1
|
Schlicht JMA, Ahlrep U, Hofmann B, Kirchhefer U, Neumann J, Gergs U. Clozapine is a functional antagonist at cardiac human H 2-histamine receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03683-7. [PMID: 39661142 DOI: 10.1007/s00210-024-03683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Clozapine is an atypical antipsychotic (neuroleptic) drug. Clozapine binds to H2-histamine receptors in vitro. We wanted to test the hypothesis that clozapine might be a functional antagonist at human cardiac H2-histamine receptors. To that end, we studied isolated electrically stimulated left atrial preparations and spontaneously beating right atrial preparations from transgenic mice with cardiomyocyte-specific overexpression of the human H2-histamine receptor (H2-TG). For comparison, we used wild-type littermate mice (WT). Finally, we measured isometric force of contraction in isolated electrically stimulated muscle strips from the human right atrium (HAP) obtained from patients during bypass surgery. After pre-stimulation with histamine, clozapine (up to 10 µM) concentration and time dependently decreased beating rate in right atrial preparations from H2-TG. Clozapine concentration dependently 1, 3, and 10 µM decreased histamine-stimulated force of contraction in HAP. Clozapine (10 µM) decreased also the isoprenaline-stimulated force of contraction in HAP. In summary, clozapine can antagonize the function of H2-histamine and β-receptors in the human heart.
Collapse
Affiliation(s)
- Jonas M A Schlicht
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, Halle (Saale), D-06097, Germany
| | - Undine Ahlrep
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, Halle (Saale), D-06097, Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, Halle (Saale), D-06097, Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, University Münster, Domagkstraße 12, Münster, D-48149, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, Halle (Saale), D-06097, Germany.
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, Halle (Saale), D-06097, Germany
| |
Collapse
|
2
|
Rayo Abella LM, Jacob H, Keller M, Schindler L, Pockes S, Pitzl S, Klimas J, Hadova K, Schneider S, Buchwalow IB, Jin C, Panula P, Kirchhefer U, Neumann J, Gergs U. Initial Characterization of a Transgenic Mouse with Overexpression of the Human H 1-Histamine Receptor on the Heart. J Pharmacol Exp Ther 2024; 389:174-185. [PMID: 38531640 DOI: 10.1124/jpet.123.002060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
There is a debate on whether H1-histamine receptors can alter contractility in the mammalian heart. We studied here a new transgenic mouse model where we increased genetically the cardiac level of the H1-histamine receptor. We wanted to know if histamine could augment or decrease contractile parameters in mice with cardiac-specific overexpression of human H1-histamine receptors (H1-TG) and compared these findings with those in littermate wild-type mice (WT). In H1-TG mice, we studied the presence of H1-histamine receptors by autoradiography of the atrium and ventricle using [3H]mepyramine. The messenger RNA for human H1-histamine receptors was present in the heart from H1-TG and absent from WT. Using in situ hybridization, we noted mRNA for the human H1-histamine receptor in cardiac cells from H1-TG. We noted that histamine (1 nM-10 µM) in paced (1 Hz) left atrial preparations from H1-TG, exerted at each concentration of histamine initially reduced force of contraction and then raised contractile force. Likewise, in spontaneously beating left atrial preparations from H1-TG, we noted that histamine led to a transient reduction in the spontaneous beating rate followed by an augmentation in the beating rate. The negative inotropic and chronotropic and the positive inotropic effects on histamine in isolated atrial muscle strips from H1-TG were attenuated by the H1-histamine receptor antagonist mepyramine. Histamine failed to exert an increased force or reduce the heartbeat in atrial preparations from WT. We concluded that stimulation of H1-histamine-receptors can decrease and then augment contractile force in the mammalian heart and stimulation of H1-histamine receptors exerts a negative chronotropic effect. SIGNIFICANCE STATEMENT: We made novel transgenic mice with cardiomyocyte-specific high expressional levels of the human H1-histamine receptor to contribute to the clarification of the controversy on whether H1-histamine receptors increase or decrease contractility and beating rate in the mammalian heart. From our data, we conclude that stimulation of H1-histamine receptors first decrease and then raise contractile force in the mammalian heart but exert solely negative chronotropic effects.
Collapse
Affiliation(s)
- Lina Maria Rayo Abella
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Max Keller
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Lisa Schindler
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Steffen Pockes
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Sebastian Pitzl
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Jan Klimas
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Katarína Hadova
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Sarah Schneider
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Igor B Buchwalow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - CongYu Jin
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Pertti Panula
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany (L.M.R.A., H.J., S.S., J.N., U.G.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (M.K., L.S., S.Po., S.Pi.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic (J.K., K.H.); Institute for Hematopathology, Hamburg, Germany and Scientific and Educational Resource Center for Molecular Morphology, Peoples' FriendshipUniversity of Russia, Moscow, Russia (I.B.B.); Department of Anatomy, University of Helsinki, Helsinki, Finland (C.J., P.P.); Institute of Pharmacology and Toxicology, Westfälische Wilhelms-University of Münster, Münster, Germany (U.K.)
| |
Collapse
|
3
|
Köck Z, Schnelle K, Persechino M, Umbach S, Schihada H, Januliene D, Parey K, Pockes S, Kolb P, Dötsch V, Möller A, Hilger D, Bernhard F. Cryo-EM structure of cell-free synthesized human histamine 2 receptor/G s complex in nanodisc environment. Nat Commun 2024; 15:1831. [PMID: 38418462 PMCID: PMC10901899 DOI: 10.1038/s41467-024-46096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Here we describe the cryo-electron microscopy structure of the human histamine 2 receptor (H2R) in an active conformation with bound histamine and in complex with Gs heterotrimeric protein at an overall resolution of 3.4 Å. The complex was generated by cotranslational insertion of the receptor into preformed nanodisc membranes using cell-free synthesis in E. coli lysates. Structural comparison with the inactive conformation of H2R and the inactive and Gq-coupled active state of H1R together with structure-guided functional experiments reveal molecular insights into the specificity of ligand binding and G protein coupling for this receptor family. We demonstrate lipid-modulated folding of cell-free synthesized H2R, its agonist-dependent internalization and its interaction with endogenously synthesized H1R and H2R in HEK293 cells by applying a recently developed nanotransfer technique.
Collapse
Affiliation(s)
- Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt, Germany
| | - Kilian Schnelle
- Department of Biology/Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | | | - Simon Umbach
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt, Germany
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Dovile Januliene
- Department of Biology/Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Kristian Parey
- Department of Biology/Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt, Germany
| | - Arne Möller
- Department of Biology/Chemistry, Structural Biology section, University of Osnabrück, Osnabrück, Germany.
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany.
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, University of Marburg, Marburg, Germany.
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt, Germany.
| |
Collapse
|
4
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Mast Cells in Cardiac Remodeling: Focus on the Right Ventricle. J Cardiovasc Dev Dis 2024; 11:54. [PMID: 38392268 PMCID: PMC10889421 DOI: 10.3390/jcdd11020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
In response to various stressors, cardiac chambers undergo structural remodeling. Long-term exposure of the right ventricle (RV) to pressure or volume overload leads to its maladaptive remodeling, associated with RV failure and increased mortality. While left ventricular adverse remodeling is well understood and therapeutic options are available or emerging, RV remodeling remains underexplored, and no specific therapies are currently available. Accumulating evidence implicates the role of mast cells in RV remodeling. Mast cells produce and release numerous inflammatory mediators, growth factors and proteases that can adversely affect cardiac cells, thus contributing to cardiac remodeling. Recent experimental findings suggest that mast cells might represent a potential therapeutic target. This review examines the role of mast cells in cardiac remodeling, with a specific focus on RV remodeling, and explores the potential efficacy of therapeutic interventions targeting mast cells to mitigate adverse RV remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
5
|
Neumann J, Dhein S, Kirchhefer U, Hofmann B, Gergs U. Effects of hallucinogenic drugs on the human heart. Front Pharmacol 2024; 15:1334218. [PMID: 38370480 PMCID: PMC10869618 DOI: 10.3389/fphar.2024.1334218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Hallucinogenic drugs are used because they have effects on the central nervous system. Their hallucinogenic effects probably occur via stimulation of serotonin receptors, namely, 5-HT2A-serotonin receptors in the brain. However, a close study reveals that they also act on the heart, possibly increasing the force of contraction and beating rate and may lead to arrhythmias. Here, we will review the inotropic and chronotropic actions of bufotenin, psilocin, psilocybin, lysergic acid diethylamide (LSD), ergotamine, ergometrine, N,N-dimethyltryptamine, and 5-methoxy-N,N-dimethyltryptamine in the human heart.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Münster, Münster, Germany
| | - Britt Hofmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
6
|
Neumann J, Pockes S, Humphrys LJ, Mönnich D, Forster L, Kirchhefer U, Hofmann B, Gergs U. Clonidine stimulates force of contraction via histamine H 2 receptors in the human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:617-626. [PMID: 37490122 PMCID: PMC10771369 DOI: 10.1007/s00210-023-02635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Clonidine has various clinical effects mediated by agonism of α1- or α2-adrenoceptors and the blocking of hyperpolarization-activated-nucleotide-gated pacemaker channels (HCN). It is unknown whether clonidine can also stimulate human cardiac histamine H2 receptors (hH2Rs). We used isolated electrically stimulated left and spontaneously beating right atrial preparations from mice overexpressing the hH2R specifically in the heart (H2-TG), and spontaneously beating right atrial preparations of guinea pigs for comparison. Moreover, we studied isolated electrically stimulated muscle strips from the human right atrium. Clonidine (1, 3, and 10 µM) increased force of contraction in isolated left atrial preparations from H2-TG mice. In contrast, clonidine reduced the spontaneous beating rate in right atrial preparations from H2-TG. Clonidine raised the beating rate in guinea pig right atrial preparations. Clonidine failed to increase the force of contraction but reduced beating rate in wild-type litter mate mice (WT). In WT, histamine failed to increase the force of contraction in left atrial preparations and beating rate in right atrial preparations. Clonidine (10 µM) increased the force of contraction in isolated human right atrial preparations. The positive inotropic effect in the human atrium was attenuated by cimetidine (10 µM). Clonidine increased the beating rate of the isolated spontaneously beating guinea pig right atrium and acted as a H2R partial agonist. Furthermore, clonidine showed binding to the guinea pig H2R (100 µM) using HEK cells in a recombinant expression system (pKi < 4.5) but hardly to the human H2R. These data suggest that clonidine can functionally activate cardiac human H2R.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany.
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, D-06112, Halle (Saale), Germany.
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Lisa Forster
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Domagkstraße 12, D-48149, Münster, Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, D-06097, Halle (Saale), Germany
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany
| |
Collapse
|
7
|
Gergs U, Jacob H, Braekow P, Hofmann B, Pockes S, Humphrys LJ, Kirchhefer U, Fehse C, Neumann J. Lysergic acid diethylamide stimulates cardiac human H 2 histamine and cardiac human 5-HT 4-serotonin receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:221-236. [PMID: 37401967 PMCID: PMC10771359 DOI: 10.1007/s00210-023-02591-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Lysergic acid diethylamide (LSD) is an artificial hallucinogenic drug. Thus, we hypothesized that LSD might act 5-HT4 serotonin receptors and/or H2 histamine receptors. We studied isolated electrically stimulated left atrial preparations, spontaneously beating right atrial preparations, and spontaneously beating Langendorff-perfused hearts from transgenic mice with cardiomyocyte-specific overexpression of the human 5-HT4 receptor (5-HT4-TG) or of the H2-histamine receptor (H2-TG). For comparison, we used wild type littermate mice (WT). Finally, we measured isometric force of contraction in isolated electrically stimulated muscle strips from the human right atrium obtained from patients during bypass surgery. LSD (up to 10 µM) concentration dependently increased force of contraction and beating rate in left or right atrial preparations from 5-HT4-TG (n = 6, p < 0.05) in 5-HT4-TG atrial preparations. The inotropic and chronotropic effects of LSD were antagonized by 10 µM tropisetron in 5-HT4-TG. In contrast, LSD (10 µM) increased force of contraction and beating rate in left or right atrial preparations, from H2-TG. After pre-stimulation with cilostamide (1 µM), LSD (10 µM) increased force of contraction in human atrial preparations (n = 6, p < 0.05). The contractile effects of LSD in human atrial preparations could be antagonized by 10 µM cimetidine and 1 µM GR 125487. LSD leads to H2-histamine receptor and 5-HT4-receptor mediated cardiac effects in humans.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Pauline Braekow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, 06097, Halle (Saale), Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, University Hospital Münster, Westfälische Wilhelms-University, Domagkstraße 12, 48149, Münster, Germany
| | - Charlotte Fehse
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany.
| |
Collapse
|
8
|
Jacob H, Braekow P, Hofmann B, Kirchhefer U, Forster L, Mönnich D, Humphrys LJ, Pockes S, Neumann J, Gergs U. Ergometrine stimulates histamine H 2 receptors in the isolated human atrium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3809-3822. [PMID: 37354215 PMCID: PMC10643397 DOI: 10.1007/s00210-023-02573-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
Ergometrine (6aR,9R)-N-((S)-1-hydroxypropan-2-yl)-7-methyl-4,6,6a,7,8,9-hexa-hydro-indolo-[4,3-fg]chinolin-9-carboxamide or lysergide acid β-ethanolamide or ergonovine) activates several types of serotonin and histamine receptors in the animal heart. We thus examined whether ergometrine can activate human serotonin 5-HT4 receptors (h5-HT4R) and/or human histamine H2 receptors (hH2R) in the heart of transgenic mice and/or in the human isolated atrium. Force of contraction or beating rates were studied in electrically stimulated left atrial or spontaneously beating right atrial preparations or spontaneously beating isolated retrogradely perfused hearts (Langendorff setup) of mice with cardiac specific overexpression of the h5-HT4R (5-HT4-TG) or of mice with cardiac specific overexpression of the hH2R (H2-TG) or in electrically stimulated human right atrial preparations obtained during cardiac surgery. Western blots to assess phospholamban (PLB) phosphorylation on serine 16 were performed. Ergometrine exerted concentration- and time-dependent positive inotropic effects and positive chronotropic effects in atrial preparations starting at 0.3 µM and reaching a plateau at 10 µM in H2-TGs (n = 7). This was accompanied by an increase in PLB phosphorylation at serine 16. Ergometrine up 10 µM failed to increase force of contraction in left atrial preparations from 5-HT4-TGs (n = 5). Ten micrometer ergometrine increased the force of contraction in isolated retrogradely perfused spontaneously beating heart preparations (Langendorff setup) from H2-TG but not 5-HT4-TG. In the presence of the phosphodiesterase inhibitor cilostamide (1 µM), ergometrine at 10 µM exerted positive inotropic effects in isolated electrically stimulated human right atrial preparations, obtained during cardiac surgery, and these effects were eliminated by 10 µM of the H2R antagonist cimetidine but not by 10 µM of the 5-HT4R antagonist tropisetron. Furthermore, ergometrine showed binding to human histamine H2 receptors (at 100 µM and 1 mM) using HEK cells in a recombinant expression system (pKi < 4.5, n = 3). In conclusion, we suggest that ergometrine is an agonist at cardiac human H2Rs.
Collapse
Affiliation(s)
- Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Pauline Braekow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, 06097, Halle (Saale), Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, Westfälische Wilhelms- Universität Münster, Domagkstraße 12, 48149, Münster, Germany
| | - Lisa Forster
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Denise Mönnich
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Steffen Pockes
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93040, Regensburg, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany.
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, 06097, Halle (Saale), Germany
| |
Collapse
|
9
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
10
|
Hoffmann RJR, Gergs U, Hofmann B, Kirchhefer U, Neumann J. Temperature alters the inotropic, chronotropic and proarrhythmic effects of histamine in atrial muscle preparations from humans and H 2-receptor overexpressing mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2137-2150. [PMID: 36951998 PMCID: PMC10409711 DOI: 10.1007/s00210-023-02457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
We investigated whether hypothermia and hyperthermia can alter the efficacy and potency of histamine at increasing the force of cardiac contractions in mice that overexpress the human H2 receptor only in their cardiac myocytes (labelled H2-TG). Contractile studies were performed in an organ bath on isolated, electrically driven (1 Hz) left atrial preparations and spontaneously beating right atrial preparations from H2-TG mice and wild-type (WT) littermate control mice. The basal beating rate in the right atrial preparations from H2-TG mice was lowered by hypothermia (23 °C) and elevated by hyperthermia (42 °C). Furthermore, the efficacy of histamine (0.01-100 µM) at exerting positive inotropic effects was more severely attenuated in the left and right H2-TG mouse atria under hypothermia and hyperthermia than under normothermia (37 °C). Similarly, the inotropic response to histamine was attenuated under hypothermia and hyperthermia in isolated electrically stimulated (1 Hz) right atrial preparations obtained from humans undergoing cardiac surgery. The phosphorylation state of phospholamban at serine 16 at 23 °C was inferior to that at 37 °C in left atrial preparations from H2-TG mice in the presence of 10 µM histamine. In contrast, in human atrial preparations, the phosphorylation state of phospholamban at serine 16 in the presence of 100 µM histamine was lower at 42 °C than at 37 °C. Finally, under hyperthermia, we recorded more and longer lasting arrhythmias in right atrial preparations from H2-TG mice than in those from WT mice. We conclude that the inotropic effects of histamine in H2-TG mice and in human atrial preparations, as well as the chronotropic effects of histamine in H2-TG mice, are temperature dependent. Furthermore, we observed that, even without stimulation of the H2 receptors by exogenous agonists, temperature elevation can increase arrhythmias in isolated right atrial preparations from H2-TG mice. We propose that H2 receptors play a role in hyperthermia-induced supraventricular arrhythmias in human patients.
Collapse
Affiliation(s)
- Robert J. R. Hoffmann
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Ulrich Gergs
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Medizinische Fakultät, Herzchirurgie, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstr. 12, 48149 Münster, Germany
| | - Joachim Neumann
- Institut Für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
11
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
12
|
Neumann J, Hofmann B, Dhein S, Gergs U. Glucagon and Its Receptors in the Mammalian Heart. Int J Mol Sci 2023; 24:12829. [PMID: 37629010 PMCID: PMC10454195 DOI: 10.3390/ijms241612829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Glucagon exerts effects on the mammalian heart. These effects include alterations in the force of contraction, beating rate, and changes in the cardiac conduction system axis. The cardiac effects of glucagon vary according to species, region, age, and concomitant disease. Depending on the species and region studied, the contractile effects of glucagon can be robust, modest, or even absent. Glucagon is detected in the mammalian heart and might act with an autocrine or paracrine effect on the cardiac glucagon receptors. The glucagon levels in the blood and glucagon receptor levels in the heart can change with disease or simultaneous drug application. Glucagon might signal via the glucagon receptors but, albeit less potently, glucagon might also signal via glucagon-like-peptide-1-receptors (GLP1-receptors). Glucagon receptors signal in a species- and region-dependent fashion. Small molecules or antibodies act as antagonists to glucagon receptors, which may become an additional treatment option for diabetes mellitus. Hence, a novel review of the role of glucagon and the glucagon receptors in the mammalian heart, with an eye on the mouse and human heart, appears relevant. Mouse hearts are addressed here because they can be easily genetically modified to generate mice that may serve as models for better studying the human glucagon receptor.
Collapse
Affiliation(s)
- Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, Ernst Grube Straße 40, D-06097 Halle (Saale), Germany;
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany;
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097 Halle (Saale), Germany;
| |
Collapse
|
13
|
Pałgan K. Mast Cells and Basophils in IgE-Independent Anaphylaxis. Int J Mol Sci 2023; 24:12802. [PMID: 37628983 PMCID: PMC10454702 DOI: 10.3390/ijms241612802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Anaphylaxis is a life-threatening or even fatal systemic hypersensitivity reaction. The incidence of anaphylaxis has risen at an alarming rate in the past decades in the majority of countries. Generally, the most common causes of severe or fatal anaphylaxis are medication, foods and Hymenoptera venoms. Anaphylactic reactions are characterized by the activation of mast cells and basophils and the release of mediators. These cells express a variety of receptors that enable them to respond to a wide range of stimulants. Most studies of anaphylaxis focus on IgE-dependent reactions. The mast cell has long been regarded as the main effector cell involved in IgE-mediated anaphylaxis. This paper reviews IgE-independent anaphylaxis, with special emphasis on mast cells, basophils, anaphylactic mediators, risk factors, triggers, and management.
Collapse
Affiliation(s)
- Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
14
|
Kong L, Domarecka E, Szczepek AJ. Histamine and Its Receptors in the Mammalian Inner Ear: A Scoping Review. Brain Sci 2023; 13:1101. [PMID: 37509031 PMCID: PMC10376984 DOI: 10.3390/brainsci13071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Histamine is a widely distributed biogenic amine with multiple biological functions mediated by specific receptors that determine the local effects of histamine. This review aims to summarize the published findings on the expression and functional roles of histamine receptors in the inner ear and to identify potential research hotspots and gaps. METHODS A search of the electronic databases PubMed, Web of Science, and OVID EMBASE was performed using the keywords histamine, cochlea*, and inner ear. Of the 181 studies identified, 18 eligible publications were included in the full-text analysis. RESULTS All four types of histamine receptors were identified in the mammalian inner ear. The functional studies of histamine in the inner ear were mainly in vitro. Clinical evidence suggests that histamine and its receptors may play a role in Ménière's disease, but the exact mechanism is not fully understood. The effects of histamine on hearing development remain unclear. CONCLUSIONS Existing studies have successfully determined the expression of all four histamine receptors in the mammalian inner ear. However, further functional studies are needed to explore the potential of histamine receptors as targets for the treatment of hearing and balance disorders.
Collapse
Affiliation(s)
- Lingyi Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
15
|
Neumann J, Hofmann B, Kirchhefer U, Dhein S, Gergs U. Function and Role of Histamine H 1 Receptor in the Mammalian Heart. Pharmaceuticals (Basel) 2023; 16:734. [PMID: 37242517 PMCID: PMC10223319 DOI: 10.3390/ph16050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Histamine can change the force of cardiac contraction and alter the beating rate in mammals, including humans. However, striking species and regional differences have been observed. Depending on the species and the cardiac region (atrium versus ventricle) studied, the contractile, chronotropic, dromotropic, and bathmotropic effects of histamine vary. Histamine is present and is produced in the mammalian heart. Thus, histamine may exert autocrine or paracrine effects in the mammalian heart. Histamine uses at least four heptahelical receptors: H1, H2, H3 and H4. Depending on the species and region studied, cardiomyocytes express only histamine H1 or only histamine H2 receptors or both. These receptors are not necessarily functional concerning contractility. We have considerable knowledge of the cardiac expression and function of histamine H2 receptors. In contrast, we have a poor understanding of the cardiac role of the histamine H1 receptor. Therefore, we address the structure, signal transduction, and expressional regulation of the histamine H1 receptor with an eye on its cardiac role. We point out signal transduction and the role of the histamine H1 receptor in various animal species. This review aims to identify gaps in our knowledge of cardiac histamine H1 receptors. We highlight where the published research shows disagreements and requires a new approach. Moreover, we show that diseases alter the expression and functional effects of histamine H1 receptors in the heart. We found that antidepressive drugs and neuroleptic drugs might act as antagonists of cardiac histamine H1 receptors, and believe that histamine H1 receptors in the heart might be attractive targets for drug therapy. The authors believe that a better understanding of the role of histamine H1 receptors in the human heart might be clinically relevant for improving drug therapy.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube Straße 40, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Domagkstraße 12, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
16
|
Jacob H, Braekow P, Schwarz R, Höhm C, Kirchhefer U, Hofmann B, Neumann J, Gergs U. Ergotamine Stimulates Human 5-HT 4-Serotonin Receptors and Human H 2-Histamine Receptors in the Heart. Int J Mol Sci 2023; 24:ijms24054749. [PMID: 36902177 PMCID: PMC10003312 DOI: 10.3390/ijms24054749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Ergotamine (2'-methyl-5'α-benzyl-12'-hydroxy-3',6',18-trioxoergotaman) is a tryptamine-related alkaloid from the fungus Claviceps purpurea. Ergotamine is used to treat migraine. Ergotamine can bind to and activate several types of 5-HT1-serotonin receptors. Based on the structural formula of ergotamine, we hypothesized that ergotamine might stimulate 5-HT4-serotonin receptors or H2-histamine receptors in the human heart. We observed that ergotamine exerted concentration- and time-dependent positive inotropic effects in isolated left atrial preparations in H2-TG (mouse which exhibits cardiac-specific overexpression of the human H2-histamine receptor). Similarly, ergotamine increased force of contraction in left atrial preparations from 5-HT4-TG (mouse which exhibits cardiac-specific overexpression of the human 5-HT4-serotonin receptor). An amount of 10 µM ergotamine increased the left ventricular force of contraction in isolated retrogradely perfused spontaneously beating heart preparations of both 5-HT4-TG and H2-TG. In the presence of the phosphodiesterase inhibitor cilostamide (1 µM), ergotamine 10 µM exerted positive inotropic effects in isolated electrically stimulated human right atrial preparations, obtained during cardiac surgery, that were attenuated by 10 µM of the H2-histamine receptor antagonist cimetidine, but not by 10 µM of the 5-HT4-serotonin receptor antagonist tropisetron. These data suggest that ergotamine is in principle an agonist at human 5-HT4-serotonin receptors as well at human H2-histamine receptors. Ergotamine acts as an agonist on H2-histamine receptors in the human atrium.
Collapse
Affiliation(s)
- Hannes Jacob
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Pauline Braekow
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Rebecca Schwarz
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian Höhm
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Uwe Kirchhefer
- Institute for Pharmacology and Toxicology, Medical Faculty, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle, 06120 Halle (Saale), Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Correspondence:
| | - Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
17
|
Chen YC, Chen YC, Chiou WY, Yu BH. Impact of Acid Suppression Therapy on Renal and Survival Outcomes in Patients with Chronic Kidney Disease: A Taiwanese Nationwide Cohort Study. J Clin Med 2022; 11:jcm11195612. [PMID: 36233478 PMCID: PMC9570958 DOI: 10.3390/jcm11195612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 12/16/2022] Open
Abstract
Histamine-2-receptor antagonist (H2RA) has shown beneficial effects on the kidney, heart, and sepsis in animal models and on the heart and COVID-19 infection in clinical studies. However, H2RAshave been used as a reference in most epidemiological studies examining the association of proton pump inhibitors (PPI) with outcomes. Therefore, we aimed to evaluate the effect of H2RA on renal and survival outcomes in chronic kidney disease (CKD) patients. We used a Taiwanese nationalhealth insurance database from 2001 to 2016 to screen 45,767 CKD patients for eligibility. We identified new users of PPI (n = 7121), H2RA (n = 48,609), and users of neither PPI nor H2RA (as controls) (n = 47,072) during follow-up, and finally created 1:1:1 propensityscore-matchedcohorts; each cohort contained 4361 patients. Participants were followed up after receivingacid-suppression agents or on the corresponding date until the occurrence of end-stage renal disease (ESRD) in the presence of competing mortality, death, or through the end of 2016. Compared toneither users, H2RAand PPI users demonstrated adjusted hazard ratios of 0.40 (95% confidence interval, 0.30–0.53) for ESRDand 0.64 (0.57–0.72) for death and 1.15 (0.91–1.45) for ESRD and 1.83 (1.65–2.03) for death, respectively. A dose-response relationship betweenH2RA use with ESRD and overall, cardiovascular, and non-cardiovascular mortality was detected. H2RA consistently provided renal and survival benefits on multivariable stratified analyses and multiple sensitivity analyses. In conclusion, dose-dependent H2RA use was associated with a reduced risk of ESRD and overall mortality in CKD patients, whereas PPI use was associated with an increased risk of overall mortality, not in a dose-dependent manner.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-5-264-8000
| | - Yen-Chun Chen
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Wen-Yen Chiou
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Ben-Hui Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| |
Collapse
|
18
|
Possible Association between the Use of Proton Pump Inhibitors and H 2 Receptor Antagonists, and Esophageal Cancer: A Nested Case-Control Study Using a Korean National Health Screening Cohort. Pharmaceuticals (Basel) 2022; 15:ph15050517. [PMID: 35631344 PMCID: PMC9146181 DOI: 10.3390/ph15050517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Although safety concerns regarding proton pump inhibitor (PPI)/H2-receptor antagonists (H2RA) in the incident esophageal cancer have been raised, the Asian-based report is unclear. We investigated the estimated likelihood of incident esophageal cancer—its mortality depending on prior history of PPI/H2RA use—and gastroesophageal reflux disease (GERD) in Koreans. Using the Korean National Health Insurance Service-Health Screening Cohort data (2002−2015), a case−control study was retrospectively conducted, including 811 patients with incident esophageal cancer and 3244 controls matched with sex, age, income, and residence. Propensity score overlap weighting was adjusted to balance the baseline covariates. Overlap propensity score-weighted logistic regression analyses were assessed to determine associations of the prior exposure of PPI/H2RA (current vs. past) and the medication duration (<30-, 30−90-, vs. ≥90-days) with incident esophageal cancer and its mortality among the total participants or those with/without the GERD episodes, after adjusting for multiple covariates including PPI/H2RA. The current exposure to either PPI or H2RA showed higher odds for incident esophageal cancer than the nonuser group ([13.23; 95%CI 10.25−17.06] and [4.34; 95%CI 3.67−5.14], respectively), especially in all adults over the age of 40 years without GERD. Both current and past exposures to PPI showed a decreased probability of mortality compared with those of the nonuser group ([0.62; 95%CI 0.45−0.86] and [0.41; 95%CI 0.25−0.67], respectively). However, current or past exposure to H2RA harbored the mutually different likelihoods for mortality depending on the presence of GERD and old age. This study carefully speculates on the possible link between PPI/H2RA and incident esophageal cancer in the Korean population. Mortality appears to be affected by certain risk factors depending on drug types, exposure history, old age, and the presence of GERD.
Collapse
|