroscopy (NIRS) paired with arterial blood pressure (ABP) monitoring, continuous CA can be assessed non-invasively. Recent advances in NIRS technology can help improve the understanding of continuously assessed CA in humans with high spatial and temporal resolutions. We describe a study protocol for creating a new wearable and portable imaging system that derives CA maps of the entire brain with high sampling rates at each point. The first objective is to evaluate the CA mapping system's performance during various perturbations using a block-trial design in 50 healthy volunteers. The second objective is to explore the impact of age and sex on regional disparities in CA using static recording and perturbation testing in 200 healthy volunteers. Using entirely non-invasive NIRS and ABP systems, we hope to prove the feasibility of deriving CA maps of the entire brain with high spatial and temporal resolutions. The development of this imaging system could potentially revolutionize the way we monitor brain physiology in humans since it would allow for an entirely non-invasive continuous assessment of regional differences in CA and improve our understanding of the impact of the aging process on cerebral vessel function.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Frederick A Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
9
|
Lin X, Li Q, Sun X, Shi Q, Dan W, Zhan Y, Deng B, Xia Y, Xie Y, Jiang L. Effects of apolipoprotein E polymorphism on cerebral oxygen saturation, cerebral perfusion, and early prognosis after traumatic brain injury. Ann Clin Transl Neurol 2023; 10:1002-1011. [PMID: 37186447 PMCID: PMC10270252 DOI: 10.1002/acn3.51783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE To investigate the effects of the apolipoprotein E (APOE) gene on oxygen saturation and cerebral perfusion in the early stages of traumatic brain injury (TBI). METHODS This study included 136 consecutive TBI patients and 51 healthy individuals. The APOE genotypes of all subjects were determined using quantitative fluorescence polymerase chain reaction (QF-PCR). Regional cerebral oxygen saturation (rScO2) of patients with TBI and normal subjects was monitored using near-infrared spectroscopy (NIRS). Computed tomography (CT) perfusion was used to obtain cerebral perfusion in patients with TBI and normal subjects. RESULTS In the TBI group, the rScO2 of APOEε4 carriers (53.06 ± 6.87%) was significantly lower than that of non-carriers (58.19 ± 5.83%, p < 0.05). Meanwhile, the MTT of APOEε4 carriers (6.75 ± 1.30 s) was significantly longer than that of non-carriers (5.87 ± 1.00 s, p < 0.05). Furthermore, correlation analysis showed a negative correlation between rSCO2 and MTT in patients with TBI. Both the univariate and multifactorial logistic regression analyses revealed that APOE ε4, hypoxia, MTT >5.75 s, Marshall CT Class, and GCS were independent risk factors for early poor prognosis in patients with TBI. CONCLUSION Both cerebral perfusion and cerebral oxygen were significantly impaired after TBI, and low cerebral perfusion and hypoxia were related to poor prognosis of patients with TBI. Compared with APOE ε4 non-carriers, APOE ε4 carriers not only had poorer cerebral perfusion and cerebral oxygen metabolism but also worse prognosis in the early stages of TBI. Furthermore, a negative correlation was observed between the rSCO2 and MTT levels. In addition, both CT perfusion scanning (CTP) and NIRS are reliable for monitoring the condition of patients with TBI in the neurological intensive care unit (NICU).
Collapse
Affiliation(s)
- Xun Lin
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Qilin Li
- Department of NeurosurgeryYouyang HospitalChongqingPR China
| | - Xiaochuan Sun
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Quanhong Shi
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Wei Dan
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Yan Zhan
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Bo Deng
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Yulong Xia
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Yanfeng Xie
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| | - Li Jiang
- Department of Neurosurgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingPR China
| |
Collapse
|
10
|
Vitt JR, Loper NE, Mainali S. Multimodal and autoregulation monitoring in the neurointensive care unit. Front Neurol 2023; 14:1155986. [PMID: 37153655 PMCID: PMC10157267 DOI: 10.3389/fneur.2023.1155986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Given the complexity of cerebral pathology in patients with acute brain injury, various neuromonitoring strategies have been developed to better appreciate physiologic relationships and potentially harmful derangements. There is ample evidence that bundling several neuromonitoring devices, termed "multimodal monitoring," is more beneficial compared to monitoring individual parameters as each may capture different and complementary aspects of cerebral physiology to provide a comprehensive picture that can help guide management. Furthermore, each modality has specific strengths and limitations that depend largely on spatiotemporal characteristics and complexity of the signal acquired. In this review we focus on the common clinical neuromonitoring techniques including intracranial pressure, brain tissue oxygenation, transcranial doppler and near-infrared spectroscopy with a focus on how each modality can also provide useful information about cerebral autoregulation capacity. Finally, we discuss the current evidence in using these modalities to support clinical decision making as well as potential insights into the future of advanced cerebral homeostatic assessments including neurovascular coupling.
Collapse
Affiliation(s)
- Jeffrey R. Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Neurology, UC Davis Medical Center, Sacramento, CA, United States
| | - Nicholas E. Loper
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
11
|
Ailioaie LM, Ailioaie C, Litscher G. Photobiomodulation in Alzheimer's Disease-A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine? Pharmaceutics 2023; 15:916. [PMID: 36986776 PMCID: PMC10054386 DOI: 10.3390/pharmaceutics15030916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, usually develops slowly but gradually worsens. It accounts for approximately 70% of dementia cases worldwide, and is recognized by WHO as a public health priority. Being a multifactorial disease, the origins of AD are not satisfactorily understood. Despite huge medical expenditures and attempts to discover new pharmaceuticals or nanomedicines in recent years, there is no cure for AD and not many successful treatments are available. The current review supports introspection on the latest scientific results from the specialized literature regarding the molecular and cellular mechanisms of brain photobiomodulation, as a complementary method with implications in AD. State-of-the-art pharmaceutical formulations, development of new nanoscale materials, bionanoformulations in current applications and perspectives in AD are highlighted. Another goal of this review was to discover and to speed transition to completely new paradigms for the multi-target management of AD, to facilitate brain remodeling through new therapeutic models and high-tech medical applications with light or lasers in the integrative nanomedicine of the future. In conclusion, new insights from this interdisciplinary approach, including the latest results from photobiomodulation (PBM) applied in human clinical trials, combined with the latest nanoscale drug delivery systems to easily overcome protective brain barriers, could open new avenues to rejuvenate our central nervous system, the most fascinating and complex organ. Picosecond transcranial laser stimulation could be successfully used to cross the blood-brain barrier together with the latest nanotechnologies, nanomedicines and drug delivery systems in AD therapy. Original, smart and targeted multifunctional solutions and new nanodrugs may soon be developed to treat AD.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
12
|
Sainbhi AS, Froese L, Gomez A, Marquez I, Amenta F, Batson C, Stein KY, Zeiler FA. High spatial and temporal resolution cerebrovascular reactivity for humans and large mammals: A technological description of integrated fNIRS and niABP mapping system. Front Physiol 2023; 14:1124268. [PMID: 36755788 PMCID: PMC9899997 DOI: 10.3389/fphys.2023.1124268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: The process of cerebral vessels maintaining cerebral blood flow (CBF) fairly constant over a wide range of arterial blood pressure is referred to as cerebral autoregulation (CA). Cerebrovascular reactivity is the mechanism behind this process, which maintains CBF through constriction and dilation of cerebral vessels. Traditionally CA has been assessed statistically, limited by large, immobile, and costly neuroimaging platforms. However, with recent technology advancement, dynamic autoregulation assessment is able to provide more detailed information on the evolution of CA over long periods of time with continuous assessment. Yet, to date, such continuous assessments have been hampered by low temporal and spatial resolution systems, that are typically reliant on invasive point estimations of pulsatile CBF or cerebral blood volume using commercially available technology. Methods: Using a combination of multi-channel functional near-infrared spectroscopy and non-invasive arterial blood pressure devices, we were able to create a system that visualizes CA metrics by converting them to heat maps drawn on a template of human brain. Results: The custom Python heat map module works in "offline" mode to visually portray the CA index per channel with the use of colourmap. The module was tested on two different mapping grids, 8 channel and 24 channel, using data from two separate recordings and the Python heat map module was able read the CA indices file and represent the data visually at a preselected rate of 10 s. Conclusion: The generation of the heat maps are entirely non-invasive, with high temporal and spatial resolution by leveraging the recent advances in NIRS technology along with niABP. The CA mapping system is in its initial stage and development plans are ready to transform it from "offline" to real-time heat map generation.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada,*Correspondence: Amanjyot Singh Sainbhi,
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Izzy Marquez
- Undergraduate Engineering Program, Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Fiorella Amenta
- Undergraduate Engineering Program, Department of Biosystems Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Froese L, Gomez A, Sainbhi AS, Batson C, Slack T, Stein KY, Mathieu F, Zeiler FA. Optimal bispectral index level of sedation and cerebral oximetry in traumatic brain injury: a non-invasive individualized approach in critical care? Intensive Care Med Exp 2022; 10:33. [PMID: 35962913 PMCID: PMC9375800 DOI: 10.1186/s40635-022-00460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Impaired cerebral autoregulation has been linked with worse outcomes, with literature suggesting that current therapy guidelines fail to significantly impact cerebrovascular reactivity. The cerebral oximetry index (COx_a) is a surrogate measure of cerebrovascular reactivity which can in theory be obtained non-invasively using regional brain tissue oxygen saturation and arterial blood pressure. The goal of this study was to assess the relationship between objectively measured depth of sedation through BIS and autoregulatory capacity measured through COx_a. Methods In a prospectively maintained observational study, we collected continuous regional brain tissue oxygen saturation, intracranial pressure, arterial blood pressure and BIS in traumatic brain injury patients. COx_a was obtained using the Pearson’s correlation between regional brain tissue oxygen saturation and arterial blood pressure and ranges from − 1 to 1 with higher values indicating impairment of cerebrovascular reactivity. Using BIS values and COx_a, a curve-fitting method was applied to determine the minimum value for the COx_a. The associated BIS value with the minimum COx_a is called BISopt. This BISopt was both visually and algorithmically determined, which were compared and assessed over the whole dataset. Results Of the 42 patients, we observed that most had a parabolic relationship between BIS and COx_a. This suggests a potential “optimal” depth of sedation where COx_a is the most intact. Furthermore, when comparing the BISopt algorithm with visual inspection of BISopt, we obtained similar results. Finally, BISopt % yield (determined algorithmically) appeared to be independent from any individual sedative or vasopressor agent, and there was agreement between BISopt found with COx_a and the pressure reactivity index (another surrogate for cerebrovascular reactivity). Conclusions This study suggests that COx_a is capable of detecting disruption in cerebrovascular reactivity which occurs with over-/under-sedation, utilizing a non-invasive measure of determination and assessment. This technique may carry implications for tailoring sedation in patients, focusing on individualized neuroprotection. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00460-9.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Nizamutdinov D, Ezeudu C, Wu E, Huang JH, Yi SS. Transcranial near-infrared light in treatment of neurodegenerative diseases. Front Pharmacol 2022; 13:965788. [PMID: 36034819 PMCID: PMC9400541 DOI: 10.3389/fphar.2022.965788] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Light is a natural agent consisting of a range of visible and invisible electromagnetic spectrum travels in waves. Near-infrared (NIR) light refers to wavelengths from 800 to 2,500 nm. It is an invisible spectrum to naked eyes and can penetrate through soft and hard tissues into deep structures of the human body at specific wavelengths. NIR light may carry different energy levels depending on the intensity of emitted light and therapeutic spectrum (wavelength). Stimulation with NIR light can activate intracellular cascades of biochemical reactions with local short- and long-term positive effects. These properties of NIR light are employed in photobiomodulation (PBM) therapy, have been linked to treating several brain pathologies, and are attracting more scientific attention in biomedicine. Transcranial brain stimulations with NIR light PBM in recent animal and human studies revealed a positive impact of treatment on the progression and improvement of neurodegenerative processes, management of brain energy metabolism, and regulation of chronic brain inflammation associated with various conditions, including traumatic brain injury. This scientific overview incorporates the most recent cellular and functional findings in PBM with NIR light in treating neurodegenerative diseases, presents the discussion of the proposed mechanisms of action, and describes the benefits of this treatment in neuroprotection, cell preservation/detoxification, anti-inflammatory properties, and regulation of brain energy metabolism. This review will also discuss the novel aspects and pathophysiological role of the glymphatic and brain lymphatics system in treating neurodegenerative diseases with NIR light stimulations. Scientific evidence presented in this overview will support a combined effort in the scientific community to increase attention to the understudied NIR light area of research as a natural agent in the treatment of neurodegenerative diseases to promote more research and raise awareness of PBM in the treatment of brain disorders.
Collapse
Affiliation(s)
- Damir Nizamutdinov
- Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, TX, United States
- Texas A&M University, College of Medicine, Neurosurgery, TX, United States
| | - Chibueze Ezeudu
- Texas A&M University, College of Medicine, Neurosurgery, TX, United States
| | - Erxi Wu
- Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, TX, United States
- Texas A&M University, College of Medicine, Neurosurgery, TX, United States
- Texas A&M University, School of Pharmacy, Pharmaceutical Sciences, TX, United States
- Department of Oncology, Dell Medical School, The University of Texas at Austin, TX, United States
| | - Jason H. Huang
- Baylor Scott and White Health, Neuroscience Institute, Neurosurgery, TX, United States
- Texas A&M University, College of Medicine, Neurosurgery, TX, United States
- *Correspondence: S. Stephen Yi, ; Jason H. Huang,
| | - S. Stephen Yi
- Department of Oncology, Dell Medical School, The University of Texas at Austin, TX, United States
- *Correspondence: S. Stephen Yi, ; Jason H. Huang,
| |
Collapse
|
15
|
Gomez A, Sainbhi AS, Froese L, Batson C, Slack T, Stein KY, Cordingley DM, Mathieu F, Zeiler FA. The Quantitative Associations Between Near Infrared Spectroscopic Cerebrovascular Metrics and Cerebral Blood Flow: A Scoping Review of the Human and Animal Literature. Front Physiol 2022; 13:934731. [PMID: 35910568 PMCID: PMC9335366 DOI: 10.3389/fphys.2022.934731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral blood flow (CBF) is an important physiologic parameter that is vital for proper cerebral function and recovery. Current widely accepted methods of measuring CBF are cumbersome, invasive, or have poor spatial or temporal resolution. Near infrared spectroscopy (NIRS) based measures of cerebrovascular physiology may provide a means of non-invasively, topographically, and continuously measuring CBF. We performed a systematically conducted scoping review of the available literature examining the quantitative relationship between NIRS-based cerebrovascular metrics and CBF. We found that continuous-wave NIRS (CW-NIRS) was the most examined modality with dynamic contrast enhanced NIRS (DCE-NIRS) being the next most common. Fewer studies assessed diffuse correlation spectroscopy (DCS) and frequency resolved NIRS (FR-NIRS). We did not find studies examining the relationship between time-resolved NIRS (TR-NIRS) based metrics and CBF. Studies were most frequently conducted in humans and animal studies mostly utilized large animal models. The identified studies almost exclusively used a Pearson correlation analysis. Much of the literature supported a positive linear relationship between changes in CW-NIRS based metrics, particularly regional cerebral oxygen saturation (rSO2), and changes in CBF. Linear relationships were also identified between other NIRS based modalities and CBF, however, further validation is needed.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Alwyn Gomez,
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, MA, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
17
|
Sainbhi AS, Gomez A, Froese L, Slack T, Batson C, Stein KY, Cordingley DM, Alizadeh A, Zeiler FA. Non-Invasive and Minimally-Invasive Cerebral Autoregulation Assessment: A Narrative Review of Techniques and Implications for Clinical Research. Front Neurol 2022; 13:872731. [PMID: 35557627 PMCID: PMC9087842 DOI: 10.3389/fneur.2022.872731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
The process of cerebral vessels regulating constant cerebral blood flow over a wide range of systemic arterial pressures is termed cerebral autoregulation (CA). Static and dynamic autoregulation are two types of CA measurement techniques, with the main difference between these measures relating to the time scale used. Static autoregulation looks at the long-term change in blood pressures, while dynamic autoregulation looks at the immediate change. Techniques that provide regularly updating measures are referred to as continuous, whereas intermittent techniques take a single at point in time. However, a technique being continuous or intermittent is not implied by if the technique measures autoregulation statically or dynamically. This narrative review outlines technical aspects of non-invasive and minimally-invasive modalities along with providing details on the non-invasive and minimally-invasive measurement techniques used for CA assessment. These non-invasive techniques include neuroimaging methods, transcranial Doppler, and near-infrared spectroscopy while the minimally-invasive techniques include positron emission tomography along with magnetic resonance imaging and radiography methods. Further, the advantages and limitations are discussed along with how these methods are used to assess CA. At the end, the clinical considerations regarding these various techniques are highlighted.
Collapse
Affiliation(s)
- Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Amanjyot Singh Sainbhi
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|