1
|
Kreis NN, Moon HH, Wordeman L, Louwen F, Solbach C, Yuan J, Ritter A. KIF2C/MCAK a prognostic biomarker and its oncogenic potential in malignant progression, and prognosis of cancer patients: a systematic review and meta-analysis as biomarker. Crit Rev Clin Lab Sci 2024; 61:404-434. [PMID: 38344808 DOI: 10.1080/10408363.2024.2309933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/24/2024]
Abstract
KIF2C/MCAK (KIF2C) is the most well-characterized member of the kinesin-13 family, which is critical in the regulation of microtubule (MT) dynamics during mitosis, as well as interphase. This systematic review briefly describes the important structural elements of KIF2C, its regulation by multiple molecular mechanisms, and its broad cellular functions. Furthermore, it systematically summarizes its oncogenic potential in malignant progression and performs a meta-analysis of its prognostic value in cancer patients. KIF2C was shown to be involved in multiple crucial cellular processes including cell migration and invasion, DNA repair, senescence induction and immune modulation, which are all known to be critical during the development of malignant tumors. Indeed, an increasing number of publications indicate that KIF2C is aberrantly expressed in multiple cancer entities. Consequently, we have highlighted its involvement in at least five hallmarks of cancer, namely: genome instability, resisting cell death, activating invasion and metastasis, avoiding immune destruction and cellular senescence. This was followed by a systematic search of KIF2C/MCAK's expression in various malignant tumor entities and its correlation with clinicopathologic features. Available data were pooled into multiple weighted meta-analyses for the correlation between KIF2Chigh protein or gene expression and the overall survival in breast cancer, non-small cell lung cancer and hepatocellular carcinoma patients. Furthermore, high expression of KIF2C was correlated to disease-free survival of hepatocellular carcinoma. All meta-analyses showed poor prognosis for cancer patients with KIF2Chigh expression, associated with a decreased overall survival and reduced disease-free survival, indicating KIF2C's oncogenic potential in malignant progression and as a prognostic marker. This work delineated the promising research perspective of KIF2C with modern in vivo and in vitro technologies to further decipher the function of KIF2C in malignant tumor development and progression. This might help to establish KIF2C as a biomarker for the diagnosis or evaluation of at least three cancer entities.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Ha Hyung Moon
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
2
|
Zhu H, Bao Y, Dou X, Zuo X, Ye J, Ma H, Bu Y, Wang Y, Zhu J. KIF2C is a critical regulator for malignant progression of head and neck squamous cell carcinoma. Am J Cancer Res 2024; 14:2538-2554. [PMID: 38859848 PMCID: PMC11162673 DOI: 10.62347/cibm2965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant cause of mortality, while the underlying mechanism remains unclear. Our studies have revealed that KIF2C plays a crucial role in tumor proliferation and metastasis in HNSCC. The results demonstrate that KIF2C is highly expressed at both the mRNA and protein levels and is closely associated with lymph node metastasis. The gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicate that the differentially expressed genes are enriched in processes or pathways related to cell adhesion and cell mitosis in HNSCC. Moreover, the established protein-protein interaction network identifies KIF2C as a potential hub gene in HNSCC. Knockdown of KIF2C has been demonstrated to significantly reduce cell migration and invasion ability, leading to cell cycle arrest, a high proportion of abnormal cell apoptosis, and cell chromosome division mismatches in the HNSCC cell line. Downstream genes such as PDGFA, EGFR, TP63, SNAI2, KRT5, and KRT14 were found to be down-regulated, and multiple critical pathways, including mTOR, ERK, and PI3K-AKT pathways, were inactivated as a result of KIF2C knockdown. These findings provide strong evidence for the crucial role of KIF2C in HNSCC and suggest that targeting KIF2C may be a promising therapeutic strategy for this disease. Knockdown of KIF2C has been shown to significantly inhibit tumor proliferation in nude mice, demonstrating the potential therapeutic role of KIF2C in HNSCC treatment.
Collapse
Affiliation(s)
- Haiyue Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical UniversityChongqing 400016, P. R. China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Yuxin Bao
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical UniversityChongqing 400016, P. R. China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Xuanqi Dou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Xiaofeng Zuo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Junhong Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Haiyu Ma
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical UniversityChongqing 400016, P. R. China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Jiang Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| |
Collapse
|
3
|
Pan J, Zhang J, Lin J, Cai Y, Zhao Z. Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning. Front Genet 2024; 15:1343140. [PMID: 38566813 PMCID: PMC10985269 DOI: 10.3389/fgene.2024.1343140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
Collapse
Affiliation(s)
| | | | | | | | - Zhigang Zhao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Guangzhou, China
| |
Collapse
|
4
|
Peng C, Wang Y, Zhang H, Chen P. The platelet-related genes associated with the prognosis of HCC by regulating cycling T cell and prolif-TAMs. Heliyon 2024; 10:e26798. [PMID: 38486758 PMCID: PMC10938119 DOI: 10.1016/j.heliyon.2024.e26798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/15/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Accumulating evidence highlighted the important roles of platelets in the prognosis and progression of various tumors. Nevertheless, the role of platelet-related genes (PRGs) in HCC remains limited. In this work, 92 differentially expressed PRGs were described in HCC using TCGA and ICGC databases. Then, based on the different expressions of PRGs, we explored two subtypes and developed the PRGs prognostic signature in HCC. The PRGs signature was an independent prognosis factor associated with immune cell infiltration in HCC. Furthermore, two external validation sets verified the expression and prognosis of the PRGs signature gene in HCC. Finally, scRNA-seq analysis demonstrated that the signature genes (CENPE and KIF2C) were mainly expressed in cycling T cells and prolif-TAMs. Enrichment analysis showed that CENPE and KIF2C regulated the cell cycle and p53 pathways in these cells. In conclusion, this study builds the PRGs-related risk signature of HCC and reveals the potential mechanism by which these signature genes regulate the immune microenvironment in HCC.
Collapse
Affiliation(s)
- Chenjia Peng
- School of Mathematics and Computational Science, Hunan First Normal University, Changsha, 410205, PR China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Ying Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Hengbo Zhang
- Physical Education Department, First Hunan Normal University, Changsha, 410081, PR China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
5
|
Zhao K, Li X, Feng Y, Wang J, Yao W. The role of kinesin family members in hepatobiliary carcinomas: from bench to bedside. Biomark Res 2024; 12:30. [PMID: 38433242 PMCID: PMC10910842 DOI: 10.1186/s40364-024-00559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/03/2024] [Indexed: 03/05/2024] Open
Abstract
As a major component of the digestive system malignancies, tumors originating from the hepatic and biliary ducts seriously endanger public health. The kinesins (KIFs) are molecular motors that enable the microtubule-dependent intracellular trafficking necessary for mitosis and meiosis. Normally, the stability of KIFs is essential to maintain cell proliferation and genetic homeostasis. However, aberrant KIFs activity may destroy this dynamic stability, leading to uncontrolled cell division and tumor initiation. In this work, we have made an integral summarization of the specific roles of KIFs in hepatocellular and biliary duct carcinogenesis, referring to aberrant signal transduction and the potential for prognostic evaluation. Additionally, current clinical applications of KIFs-targeted inhibitors have also been discussed, including their efficacy advantages, relationship with drug sensitivity or resistance, the feasibility of combination chemotherapy or other targeted agents, as well as the corresponding clinical trials. In conclusion, the abnormally activated KIFs participate in the regulation of tumor progression via a diverse range of mechanisms and are closely associated with tumor prognosis. Meanwhile, KIFs-aimed inhibitors also carry out a promising tumor-targeted therapeutic strategy that deserves to be further investigated in hepatobiliary carcinoma (HBC).
Collapse
Affiliation(s)
- Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiangyu Li
- Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- Affiliated Tianyou Hospital, Wuhan University of Science & Technology, 430064, Wuhan, China.
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Gan LH, Yao L, Yan JH, Huang YQ, Zheng L, Liu P, Lei L. Differential Expression of KIF18B in Gastric Cancer and Its Role in Chemotherapy Sensitivity. Crit Rev Eukaryot Gene Expr 2024; 34:37-48. [PMID: 38305287 DOI: 10.1615/critreveukaryotgeneexpr.2023049523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Gastric cancer (GC) is a main cause of cancer death in the world, and improving the chemotherapy sensitivity can enhance the chemotherapy efficacy of GC. The study objective is to explore the differential KIF18B expression in GC and its effect on GC chemotherapy sensitivity. The KIF18B expression in GC tissues and adjacent normal tissues was analyzed by real-time quantitative polymerase chain reaction. The relationship between differential KIF18B expression and different clinicopathological features was detected. It was found that KIF18B was highly expressed in GC tissues, and KIF18B expression was differential in patients with different clinicopathological features. The upregulation of KIF18B has a positive correlation with the poor therapeutic effect and high KIF18 was associated with lower 3-year overall survival and disease-free survival. The KIF18B-downregulated NCI-N87 cells were constructed and tested by cell counting kit-8 assay and colony formation. Cell migration and invasion were detected by Transwell assay. The xenograft tumor model was established to observe the effect of KIF18B on the efficacy of chemotherapy. The upregulation of KIF18B reduced the chemotherapy sensitivity of GC cells and enhanced their proliferation, migration, and invasion. Silencing KIF18B inhibited tumor growth and promoted chemotherapy efficacy in vivo. In summary, KIF18B inhibitor may have a potential function for improving the efficacy of chemotherapy in GC.
Collapse
Affiliation(s)
- Li-Hong Gan
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ling Yao
- The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University)
| | - Jin-Hua Yan
- Department of Hematology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ya-Qin Huang
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Li Zheng
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Peng Liu
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| | - Ling Lei
- Department of Gastroenterology, The First Hospital of Nanchang (The Third School of Clinical Medicine, Nanchang University), Nanchang, Jiangxi 330008, China
| |
Collapse
|
7
|
Mushtaq A, Singh P, Tabassum G, Mohammad T, Hassan MI, Syed MA, Dohare R. Unravelling hub genes as potential therapeutic targets in lung cancer using integrated transcriptomic meta-analysis and in silico approach. J Biomol Struct Dyn 2023; 41:9089-9102. [PMID: 36318595 DOI: 10.1080/07391102.2022.2140200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Smoking has been identified as the main contributing cause of the disease's development. The study aimed to identify the key genes in small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), the two major types of LC. Meta-analysis was performed with two datasets GSE74706 and GSE149507 obtained from Gene Expression Omnibus (GEO). Both the datasets comprised samples from cancerous and adjacent non-cancerous tissues. Initially, 633 differentially expressed genes (DEGs) were identified. To understand the underlying molecular mechanism of the identified genes, pathway enrichment, gene ontology (GO) and protein-protein interaction (PPI) analyses were done. A total of 9 hub genes were identified which were subjected to mutation study analysis in LC patients using cBioPortal. These 9 genes (i.e. AURKA, AURKB, KIF23, RACGAP1, KIF2C, KIF20A, CENPE, TPX2 and PRC1) have shown overexpression in LC patients and can be explored as potential candidates for prognostic biomarkers. TPX2 reported a maximum mutation of 4 % . This was followed with high throughput screening and docking analysis to identify the potential drug candidates following competitive inhibition of the AURKA-TPX2 complex. Four compounds, CHEMBL431482, CHEMBL2263042, CHEMBL2385714, and CHEMBL1206617 were identified. The results signify that the selected 9 genes can be explored as biomarkers in disease prognosis and targeted therapy. Also, the identified 4 compounds can be further analyzed as promising therapeutic candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aiman Mushtaq
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulnaz Tabassum
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
8
|
Identification of Prognostic Biomarkers for Suppressing Tumorigenesis and Metastasis of Hepatocellular Carcinoma through Transcriptome Analysis. Diagnostics (Basel) 2023; 13:diagnostics13050965. [PMID: 36900109 PMCID: PMC10001411 DOI: 10.3390/diagnostics13050965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is one of the deadliest diseases developed through tumorigenesis and could be fatal if it reaches the metastatic phase. The novelty of the present investigation is to explore the prognostic biomarkers in hepatocellular carcinoma (HCC) that could develop glioblastoma multiforme (GBM) due to metastasis. The analysis was conducted using RNA-seq datasets for both HCC (PRJNA494560 and PRJNA347513) and GBM (PRJNA494560 and PRJNA414787) from Gene Expression Omnibus (GEO). This study identified 13 hub genes found to be overexpressed in both GBM and HCC. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation, causing aneuploidy. A 13-gene predictive model was obtained and validated using a KM plot. These hub genes could be prognostic biomarkers and potential therapeutic targets, inhibition of which could suppress tumorigenesis and metastasis.
Collapse
|
9
|
KIF2C Facilitates Tumor Growth and Metastasis in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15051502. [PMID: 36900292 PMCID: PMC10000478 DOI: 10.3390/cancers15051502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a poor prognosis. For PDAC, an increase in the survival time of patients and a reduction mortality have not yet successfully been achieved. In many research works, Kinesin family member 2C (KIF2C) is highly expressed in several tumors. Nevertheless, the role of KIF2C in pancreatic cancer is unknown. In this study, we found that KIF2C expression is significantly upregulated in human PDAC tissues and cell lines such as ASPC-1 and MIA-PaCa2. Moreover, KIF2C upregulation is associated with a poor prognosis when combining the expression of KIF2C with clinical information. Through cell functional assays and the construction of animal models, we showed that KIF2C promotes PDAC cell proliferation, migration, invasion, and metastasis, both in vitro and in vivo. Finally, the results of sequencing showed that the overexpression of KIF2C causes a decrease in some proinflammatory factors and chemokines. The cell cycle detection indicated that the pancreatic cancer cells in the overexpressed group had abnormal proliferation in the G2 and S phases. These results revealed the potential of KIF2C as a therapeutic target for the treatment of PDAC.
Collapse
|
10
|
Zhang P, Gao H, Ye C, Yan R, Yu L, Xia C, Yang D. Large-Scale Transcriptome Data Analysis Identifies KIF2C as a Potential Therapeutic Target Associated With Immune Infiltration in Prostate Cancer. Front Immunol 2022; 13:905259. [PMID: 35720323 PMCID: PMC9203693 DOI: 10.3389/fimmu.2022.905259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers of the urinary system. In previous research, Kinesin family member 2C (KIF2C), as an oncogene, has been demonstrated to have a key role in the incidence and progression of different cancers. However, KIF2C has not been reported in PCa. We combined data from different databases, including The Cancer Genome Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, and the Genomics of Drug Sensitivity in Cancer database, to explore the potential oncogenic role of KIF2C in PCa through a series of bioinformatics approaches, including analysis of the association between KIF2C and prognosis, clinicopathological features, gene mutations, DNA methylation, immune cell infiltration, and drug resistance. The results showed that KIF2C was significantly up-regulated in PCa. High KIF2C expression was associated with age, pathological stage, lymph node metastases, prostate-specific antigen (PSA), and Gleason score and significantly predicted an unfavorable prognosis in PCa patients. Results from Gene Set Enrichment Analysis (GSEA) suggested that KIF2C was involved in the cell cycle and immune response. KIF2C DNA methylation was reduced in PCa and was inversely linked with KIF2C expression. KIF2C was shown to have a strong relationship with the tumor microenvironment (TME), infiltrating cells, and immune checkpoint genes. Furthermore, high KIF2C expression was significantly resistant to a variety of MAPK signaling pathway-related inhibitors. Our study reveals that KIF2C may be a possible predictive biomarker for assessing prognosis in PCa patients with immune infiltration.
Collapse
Affiliation(s)
- Pingxin Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hang Gao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunwei Ye
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruping Yan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lu Yu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Zhang X, Li Y, Hu P, Xu L, Qiu H. KIF2C is a Biomarker Correlated With Prognosis and Immunosuppressive Microenvironment in Human Tumors. Front Genet 2022; 13:891408. [PMID: 35685442 PMCID: PMC9171145 DOI: 10.3389/fgene.2022.891408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Kinesin superfamily member 2C (KIF2C) is an essential regulator of the cell cycle and its aberrant expression can promote tumor progression. However, the mechanism of KIF2C in pan-cancer is unclear.Data were obtained from public databases, including The Cancer Genome Atlas (TCGA), UALCAN, TIMER and CellMiner. The data came from public databases such as The Cancer Genome Atlas (TCGA), UALCAN, TIMER, and CellMiner. We analyzed the correlation of KIF2C with expression, prognosis, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repairs (MMR), immune infiltration and anticancer drug sensitivity by R language.KIF2C was highly expressed in several tumors and correlated with poor prognosis. KIF2C expression was significantly correlated with TMB, MSI, MMRs, and immune checkpoint genes, and with the level of immune cell infiltration such as tumor-associated macrophage (TAM), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs) and Tregs. The GO and KEGG results suggest that KIF2C is involved in immune regulation in addition to cell cycle regulation.In addition, KIF2C is associated with DNA methylation, m6A modifications and m7G modifications. Our data suggest that KIF2C is a prognostic biomarker linked to immunosuppression, targeting KIF2C may improve the outcome of immunotherapy. Our findings indicate that KIF2C is a prognostic biomarker associated with immunosuppression, and that targeting KIF2C may improve the outcome of immunotherapy.
Collapse
|