1
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis. Front Immunol 2024; 15:1425847. [PMID: 39086480 PMCID: PMC11288813 DOI: 10.3389/fimmu.2024.1425847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-β levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.
Collapse
Affiliation(s)
- Jinge Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meijiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wang T, Wei L, Meng S, Song W, Chen Y, Li H, Zhao Q, Jiang Z, Liu D, Ren H, Hong X. Coordinated Priming of NKG2D Pathway by IL-15 Enhanced Functional Properties of Cytotoxic CD4 +CD28 - T Cells Expanded in Systemic Lupus Erythematosus. Inflammation 2023; 46:1587-1601. [PMID: 37415045 PMCID: PMC10567942 DOI: 10.1007/s10753-023-01860-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/27/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder, and numerous aberrations of T cell responses have been reported and were implicated in its pathophysiology. Recently, CD4-positive T cells with cytotoxic potential were shown to be involved in autoimmune disease progression and tissue damage. However, the effector functions of this cell type and their potential molecular mechanisms in SLE patients remain to be elucidated. In this study, we find that cytotoxic CD4+CD28- T cells are expanded in SLE patients with flow cytometry analysis, and the percentage of CD4+CD28- T cells positively correlates with the Systemic Lupus International Collaborating Clinics/ACR Damage Index (SDI). Furthermore, our study suggests that interleukin-15 (IL-15) promotes the expansion, proliferation, and cytotoxic function of CD4+CD28- T cells in SLE patients through activation of the Janus kinase3-STAT5 pathway. Further study indicates that IL-15 not only mediates the upregulation of NKG2D, but also cooperates with the NKG2D pathway to regulate the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Together, our study demonstrated that proinflammatory and cytolytic CD4+CD28- T cells expand in SLE patients. The pathogenic potential of these CD4+CD28- T cells is driven by the coupling of the IL-15/IL-15R signaling pathway and the NKG2D/DAP10 signaling pathway, which may open new avenues for therapeutic intervention to prevent SLE progression.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Laiyou Wei
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen People's Hospital, The Frist Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Shuhui Meng
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Wencong Song
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Heng Li
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Qianqian Zhao
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen People's Hospital, The Frist Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen People's Hospital, The Frist Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| |
Collapse
|
5
|
Tsai YG, Liao PF, Hsiao KH, Wu HM, Lin CY, Yang KD. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol 2023; 14:1230264. [PMID: 37771588 PMCID: PMC10522836 DOI: 10.3389/fimmu.2023.1230264] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous multisystem inflammatory disease with wide variability in clinical manifestations. Natural arising CD4+ regulatory T cells (Tregs) play a critical role in maintaining peripheral tolerance by suppressing inflammation and preventing autoimmune responses in SLE. Additionally, CD8+ regulatory T cells, type 1 regulatory T cells (Tr1), and B regulatory cells also have a less well-defined role in the pathogenesis of SLE. Elucidation of the roles of various Treg subsets dedicated to immune homeostasis will provide a novel therapeutic approach that governs immune tolerance for the remission of active lupus. Diminished interleukin (IL)-2 production is associated with a depleted Treg cell population, and its reversibility by IL-2 therapy provides important reasons for the treatment of lupus. This review focuses on the pathogenesis and new therapeutics of human Treg subsets and low-dose IL-2 therapy in clinical benefits with SLE.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children’s Hospital, Changhua, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Pei-Fen Liao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kai-Hung Hsiao
- Department of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yuang Lin
- Division of Pediatric Nephrology, Children’s Hospital, China Medical University Hospital, Taichung, Taiwan
| | - Kuender D. Yang
- Department of Pediatrics, Mackay Memorial Hospital, New Taipei City, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Zheng F, Tang D, Li S, Luo Z, Song Y, Huang Y, Gan Q, Liu H, Zhang X, Liu D, Wang Q, Xiong Z, Dai Y. Spatial proteomics landscape and immune signature analysis of renal sample of lupus nephritis based on laser-captured microsection. Inflamm Res 2023; 72:1603-1620. [PMID: 37474625 PMCID: PMC10499763 DOI: 10.1007/s00011-023-01767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE We aimed to reveal a spatial proteomic and immune signature of kidney function regions in lupus nephritis (LN). MATERIAL AND METHODS The laser capture microdissection (LCM) was used to isolate the glomerulus, tubules, and interstitial of the kidney from paraffin samples. The data-independent acquisition (DIA) method was used to collect proteomics data. The bioinformatic analysis was performed. RESULTS A total of 49,658 peptides and 4056 proteins were quantitated. Our results first showed that a high proportion of activated NK cells, naive B cells, and neutrophils in the glomerulus, activated NK cells in interstitial, and resting NK cells were accumulated in tubules in LN. The immune-related function analysis of differential expression proteins in different regions indicated that the glomerulus and interstitial were major sites of immune disturbance and regulation connected with immune response activation. Furthermore, we identified 7, 8, and 9 hub genes in LN's glomerulus, renal interstitial, and tubules. These hub genes were significantly correlated with the infiltration of immune cell subsets. We screened out ALB, CTSB, LCN2, A2M, CDC42, VIM, LTF, and CD14, which show higher performance as candidate biomarkers after correlation analysis with clinical indexes. The function within three regions of the kidney was analyzed. The differential expression proteins (DEGs) between interstitial and glomerulus were significantly enriched in the immune-related biological processes, and myeloid leukocyte-mediated immunity and cellular response to hormone stimulus. The DEGs between tubules and glomerulus were significantly enriched in cell activation and leukocyte-mediated immunity. While the DEGs between tubules and interstitial were enriched in response to lipid, antigen processing, and presentation of peptide antigen response to oxygen-containing compound, the results indicated a different function within kidney regions. CONCLUSIONS Collectively, we revealed spatial proteomics and immune signature of LN kidney regions by combined using LCM and DIA.
Collapse
Affiliation(s)
- Fengping Zheng
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Donge Tang
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Shanshan Li
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Zhifeng Luo
- The Second Department of Urology, Affiliated Hospital of Guilin Medical University, Guangxi, 541001, China
| | - Yueqi Song
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yinxin Huang
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Qing Gan
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Hanyong Liu
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Xinzhou Zhang
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Dongzhou Liu
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, 5218036, Guangdong, China.
| | - Zuying Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China.
| | - Yong Dai
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, 518020, Guangdong, China.
- School of Medicine, The First Affiliated Hospital, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
| |
Collapse
|
7
|
Wang J, Guo HX, Cheng T, Shi L, Zhang SX, Li XF. Reduced circulating Tregs and positive pANCA were robustly associated with the occurrence of antiphospholipid syndrome in patients with systemic lupus erythematosus. Lupus 2023; 32:746-755. [PMID: 37051771 DOI: 10.1177/09612033231171287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a typical chronic immune disorder with clinical heterogeneity. The systemic abnormal immune response not only challenges the diagnosis and treatment of the disease itself but also the secondary antiphospholipid syndrome (APS), characterized by recurrent arterial or venous thrombosis, recurrent spontaneous abortion, or stillbirth. Clinical interest has primarily focused on primary APS's pathological and clinical features. However, differences in clinical features and laboratory indicators between SLE with or without APS are still lacking, especially differences between circulating lymphocytes, which are critical in the pathogenesis of SLE and its complications. METHODS In this retrospective study, we collected and analyzed clinical characteristics, general laboratory indicators, immunological indicators, and circulating lymphocyte subsets of SLE with or without APS. RESULTS Systemic lupus erythematosus with APS (SLE-APS) had elevated SLEDAI scores, hospitalization costs and time, and frequencies of central nervous system symptoms and spontaneous abortion compared with those without APS. SLE-APS had higher positive anti-Cardiolipin antibodies, anti-β2 Glycoprotein 1 antibodies, and perinuclear antineutrophil cytoplasmic antibody (pANCA) than none-APS patients. Compared with healthy controls (HCs), the circulating lymphocyte subsets were altered to some extent in all patients, especially in patients with SLE-APS. Reduced Tregs and positive pANCA were independent risk factors for SLE secondary APS. CONCLUSION The present study revealed a robust association between APS secondary to SLE and reduced Tregs and positive pANCA, which provides essential information regarding the diagnosis and therapeutic possibilities of APS secondary to SLE.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Hong-Xia Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Lei Shi
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| |
Collapse
|
8
|
Tian F, Chen H, Zhang J, He W. Reprogramming Metabolism of Macrophages as a Target for Kidney Dysfunction Treatment in Autoimmune Diseases. Int J Mol Sci 2022; 23:ijms23148024. [PMID: 35887371 PMCID: PMC9316004 DOI: 10.3390/ijms23148024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic kidney disease (CKD), as one of the main complications of many autoimmune diseases, is difficult to cure, which places a huge burden on patients’ health and the economy and poses a great threat to human health. At present, the mainstream view is that autoimmune diseases are a series of diseases and complications caused by immune cell dysfunction leading to the attack of an organism’s tissues by its immune cells. The kidney is the organ most seriously affected by autoimmune diseases as it has a very close relationship with immune cells. With the development of an in-depth understanding of cell metabolism in recent years, an increasing number of scientists have discovered the metabolic changes in immune cells in the process of disease development, and we have a clearer understanding of the characteristics of the metabolic changes in immune cells. This suggests that the regulation of immune cell metabolism provides a new direction for the treatment and prevention of kidney damage caused by autoimmune diseases. Macrophages are important immune cells and are a double-edged sword in the repair process of kidney injury. Although they can repair damaged kidney tissue, over-repair will also lead to the loss of renal structural reconstruction function. In this review, from the perspective of metabolism, the metabolic characteristics of macrophages in the process of renal injury induced by autoimmune diseases are described, and the metabolites that can regulate the function of macrophages are summarized. We believe that treating macrophage metabolism as a target can provide new ideas for the treatment of the renal injury caused by autoimmune diseases.
Collapse
Affiliation(s)
- Feng Tian
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (F.T.); (H.C.)
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (F.T.); (H.C.)
- Haihe Laboratory of Cell Ecosystem, Tianjin 100730, China
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (F.T.); (H.C.)
- Haihe Laboratory of Cell Ecosystem, Tianjin 100730, China
- Correspondence: (J.Z.); (W.H.)
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China; (F.T.); (H.C.)
- Correspondence: (J.Z.); (W.H.)
| |
Collapse
|
9
|
Linke A, Tiegs G, Neumann K. Pathogenic T-Cell Responses in Immune-Mediated Glomerulonephritis. Cells 2022; 11:cells11101625. [PMID: 35626662 PMCID: PMC9139939 DOI: 10.3390/cells11101625] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Glomerulonephritis (GN) comprises a group of immune-mediated kidney diseases affecting glomeruli and the tubulointerstitium. Glomerular crescent formation is a histopathological characteristic of severe forms of GN, also referred to as crescentic GN (cGN). Based on histological findings, cGN includes anti-neutrophil cytoplasmic antibody (ANCA)-associated GN, a severe form of ANCA-associated vasculitis, lupus nephritis associated with systemic lupus erythematosus, Goodpasture’s disease, and IgA nephropathy. The immunopathogenesis of cGN is associated with activation of CD4+ and CD8+ T cells, which particularly accumulate in the periglomerular and tubulointerstitial space but also infiltrate glomeruli. Clinical observations and functional studies in pre-clinical animal models provide evidence for a pathogenic role of Th1 and Th17 cell-mediated immune responses in cGN. Emerging evidence further argues that CD8+ T cells have a role in disease pathology and the mechanisms of activation and function of recently identified tissue-resident CD4+ and CD8+ T cells in cGN are currently under investigation. This review summarizes the mechanisms of pathogenic T-cell responses leading to glomerular damage and renal inflammation in cGN. Advanced knowledge of the underlying immune mechanisms involved with cGN will enable the identification of novel therapeutic targets for the replacement or reduction in standard immunosuppressive therapy or the treatment of refractory disease.
Collapse
Affiliation(s)
- Alexandra Linke
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence: (G.T.); (K.N.); Tel.: +49-40-741058731 (G.T.); +49-40-741058738 (K.N.)
| |
Collapse
|