1
|
Hailati S, Han MY, Dilimulati D, Nueraihemaiti N, Baishan A, Aikebaier A, Zhou WT. Searching for Hub Genes of Quince-Basil Co-Administration Against Atherosclerosis Using Bioinformatics Analysis and Experimental Validation. Pharmaceuticals (Basel) 2024; 17:1433. [PMID: 39598345 PMCID: PMC11597616 DOI: 10.3390/ph17111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Atherosclerosis (AS) has one of the highest rates of morbidity and death globally. Cydonia oblonga Mill. (quince, COM) and Ocimum basilicum L. (basil, OB) are Uyghur medicines that are often used for anti-inflammatory, anti-tumor, and cardiovascular disease treatment. This study aimed to uncover the hub genes of the quince-basil co-administration against AS and validate them. METHODS Network pharmacology analysis and bioinformatics analysis methods were utilized to map the network and obtain four hub genes. Experiments were performed in vivo and in vitro using HUVEC and zebrafish to validate the therapeutic effect of COM-OB co-administration against AS. Finally, the hub genes were validated by Western blot. RESULTS Screening by network pharmacology analysis and bioinformatics analysis obtained a total of 3302 drug targets, 1963 disease targets, and 1630 DEGs. A series of bioinformatic analyses were utilized to ultimately screen four hub genes, and the stability was also verified by molecular docking and molecular dynamics. COM-OB total flavonoids co-administration significantly decreased PA-induced lipid deposition in HUVEC and reduced high cholesterol-induced fat accumulation in zebrafish. Western blot results showed that COM-OB co-administration significantly affected the expression of hub genes. CONCLUSIONS The study identified and validated four hub genes, COL1A1, COL3A1, BGLAP, and NOX4, thus providing a rationale for the treatment of AS with COM and OB co-administration.
Collapse
Affiliation(s)
- Sendaer Hailati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Meng-Yuan Han
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alhar Baishan
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Alifeiye Aikebaier
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| | - Wen-Ting Zhou
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (S.H.); (M.-Y.H.); (D.D.); (N.N.); (A.B.); (A.A.)
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release Technology, Urumqi 830017, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi 830017, China
- Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
2
|
El-Samahy LA, Tartor YH, Abdelkhalek A, Pet I, Ahmadi M, El-Nabtity SM. Ocimum basilicum and Lagenaria siceraria Loaded Lignin Nanoparticles as Versatile Antioxidant, Immune Modulatory, Anti-Efflux, and Antimicrobial Agents for Combating Multidrug-Resistant Bacteria and Fungi. Antioxidants (Basel) 2024; 13:865. [PMID: 39061933 PMCID: PMC11273778 DOI: 10.3390/antiox13070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Lignin nanoparticles emerged as a promising alternative for drug delivery systems owing to their biodegradability and bioactive properties. This study investigated the antimicrobial activity of the ethanolic extract of Ocimum basilicum-loaded lignin nanoparticles (OB-LNPs) and Lagenaria siceraria seed oil-loaded lignin nanoparticles (LS-LNPs) to find a solution for antimicrobial resistance. OB-LNPs and LS-LNPs were tested for their antimicrobial potential against Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica, Trichophyton mentagrophytes, Trichophyton rubrum, and Microsporum canis. OB-LNPs and LS-LNPs were further tested for their anti-efflux activity against ciprofloxacin-resistant Salmonella enterica strains and for treating Salmonella infection in a rat model. We also investigated the antifungal efficacy of OB-LNPs and LS-LNPs for treating T. rubrum infection in a guinea pig model. Both OB-LNPs and LS-LNPs showed strong antimicrobial potential against S. Typhimurium and T. rubrum infections. LS-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5-4 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.125-1 µg/mL. OB-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5-2 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.25-2 µg/mL. OB-LNPs and LS-LNPs downregulated the expression of ramA and acrB efflux pump genes (fold change values ranged from 0.2989 to 0.5434; 0.4601 to 0.4730 for ramA and 0.3842-0.6199; 0.5035-0.8351 for acrB). Oral administration of OB-LNPs and LS-LNPs in combination with ciprofloxacin had a significant effect on all blood parameters, as well as on liver and kidney function parameters. Oxidative stress mediators, total antioxidant capacity, and malondialdehyde were abolished by oral administration of OB-LNPs and LS-LNPs (0.5 mL/rat once daily for 5 days). Interferon-γ and tumor necrosis factor-α were also reduced in comparison with the positive control group and the ciprofloxacin-treated group. Histopathological examination of the liver and intestine of OB-LNPs and LS-LNPs-treated rats revealed an elevation in Salmonella clearance. Treatment of T. rubrum-infected guinea pigs with OB-LNPs and LS-LNPs topically in combination with itraconazole resulted in a reduction in lesion scores, microscopy, and culture results. In conclusion, OB-LNPs and LS-LNPs possess immunomodulatory and antioxidant potential and can be used as naturally derived nanoparticles for drug delivery and treatment of Salmonellosis and dermatophytosis infections.
Collapse
Affiliation(s)
- Lamiaa A. El-Samahy
- Department of Pharmacology, Faculty of Veterinary Medicine, Arish University, Arish 45511, Egypt;
| | - Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Ioan Pet
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Mirela Ahmadi
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania;
| | - Sameh M. El-Nabtity
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
3
|
Elbanna HM, Ahmed OK, Fayed SAK, Hammam KAM, Yousef RS. Enhancing french basil growth through synergistic Foliar treatment with copper nanoparticles and Spirulina sp. BMC PLANT BIOLOGY 2024; 24:512. [PMID: 38849727 PMCID: PMC11157815 DOI: 10.1186/s12870-024-05153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.
Collapse
Affiliation(s)
- Heba Mahmoud Elbanna
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agriculture Research Center, Giza, Egypt
| | - Osama Konsowa Ahmed
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | | | - Khaled Abdel-Moneim Hammam
- Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agriculture Research Center, Giza, Egypt
| | - Rania Saber Yousef
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt.
| |
Collapse
|
4
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Wei K, Li Y, Du B, Wu J. Differences in Airway Remodeling and Emphysematous Lesions between Rats Exposed to Smoke from New-Type and Conventional Tobacco Varieties. Antioxidants (Basel) 2024; 13:511. [PMID: 38790616 PMCID: PMC11117731 DOI: 10.3390/antiox13050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Genes from Perilla frutescens and Ocimum basilicum were introduced into N. tabacum L. var. HHY via distant hybridization, and the new-type tobacco varieties "Zisu" and "Luole" were developed, with noticeable differences in chemical composition. Smoking is the leading cause of chronic obstructive pulmonary disease (COPD), and its pathogenesis is complex. In the present study, 48 male Sprague-Dawley (SD) rats were randomly divided into four groups, namely, the control, "HHY", "Zisu" and "Luole", and then exposed to fresh air/cigarette smoke (CS) for 30 days and 60 days. The COPD model was constructed, and their health hazards were compared and evaluated. CS from different tobacco varieties influenced rats in varying degrees at the tissue, cell and molecular levels. The rats in the "HHY" group showed obvious symptoms, such as cough and dyspnea, which were less severe in the "Zisu" and "Luole" groups. Pathological and morphological analyses, including scores, MLI, MAN, WAt/Pbm and WAm/Pbm, showed that "Zisu" and "Luole" caused less damage to the airways and lung parenchyma than "HHY". Significant increases in the numbers of total leukocytes and neutrophils in the BALF were found in "HHY" compared to those in "Zisu" and "Luole". Moreover, they caused less oxidative stress and apoptosis in lung tissues, as reflected by indicators such as ROS, MDA, T-AOC, GSH, the apoptotic index and the ratio of Bcl-2 to Bax. "Zisu" and "Luole" even altered the ratios of MMP-9/TIMP-1 and IFN-γ/IL-4 in lung tissues to a lesser degree. These differences between CS-exposed rats may be closely related to the altered expression of Nrf2, p38 MAPK and p-p38 MAPK. Changes in chemical composition via introducing genes from some medicinal plants may be an attractive strategy for tobacco harm reduction.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | | | | | | |
Collapse
|
6
|
Dávila-Rangel IE, Charles-Rodríguez AV, López-Romero JC, Flores-López ML. Plants from Arid and Semi-Arid Zones of Mexico Used to Treat Respiratory Diseases: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:792. [PMID: 38592789 PMCID: PMC10974781 DOI: 10.3390/plants13060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Medicinal plants have been a traditional remedy for numerous ailments for centuries. However, their usage is limited due to a lack of evidence-based studies elucidating their mechanisms of action. In some countries, they are still considered the first treatment due to their low cost, accessibility, and minor adverse effects. Mexico is in second place, after China, in inventoried plants for medicinal use. It has around 4000 species of medicinal plants; however, pharmacological studies have only been carried out in 5% of its entirety. The species of the Mexican arid zones, particularly in semi-desert areas, exhibit outstanding characteristics, as their adverse growing conditions (e.g., low rainfall and high temperatures) prompt these plants to produce interesting metabolites with diverse biological activities. This review explores medicinal plants belonging to the arid and semi-arid zones of Mexico, focusing on those that have stood out for their bioactive potential, such as Jatropha dioica, Turnera diffusa, Larrea tridentata, Opuntia ficus-indica, Flourensia cernua, Fouquieria splendes, and Prosopis glandulosa. Their extraction conditions, bioactive compounds, mechanisms of action, and biological efficacy are presented, with emphasis on their role in the treatment of respiratory diseases. Additionally, current research, novel applications, and perspectives concerning medicinal plants from these zones are also discussed.
Collapse
Affiliation(s)
| | - Ana V. Charles-Rodríguez
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Julio C. López-Romero
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| | - María L. Flores-López
- Universidad Interserrana del Estado de Puebla Ahuactlán, Ahuacatlán 73330, Mexico;
- Centro de Investigación e Innovación Científica y Tecnológica, Universidad Autónoma de Coahuila, Saltillo 25070, Mexico
| |
Collapse
|
7
|
Varghese RM, S AK, Shanmugam R. Antimicrobial Activity of Zinc Oxide Nanoparticles Synthesized Using Ocimum Tenuiflorum and Ocimum Gratissimum Herbal Formulation Against Oral Pathogens. Cureus 2024; 16:e53562. [PMID: 38445144 PMCID: PMC10913943 DOI: 10.7759/cureus.53562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
Background This study deals with the antimicrobial efficacy of zinc oxide nanoparticles (ZnONPs) synthesized through green methods employing extracts from Ocimum tenuiflorum and Ocimum gratissimum and assessed for their antimicrobial properties against a range of oral pathogens. Methods Zinc oxide nanoparticles (ZnONPs) were synthesized using extracts from Ocimum tenuiflorum and Ocimum gratissimum through a green synthesis approach. Antimicrobial activity was determined using the agar-well diffusion assay to evaluate the consistency of inhibition zones against oral pathogens. Variations in sensitivity were assessed through the time-kill curve assay, quantifying the response of oral pathogens to zinc oxide nanoparticles (ZnONPs) exposure over time. Results The agar-well diffusion assay revealed uniform 9-mm zones of inhibition against all oral pathogens, signifying consistent antimicrobial activity of zinc oxide nanoparticles (ZnONPs). In the time-kill curve assay, Candida albicans exhibited the highest sensitivity, followed by Streptococcus mutans and Staphylococcus aureus. Enterococcus faecalis and Lactobacillus species displayed lower sensitivity, suggesting potential selectivity. Discussion The observed variation in sensitivity implies the potential selectivity of zinc oxide nanoparticles (ZnONPs) against specific oral pathogens, which may have significant implications for oral health applications. These findings underscore the versatility of green-synthesized zinc oxide nanoparticles (ZnONPs) as promising antimicrobial agents, particularly for oral health applications. Conclusion This study provides promising results for the antimicrobial potential of zinc oxide nanoparticles (ZnONPs) synthesized using Ocimum tenuiflorum and Ocimum gratissimum. The consistent antimicrobial activity and variations in sensitivity among oral pathogens highlight their promising utility in oral health care.
Collapse
Affiliation(s)
- Remmiya Mary Varghese
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Aravind Kumar S
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
8
|
Wei K, Zhang X, Yang J, Chen J. Tobacco introduced Perilla frutescens and Ocimum basilicum genes attenuates neutrophilic inflammation in lung tissues of COPD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115956. [PMID: 38215665 DOI: 10.1016/j.ecoenv.2024.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The new-type tobacco varieties "Zisu" and "Luole" were obtained by distant hybridization between N. tabacum L. var. HHY and Perilla frutescens and Ocimum basilicum, with obviously different chemical composition. Smoking is the major risk factor for COPD, characterized by neutrophil-dominant inflammation. In the present study, rat COPD model was established by cigarette exposure, and the health hazard of three varieties was compared by general condition observation, pathological and morphological evaluation, total and differential cell numeration, and characterization of major inflammatory mediators and MAPK/NF-κB pathway, etc. Rats in "HHY" group developed obvious symptoms such as cough, dyspnea, mental fatigue, etc., but these symptoms were obviously mitigated in "Zisu" and "Luole" groups. H&E staining analysis, including score, MLI, MAN, wt% and WA%, showed that "Zisu" and "Luole" significantly alleviated lung injury and the degree of airway remodeling and emphysema compared to "HHY". In BALF, the number of total leukocyte and the percent neutrophils in "Zisu" and "Luole" groups were evidently lower than "HHY" group. The levels of inflammatory mediators, such as IL-8, MPO, MIP-2, LTB4, TNF-α and neutrophil elastase, in "HHY" group were obviously higher than "Zisu" and "Luole" groups. The ROS-mediated NF-κB p65 and p38MAPK pathways may play an important role. Results indicated that tobacco introduced perilla and basil genes could remarkably attenuate recruitment, infiltration and activation of neutrophils and intervene in airway inflammation, retarding disease progression, especially "Zisu". Changes in chemical composition via breeding techniques may be a novel way for tobacco harm reduction.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry), Taiyuan 030006, China.
| | - Xuan Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jinwen Yang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Jiayi Chen
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Azizah NS, Irawan B, Kusmoro J, Safriansyah W, Farabi K, Oktavia D, Doni F, Miranti M. Sweet Basil ( Ocimum basilicum L.)-A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:4148. [PMID: 38140476 PMCID: PMC10748370 DOI: 10.3390/plants12244148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
An urgent demand for natural compound alternatives to conventional medications has arisen due to global health challenges, such as drug resistance and the adverse effects associated with synthetic drugs. Plant extracts are considered an alternative due to their favorable safety profiles and potential for reducing side effects. Sweet basil (Ocimum basilicum L.) is a valuable plant resource and a potential candidate for the development of pharmaceutical medications. A single pure compound or a combination of compounds exhibits exceptional medicinal properties, including antiviral activity against both DNA and RNA viruses, antibacterial effects against both Gram-positive and Gram-negative bacteria, antifungal properties, antioxidant activity, antidiabetic potential, neuroprotective qualities, and anticancer properties. The plant contains various phytochemical constituents, which mostly consist of linalool, eucalyptol, estragole, and eugenol. For centuries, community and traditional healers across the globe have employed O. basilicum L. to treat a wide range of ailments, including flu, fever, colds, as well as issues pertaining to digestion, reproduction, and respiration. In addition, the current research presented underscores the significant potential of O. basilicum-related nanotechnology applications in addressing diverse challenges and advancing numerous fields. This promising avenue of exploration holds great potential for future scientific and technological advancements, promising improved utilization of medicinal products derived from O. basilicum L.
Collapse
Affiliation(s)
- Nabilah Sekar Azizah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Budi Irawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Wahyu Safriansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Dina Oktavia
- Department of Transdisciplinary, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| |
Collapse
|
10
|
Ortiz-Mendoza N, Martínez-Gordillo MJ, Martínez-Ambriz E, Basurto-Peña FA, González-Trujano ME, Aguirre-Hernández E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:3752. [PMID: 37960108 PMCID: PMC10648697 DOI: 10.3390/plants12213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Nepetoideae is the most diverse subfamily of Lamiaceae, and some species are well known for their culinary and medicinal uses. In recent years, there has been growing interest in the therapeutic properties of the species of this group regarding inflammatory illnesses. This study aims to collect information on traditional uses through ethnobotanical, pharmacological, and phytochemical information of the subfamily Nepetoideae related to inflammatory diseases. UNAM electronic resources were used to obtain the information. The analysis of the most relevant literature was compiled and organised in tables. From this, about 106 species of the subfamily are traditionally recognised to alleviate chronic pain associated with inflammation. Pharmacological studies have been carried out in vitro and in vivo on approximately 308 species belonging to the genera Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa. Phytochemical and pharmacological evaluations have been performed and mostly prepared as essential oil or high polarity extracts, whose secondary metabolites are mainly of a phenolic nature. Other interesting and explored metabolites are diterpenes from the abietane, clerodane, and kaurane type; however, they have only been described in some species of the genera Salvia and Isodon. This review reveals that the Nepetoideae subfamily is an important source for therapeutics of the inflammatory process.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria Coyoacán, Edificio D, 1° Piso, Circuito de Posgrados, Mexico City 04510, Mexico
| | - Martha Juana Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Emmanuel Martínez-Ambriz
- Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Xalapa 91073, Veracruz, Mexico;
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
11
|
Kirankumar SI, Balaji R, Tanuja, Parani M. The complete chloroplast genome of Ocimum basilicum L. var. basilicum (Lamiaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:1169-1173. [PMID: 38188439 PMCID: PMC10769543 DOI: 10.1080/23802359.2023.2275835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024] Open
Abstract
Ocimum basilicum L. var. basilicum (Sweet Basil) is an aromatic herb belonging to the family Lamiaceae and is known for its medicinal uses. It is commonly used in traditional medicine for its therapeutic value, including anti-allergic, anti-inflammatory, antioxidant, antitumor, and antimicrobial properties. In this study, we generated the complete chloroplast genome sequence of O. basilicum var. basilicum using Illumina paired-end sequencing data. The chloroplast genome was 152,407 bp in length, containing a large single-copy (LSC) region of 83,409 bp and a small single-copy region (SSC) of 17,604 bp, separated by a pair of inverted repeats (IRs) of 25,697 bp. The genome contained 134 genes, including 89 protein-coding, 37 tRNA, and eight rRNA genes. Nine genes had one intron, two genes had two introns, and others did not have any intron. Overall GC content of the chloroplast genome was 38%, while that of LSC, SSC, and IR regions was 35.9%, 31.6%, and 43.1%, respectively. Phylogenetic analysis of the chloroplast genomes revealed that O. basilicum var. basilicum was closely related to Ocimum basilicum from the Ocimum species.
Collapse
Affiliation(s)
- Sriramulu Indhukumar Kirankumar
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Raju Balaji
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Tanuja
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Madasamy Parani
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
12
|
Chassagne F, Butaud JF, Ho R, Conte E, Hnawia É, Raharivelomanana P. Traditional medical practices for children in five islands from the Society archipelago (French Polynesia). JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:44. [PMID: 37853377 PMCID: PMC10585756 DOI: 10.1186/s13002-023-00617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Traditional Polynesian medicine for children has been poorly documented, and few data are available on their efficacy and safety. In this context, the aim of this study was to identify traditional practices used for treating children and then assess the efficacy and safety of the most cited remedies by reviewing the literature. METHODS In 2022, a semi-structured survey was carried out on five islands from the Society archipelago (Bora Bora, Huahine, Moorea, Raiatea, and Tahiti). A total of 86 participants were interviewed including 19 experts in herbalism. A thorough literature review was performed on the most cited plant species to gather the relevant ethnobotanical, pharmacological, and clinical data of each remedy. RESULTS Participants mentioned using 469 remedies to treat 69 health disorders. The most represented health categories were digestive system, skin disorders, infectious diseases, and respiratory system. A total of 67 plant species (representing 731 use-reports) were mentioned and Annona muricata, Gardenia taitensis, and Hibiscus rosa-sinensis were the main plants reported. Regarding the safety of cited remedies, one plant (Microsorum grossum) showed high risk of toxicity, and its use should be avoided in infants and children. CONCLUSION Our survey confirms the importance of traditional medical practices for children in the Society Islands. A lack of data in children for most cited remedies demonstrate the need for more pharmacological and toxicological research on Polynesian medicinal plants. Finally, the potential risk of toxicity for some cited plant species reported calls for a better information of traditional medicine users and healers.
Collapse
Affiliation(s)
- François Chassagne
- UMR 152 PharmaDev, Université Paul Sabatier, Institut de Recherche pour le Développement (IRD), Toulouse, France.
- Maison des Sciences de l'Homme du Pacifique (UAR 2503), Université de la Polynésie Française / Centre National de la Recherche Scientifique, Tahiti, French Polynesia.
| | - Jean-François Butaud
- Correspondant du Muséum National d'Histoire Naturelle (PatriNat), Paris & Consultant en foresterie et botanique polynesienne, Tahiti, French Polynesia
| | - Raimana Ho
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, Faaa, Tahiti, French Polynesia
| | - Eric Conte
- Maison des Sciences de l'Homme du Pacifique (UAR 2503), Université de la Polynésie Française / Centre National de la Recherche Scientifique, Tahiti, French Polynesia
| | - Édouard Hnawia
- UMR 152 PharmaDev, Institut de Recherche pour le Développement (IRD), Nouméa, New Caledonia
| | - Phila Raharivelomanana
- UMR 214 EIO, Université de Polynésie Française, IFREMER, ILM, IRD, Faaa, Tahiti, French Polynesia
| |
Collapse
|
13
|
Pai Khot AJ, Ankola AV, Naik VV, Sankeshwari RM, Kumar RS, Shah MA. Remineralising potential of Ocimum basilicum varnish and fluoride varnish on initial enamel caries: An in vitro microscopic study. J Oral Maxillofac Pathol 2023; 27:776. [PMID: 38304516 PMCID: PMC10829473 DOI: 10.4103/jomfp.jomfp_174_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 02/03/2024] Open
Abstract
Background The focus of caries research has switched to early identification and non-invasive treatment of carious lesions. Aim This study aimed to evaluate and compare the remineralising potential of Ocimum (O.) basilicum varnish and fluoride varnish on initial enamel caries. Method The authenticated O. basilicum seeds were procured from a repository, and the extract was prepared using the Soxhlet method, which was vortexed with Indian Pharmaceutical (IP)-graded chemicals to obtain varnish. Extracted premolar tooth samples were divided into three groups of 33 each after demineralisation with a pH of 4.5 for 48 hours at 37°C. Each group was subjected to remineralisation twice daily with respective agents for 4 minutes for 30 consecutive days. Each sample was ground-sectioned through an enamel window. The lesion depth was measured using a light microscope (Leica™ DM2500) and ImageJ software. The data were evaluated using analysis of variance (ANOVA) and post hoc analysis. Results The mean (± SD) pre-treatment lesion depth across the groups ranged from 242.11 ± 26.144 μm to 352.66 ± 34.531 μm. The highest lesion depth recovery rate of 45.938% was recorded for the fluoride varnish group, followed by 36.015% in the O. basilicum varnish group, which was statistically significant by Tukey's post hoc analysis (p < 0.001). The gingival fibroblast cells were viable by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Conclusion The O. basilicum varnish demonstrated a homogenous layer of mineral deposition. However, the remineralising efficacy was slightly lesser than that of the fluoride varnish. Hence, the novel O. basilicum-based remineralisation agent appears to have potential as a non-invasive alternative to topical fluorides in the therapy of early caries lesions.
Collapse
Affiliation(s)
- Atrey J. Pai Khot
- Department of Public Health Dentistry, KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Anil V. Ankola
- Department of Public Health Dentistry, KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Veena V. Naik
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Roopali M. Sankeshwari
- Department of Public Health Dentistry, KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Ram Surath Kumar
- Department of Public Health Dentistry, KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Mehul A. Shah
- Department of Public Health Dentistry, KLE Vishwanath Katti Institute of Dental Sciences, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| |
Collapse
|
14
|
Memarzia A, Saadat S, Asgharzadeh F, Behrouz S, Folkerts G, Boskabady MH. Therapeutic effects of medicinal plants and their constituents on lung cancer, in vitro, in vivo and clinical evidence. J Cell Mol Med 2023; 27:2841-2863. [PMID: 37697969 PMCID: PMC10538270 DOI: 10.1111/jcmm.17936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
The most common type of cancer in the world is lung cancer. Traditional treatments have an important role in cancer therapy. In the present review, the most recent findings on the effects of medicinal plants and their constituents or natural products (NP) in treating lung cancer are discussed. Empirical studies until the end of March 2022 were searched using the appropriate keywords through the databases PubMed, Science Direct and Scopus. The extracts and essential oils tested were all shown to effect lung cancer by several mechanisms including decreased tumour weight and volume, cell viability and modulation of cytokine. Some plant constituents increased expression of apoptotic proteins, the proportion of cells in the G2/M phase and subG0/G1 phase, and Cyt c levels. Also, natural products (NP) activate apoptotic pathways in lung cancer cell including p-JNK, Akt/mTOR, PI3/ AKT\ and Bax, Bcl2, but suppressed AXL phosphorylation. Plant-derived substances altered the cell morphology, reduced cell migration and metastasis, oxidative marker production, p-eIF2α and GRP78, IgG, IgM levels and reduced leukocyte counts, LDH, GGT, 5'NT and carcinoembryonic antigen (CEA). Therefore, medicinal plant extracts and their constituents could have promising therapeutic value for lung cancer, especially if used in combination with ordinary anti-cancer drugs.
Collapse
Affiliation(s)
- Arghavan Memarzia
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeideh Saadat
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, School of MedicineZahedan University of Medical SciencesZahedanIran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Sepide Behrouz
- Department of Animal Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of ScienceUtrecht UniversityUtrechtNetherlands
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Physiology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
15
|
A’yuni DQ, Sa’adi A, Widjiati W. Ethanol extract of basil ( Ocimum Basilicum L.) leaves inhibits endometriosis growth in a mouse model by modulating vascular endothelial growth factor (VEGF) expression. J Med Life 2023; 16:1224-1230. [PMID: 38024822 PMCID: PMC10652688 DOI: 10.25122/jml-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this study was to examine the effect of administering an ethanol extract obtained from basil leaves on the expression of vascular endothelial growth factor (VEGF) and the severity of endometriosis lesions in a mouse model. A total of 28 female mice, aged 2-3 months and weighing 20-30 grams, were randomly divided into four groups: the control group (C), treatment group 1 (T1) receiving a dose of basil leaf ethanol extract (0.21 mg/g-BW), treatment group 2 (T2) receiving a higher dose (0.42 mg/g BW), and treatment group 3 (T3) receiving the highest dose (0.84 mg/g-BW). Each group underwent a 14-day treatment period, and tissue samples were collected on the 29th day. An immunohistochemical examination was conducted to assess the expression of VEGF and evaluate the severity of endometriosis lesions. The statistical analysis of VEGF expression revealed a significant difference (p=0.026; p<0.05), with the most pronounced effects observed when administering basil leaf ethanol extract at doses of 0.21 mg/g-BW and 0.42 mg/g-BW. Although not statistically significant (p=0.271; p<0.05), a reduction in the severity of endometriosis lesions was observed following the administration of basil leaf ethanol extract at doses of 0.21 mg/g-BW and 0.42 mg/g-BW. Administering basil leaf ethanol extract at doses of 0.21 mg/g-BW and 0.42 mg/g-BW effectively decreased VEGF expression and limited the severity of endometriosis lesions.
Collapse
Affiliation(s)
| | - Ashon Sa’adi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Widjiati Widjiati
- Department of Veterinary Science, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
16
|
Driesen E, Saeys W, De Proft M, Lauwers A, Van den Ende W. Far-Red Light Mediated Carbohydrate Concentration Changes in Leaves of Sweet Basil, a Stachyose Translocating Plant. Int J Mol Sci 2023; 24:ijms24098378. [PMID: 37176086 PMCID: PMC10179449 DOI: 10.3390/ijms24098378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Photosynthetic active radiation (PAR) refers to photons between 400 and 700 nm. These photons drive photosynthesis, providing carbohydrates for plant metabolism and development. Far-red radiation (FR, 701-750 nm) is excluded in this definition because no FR is absorbed by the plant photosynthetic pigments. However, including FR in the light spectrum provides substantial benefits for biomass production and resource-use efficiency. We investigated the effects of continuous FR addition and end-of-day additional FR to a broad white light spectrum (BW) on carbohydrate concentrations in the top and bottom leaves of sweet basil (Ocimum basilicum L.), a species that produces the raffinose family oligosaccharides raffinose and stachyose and preferentially uses the latter as transport sugar. Glucose, fructose, sucrose, raffinose, and starch concentrations increased significantly in top and bottom leaves with the addition of FR light. The increased carbohydrate pools under FR light treatments are associated with more efficient stachyose production and potentially improved phloem loading through increased sucrose homeostasis in intermediary cells. The combination of a high biomass yield, increased resource-use efficiency, and increased carbohydrate concentration in leaves in response to the addition of FR light offers opportunities for commercial plant production in controlled growth environments.
Collapse
Affiliation(s)
- Elisa Driesen
- KU Leuven, Department of Biosystems, Willem De Croylaan 42, 3001 Leuven, Belgium
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, Willem De Croylaan 42, 3001 Leuven, Belgium
| | - Maurice De Proft
- KU Leuven, Department of Biosystems, Willem De Croylaan 42, 3001 Leuven, Belgium
| | | | - Wim Van den Ende
- KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Qamar F, Sana A, Naveed S, Faizi S. Phytochemical characterization, antioxidant activity and antihypertensive evaluation of Ocimum basilicum L. in l-NAME induced hypertensive rats and its correlation analysis. Heliyon 2023; 9:e14644. [PMID: 37064472 PMCID: PMC10102242 DOI: 10.1016/j.heliyon.2023.e14644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Ocimum basilicum Linn. (basil) is an aromatic culinary herb that has shown a great potential in therapeutic world. It has many promising pharmacological activities that make it centre for investigations for many researchers. Current study has been planned to determine chemical constituents of basil leaves extracts and their in-vitro and ex-vivo antioxidant and in-vivo antihypertensive potential. GC-MS studies of non-polar extracts showed presence of 75 compounds including monoterpenes, hydrocarbons, sesquiterpenes, triterpenes, phyto-sterols and phthalates. Higher percentages of fatty acids were also identified. The major compounds include linalool (7.65%), terpineol (1.42%), tau-cadinol (13.55%), methyl palmitate (14.24%), palmitic acid (14.31%), linolenic acid (1.30%) and methyl linolenate (17.72%). Electron spray ionization mass spectrometry ESI-HRMS/MS of the polar extracts revealed the presence of alkaloids, phenolic acid, amino acid, coumarin, lignin, flavanoid and terpene derivative. Total phenolic content and total flavonoid content were determined using spectrophotometric technique and calculated as gallic acid equivalents GAE/g dry weight and rutin equivalent RE/g of dry weight respectively. The highest phenolic content and flavonoid content were found in ethyl acetate extract 9.40 mg GAE/g and 15.9 mg RE/g of dry weight. All the extracts showed significant antioxidant activity in DPPH and ABTS cation decolorization assays. Dichloromethane extract possess the highest DPPH scavenging activity, i.e., 64.12% ± 0.23 at concentration of 4 mg/ml. Moreover in ex-vivo studies all the extracts showed prominent effect by inhibiting AAPS induce oxidation in Human erythrocytes being 69.24% ± 0.18 in dichloromethane extract, 64.44% ± 0.04 in ethyl acetate and 53.33% ± 0.09 in acetone extract. The methanol extract of O. basilicum exhibited significant decrease in systolic blood pressure in l-Name induced hypertensive rats at the dose of 50 mg/kg for 28 days. Total phenolic content had a higher linear correlation (r = 0.678) with antihypertensive activity, with a level of significance 95% showing that phenolic compounds in the leaves of the plant has important role in inhibiting l -NAME induced hypertension while flavonoid compounds may play a key role in the antioxidant activities of the plant, through synergism. Conclusively, O. basilicum leaves with bioactive metabolites are a potential source for the development of antihypertensive drugs.
Collapse
|
18
|
Li C, Che B, Deng L. Electrochemical Biosensors Based on Carbon Nanomaterials for Diagnosis of Human Respiratory Diseases. BIOSENSORS 2022; 13:12. [PMID: 36671847 PMCID: PMC9855565 DOI: 10.3390/bios13010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In recent years, respiratory diseases have increasingly become a global concern, largely due to the outbreak of Coronavirus Disease 2019 (COVID-19). This inevitably causes great attention to be given to the development of highly efficient and minimal or non-invasive methods for the diagnosis of respiratory diseases. And electrochemical biosensors based on carbon nanomaterials show great potential in fulfilling the requirement, not only because of the superior performance of electrochemical analysis, but also given the excellent properties of the carbon nanomaterials. In this paper, we review the most recent advances in research, development and applications of electrochemical biosensors based on the use of carbon nanomaterials for diagnosis of human respiratory diseases in the last 10 years. We first briefly introduce the characteristics of several common human respiratory diseases, including influenza, COVID-19, pulmonary fibrosis, tuberculosis and lung cancer. Then, we describe the working principles and fabrication of various electrochemical biosensors based on carbon nanomaterials used for diagnosis of these respiratory diseases. Finally, we summarize the advantages, challenges, and future perspectives for the currently available electrochemical biosensors based on carbon nanomaterials for detecting human respiratory diseases.
Collapse
|
19
|
Biologic Impact of Green Synthetized Magnetic Iron Oxide Nanoparticles on Two Different Lung Tumorigenic Monolayers and a 3D Normal Bronchial Model-EpiAirway TM Microtissue. Pharmaceutics 2022; 15:pharmaceutics15010002. [PMID: 36678632 PMCID: PMC9866254 DOI: 10.3390/pharmaceutics15010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The present study reports the successful synthesis of biocompatible magnetic iron oxide nanoparticles (MNPs) by an ecofriendly single step method, using two ethanolic extracts based on leaves of Camellia sinensis L. and Ocimum basilicum L. The effect of both green raw materials as reducing and capping agents was taken into account for the development of MNPs, as well as the reaction synthesis temperature (25 °C and 80 °C). The biological effect of the MNPs obtained from Camellia sinensis L. ethanolic extract (Cs 25, Cs 80) was compared with that of the MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80), by using two morphologically different lung cancer cell lines (A549 and NCI-H460); the results showed that the higher cell viability impairment was manifested by A549 cells after exposure to MNPs obtained from Ocimum basilicum L. ethanolic extract (Ob 25, Ob 80). Regarding the biosafety profile of the MNPs, it was shown that the EpiAirwayTM models did not elicit important viability decrease or significant histopathological changes after treatment with none of the MNPs (Cs 25, Cs 80 and Ob 25, Ob 80), at concentrations up to 500 µg/mL.
Collapse
|
20
|
Chu HTT, Vu TN, Dinh TTT, Do PT, Chu HH, Tien TQ, Tong QC, Nguyen MH, Ha QT, Setzer WN. Effects of Supplemental Light Spectra on the Composition, Production and Antimicrobial Activity of Ocimum basilicum L. Essential Oil. Molecules 2022; 27:molecules27175599. [PMID: 36080366 PMCID: PMC9457840 DOI: 10.3390/molecules27175599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study was performed to investigate the effects of different supplemental light spectra and doses (duration and illuminance) on the essential oil of basil (Ocimum basilicum L.) cultivated in the net-house in Vietnam during four months. Ten samples of basil aerial parts were hydrodistilled to obtain essential oils which had the average yields from 0.88 to 1.30% (v/w, dry). The oils analyzed using GC-FID and GC-MS showed that the main component was methyl chavicol (87.4−90.6%) with the highest values found in the oils of basil under lighting conditions of 6 h/day and 150−200 µmol·m−2·s−1. Additional lighting conditions caused the significant differences (p < 0.001) in basil biomass and oil production with the highest values found in the oils of basil under two conditions of (1) 71% Red: 20% Blue: 9.0% UVA in at 120 μmol·m−2·s−1 in 6 h/day and (2) 43.5% Red: 43.5% Blue: 8.0% Green: 5.0% Far-Red at 100 μmol·m−2·s−1 in 6 h/day. The oils of basil in some formulas showed weak inhibitory effects on only the Bacillus subtilis strain. Different light spectra affect the biomass and essential oil production of basil, as well as the concentrations of the major components in the oil.
Collapse
Affiliation(s)
- Ha Thi Thu Chu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 10072, Vietnam
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
- Correspondence: (H.T.T.C.); (T.N.V.)
| | - Thi Nghiem Vu
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
- Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
- Correspondence: (H.T.T.C.); (T.N.V.)
| | - Thuy Thi Thu Dinh
- Institute of Natural Product Chemistry, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
| | - Phat Tien Do
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
- Institute of Biotechnology, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
| | - Ha Hoang Chu
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
- Institute of Biotechnology, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
| | - Tran Quoc Tien
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
- Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
| | - Quang Cong Tong
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
- Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
| | - Manh Hieu Nguyen
- Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Ha Noi 10072, Vietnam
| | - Quyen Thi Ha
- Faculty of Agricultural Technology, VNU University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuan Thuy, Ha Noi 10053, Vietnam
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|
21
|
Beltrán-Noboa A, Proaño-Ojeda J, Guevara M, Gallo B, Berrueta LA, Giampieri F, Perez-Castillo Y, Battino M, Álvarez-Suarez JM, Tejera E. Metabolomic profile and computational analysis for the identification of the potential anti-inflammatory mechanisms of action of the traditional medicinal plants Ocimum basilicum and Ocimum tenuiflorum. Food Chem Toxicol 2022; 164:113039. [PMID: 35461962 DOI: 10.1016/j.fct.2022.113039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022]
Abstract
Ocimum basilicum and Ocimum tenuiflorum are two basil species widely used medicinally as an anti-inflammatory, antimicrobial and cardioprotective agent. This study focuses on the chemical characterization of the majoritarian compounds of both species and their anti-inflammatory potential. Up to 22 compounds such as various types of salvianolic acids, derivatives of rosmaniric acid and flavones were identified in both plants. The identified compounds were very similar between both plants and are consistent with previous finding in other studies in Portugal and Italy. Based on the identified molecules a consensus target prediction was carried out. Among the main predicted target proteins, we found a high representation of the carbonic anhydrase family (CA2, CA7 and CA12) and several key proteins from the arachidonic pathway (LOX5, PLA2, COX1 and COX2). Both pathways are well related to inflammation. The interaction between the compounds and these targets were explored through molecular docking and molecular dynamics simulation. Our results suggest that some molecules present in both plants can induce an anti-inflammatory response through a non-steroidal mechanism of action connected to the carbon dioxide metabolism.
Collapse
Affiliation(s)
- Andrea Beltrán-Noboa
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - John Proaño-Ojeda
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas. Carrera de Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Mabel Guevara
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Grupo de Investigación en Polifenoles. Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Blanca Gallo
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Luis A Berrueta
- Departamento de Química Analítica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - Francesca Giampieri
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yunierkis Perez-Castillo
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Escuela de Ciencias Físicas y Matemáticas. Universidad de Las Américas, Quito, Ecuador
| | - Maurizio Battino
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - José M Álvarez-Suarez
- Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Eduardo Tejera
- Grupo de Bioquimioinformática. Universidad de Las Américas, Quito, Ecuador; Facultad de Ingeniería y Ciencias Aplicadas. Carrera de Biotecnología, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|