1
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Yan H, Kuerbanjiang M, Muheyati D, Yang Z, Han J. Wheat bran oil ameliorates high-fat diet-induced obesity in rats with alterations in gut microbiota and liver metabolite profile. Nutr Metab (Lond) 2024; 21:84. [PMID: 39455992 PMCID: PMC11515275 DOI: 10.1186/s12986-024-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Obesity is one of the public health issues that seriously threatens human health. This study aimed to investigate the effects of wheat bran oil (WBO) on body weight and fat/lipid accumulation in high-fat diet (HFD)-induced obese rats and further explore the possible mechanisms by microbiome and metabolome analyses. METHODS Fifty Sprague-Dawley (SD) rats were fed either a normal chow diet (B group, n = 10) or HFD (n = 40) for 14 weeks to establish an obesity model. The HFD-induced obese rats were further divided into four groups and given WBO at 0 mL/kg (M group), 1.25 mL/kg (WBO-L group), 2.5 mL/kg (WBO-M group), and 5 mL/kg (WBO-H group) by oral gavage for 9 weeks. The body weight of rats was weighed weekly. The gut microbiota structure was analyzed using 16 S rDNA high-throughput sequencing. The liver metabolite profile was determined using UHPLC-QE-MS non-target metabolomics technology. RESULTS In this study, WBO treatment reduced body weight gain, fat and lipid accumulation, and ameliorated hepatic steatosis and inflammation. WBO treatment increased the relative abundance of Romboutsia and Allobaculum and decreased that of Candidatus_Saccharimonas, Alloprevotella, Rikenellaceae_RC9_gut_group, Alistipes, Parabacteroides, UCG-005, Helicobacter, Colidextribacter, and Parasutterella compared with the M group. A total of 22 liver metabolites were significantly altered by WBO treatment, which were mainly involved in taurine and hypotaurine metabolism, nicotinate and nicotunamide metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and ether lipid metabolism. CONCLUSIONS WBO alleviated body weight gain and fat/lipid accumulation in HFD-induced obese rats, which may be related to altered gut microbiota and liver metabolites.
Collapse
Affiliation(s)
- Huan Yan
- Xinjiang Uygur Autonomous Region Analysis and Testing Research Institute, Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, 830011, China
| | - Maierheba Kuerbanjiang
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Dina Muheyati
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China
| | - Zhong Yang
- Xinjiang Uygur Autonomous Region Analysis and Testing Research Institute, Xinjiang Key Laboratory of Featured Functional Food Nutrition and Safety Testing, Urumqi, 830011, China.
| | - Jia Han
- Department of Nutrition and Food Hygiene, School of Public Health, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
3
|
Huang L, Wu W, Wang X. Analysis of the microecological mechanism of diabetic kidney disease based on the theory of "gut-kidney axis": A systematic review. Open Life Sci 2024; 19:20220909. [PMID: 39119482 PMCID: PMC11306963 DOI: 10.1515/biol-2022-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the main microvascular complications of diabetes mellitus, as well as the leading cause of end-stage renal disease. Intestinal microbiota has emerged as a crucial regulator of its occurrence and development. Dysbiosis of the intestinal microbiota can disrupt the intestinal mucosal barrier, abnormal immunological response, reduction in short-chain fatty acid metabolites, and elevation of uremic toxins, all closely related to the occurrence and development of DKD. However, the underlying mechanisms of how intestinal microbiota and its metabolites influence the onset and progression of DKD has not been fully elucidated. In the current review, we will try to summarize the microecological mechanism of DKD by focusing on three aspects: the intestinal microbiota and its associated metabolites, and the "gut-kidney axis," and try to summarize therapies targeted at managing the intestinal microbiota, expecting to provide theoretical basis for the subsequent study of the relationship between intestinal homeostasis and DKD, and will open an emerging perspective and orientation for DKD treatment.
Collapse
Affiliation(s)
- Lili Huang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan430061, China
| | - Wenjing Wu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, 430061, China
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Xiaoqin Wang
- Department of Nephrology, Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
| |
Collapse
|
4
|
Wang M, Huang ZH, Zhu YH, Li S, Li X, Sun H, He P, Peng YL, Fan QL. Association of dietary live microbe intake with diabetic kidney disease in patients with type 2 diabetes mellitus in US adults: a cross-sectional study of NHANES 1999-2018. Acta Diabetol 2024; 61:705-714. [PMID: 38400938 PMCID: PMC11101549 DOI: 10.1007/s00592-023-02231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/27/2023] [Indexed: 02/26/2024]
Abstract
AIMS Several studies have reported dietary microorganisms' beneficial effects on human health. We aimed to detect the potential association between dietary live microbe intake and diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM) through a cross-sectional analysis of the National Health and Nutrition Examination Survey from 1999 to 2018. METHODS According to the Sanders classification system of dietary live microbes, the study participants were divided into three groups: low, medium, and high live microbe groups. In patients with T2DM, DKD was assessed by glomerular filtration rate (< 60 mL/min/1.73 m2 using the Chronic Kidney Disease Epidemiology Collaboration algorithm), proteinuria (urinary albumin to creatinine ratio ≥ 30 mg/g), or both. Weighted univariate and multivariate logistic regression and subgroup analyses were conducted to investigate the independent association between dietary live microbe and DKD. RESULTS The study included 3836 participants, of whom 1467 (38.24%) had DKD for the diagnosis. Our study demonstrated that participants in the high dietary live microbe group were more likely to be older, female, non-Hispanic White, have higher education levels, have a lower prevalence of smoking, have a high poverty-income ratio, have higher energy intake, lower haemoglobin (HbA1c) and serum creatinine levels, and lower risk of progression. After adjustment for covariates, patients in the high dietary live microbe group had a low prevalence of DKD, whereas no significant association with DKD was found between the medium and low dietary live microbe groups. No statistically significant interaction was observed in all subgroup analyses except for HbA1c (p for interaction < 0.05). CONCLUSIONS Our results indicate that high dietary live microbe intake was associated with a low DKD prevalence.
Collapse
Affiliation(s)
- Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhao-Hui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong-Hong Zhu
- Department of Nephrology, The second affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuai Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Li
- Department of Nephrology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping He
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ya-Li Peng
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning, China.
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Zhang B, Zhou L, Chen K, Fang X, Li Q, Gao Z, Lian F, Li M, Tian J, Zhao L, Tong X. Investigation on Phenomics of Traditional Chinese Medicine from the Diabetes. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:257-268. [PMID: 39398423 PMCID: PMC11467137 DOI: 10.1007/s43657-023-00146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 10/15/2024]
Abstract
With thousands of years of application history, traditional Chinese medicine (TCM) has unique advantages in the prevention of various chronic diseases, and in recent years, the development of TCM has presented a situation where opportunities and challenges coexist. Phenomics is an emerging area of life science research, which has numerous similarities to the cognitive perspective of TCM. Thus, how to carry out the interdisciplinary research between TCM and phenomics deserves in-depth discussion. Diabetes is one of the most common chronic non-communicable diseases around the world, and TCM plays an important role in all stages of diabetes treatment, but the molecular mechanisms are difficult to elucidate. Phenomics research can not only reveal the hidden scientific connotations of TCM, but also provide a bridge for the confluence and complementary between TCM and Western medicine. Facing the challenges of the TCM phenomics research, we suggest applying the State-target theory (STT) to overall plan relevant researches, namely, focusing on the disease development, change trends, and core targets of each stage, and to deepen the understanding of TCM disease phenotypes and the therapeutic mechanisms of herbal medicine. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00146-6.
Collapse
Affiliation(s)
- Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Lijuan Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qingwei Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Fengmei Lian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Min Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
6
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
7
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. Specific Alternation of Gut Microbiota and the Role of Ruminococcus gnavus in the Development of Diabetic Nephropathy. J Microbiol Biotechnol 2024; 34:547-561. [PMID: 38346799 PMCID: PMC11016775 DOI: 10.4014/jmb.2310.10028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 04/17/2024]
Abstract
In this study, we aim to investigate the precise alterations in the gut microbiota during the onset and advancement of diabetic nephropathy (DN) and examine the impact of Ruminococcus gnavus (R. gnavus) on DN. Eight-week-old male KK-Ay mice were administered antibiotic cocktails for a duration of two weeks, followed by oral administration of R. gnavus for an additional eight weeks. Our study revealed significant changes in the gut microbiota during both the initiation and progression of DN. Specifically, we observed a notable increase in the abundance of Clostridia at the class level, higher levels of Lachnospirales and Oscillospirales at the order level, and a marked decrease in Clostridia_UCG-014 in DN group. Additionally, there was a significant increase in the abundance of Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Moreover, oral administration of R. gnavus effectively aggravated kidney pathology in DN mice, accompanied by elevated levels of urea nitrogen (UN), creatinine (Cr), and urine protein. Furthermore, R. gnavus administration resulted in down-regulation of tight junction proteins such as Claudin-1, Occludin, and ZO-1, as well as increased levels of uremic toxins in urine and serum samples. Additionally, our study demonstrated that orally administered R. gnavus up-regulated the expression of inflammatory factors, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) and Interleukin (IL)-6. These changes indicated the involvement of the gut-kidney axis in DN, and R. gnavus may worsen diabetic nephropathy by affecting uremic toxin levels and promoting inflammation in DN.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| |
Collapse
|
8
|
Wang Y, He X, Xue M, Yu H, He Q, Jin J. Integrated 16S rRNA sequencing and metabolomic analysis reveals the potential protective mechanism of Germacrone on diabetic nephropathy in mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56:414-426. [PMID: 38429975 PMCID: PMC10984863 DOI: 10.3724/abbs.2024021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 03/03/2024] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes and the leading cause of end-stage renal disease and death. Germacrone (Ger) possesses anti-inflammatory, antioxidant and anti-DN properties. However, it is unclear whether the improvement in kidney damage caused by Ger in DN mice is related to abnormal compositions and metabolites of the gut microbiota. This study generates a mouse model of DN to explore the potent therapeutic ability and mechanism of Ger in renal function by 16S rRNA sequencing and untargeted fecal metabolomics. Although there is no significant change in microbiota diversity, the structure of the gut microbiota in the DN group is quite different. Serratia_marcescens and Lactobacillus_iners are elevated in the model group but significantly decreased after Ger intervention ( P<0.05). Under the treatment of Ger, no significant differences in the diversity and richness of the gut microbiota are observed. An imbalance in the intestinal flora leads to the dysregulation of metabolites, and non-targeted metabolomics data indicate high expression of stearic acid in the DN group, and oleic acid could serve as a potential marker of the therapeutic role of Ger in the DN model. Overall, Ger improves kidney injury in diabetic mice, in part potentially by reducing the abundance of Serratia_marcescens and Lactobacillus_iners, as well as regulating the associated increase in metabolites such as oleic acid, lithocholic acid and the decrease in stearic acid. Our research expands the understanding of the relationship between the gut microbiota and metabolites in Ger-treated DN. This contributes to the usage of natural products as a therapeutic approach for the treatment of DN via microbiota regulation.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Xinxin He
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Mengjiao Xue
- School of Clinical MedicineHangzhou Medical CollegeHangzhou311399China
| | - Huan Yu
- The Fourth Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhou310053China
| | - Qiang He
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| | - Juan Jin
- Department of Nephrologythe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)Hangzhou310006China
| |
Collapse
|
9
|
Fang Y, Zhang Y, Liu Q, Zheng Z, Ren C, Zhang X. Assessing the causal relationship between gut microbiota and diabetic nephropathy: insights from two-sample Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1329954. [PMID: 38562415 PMCID: PMC10982433 DOI: 10.3389/fendo.2024.1329954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The causal association between gut microbiota (GM) and the development of diabetic nephropathy (DN) remains uncertain. We sought to explore this potential association using two-sample Mendelian randomization (MR) analysis. Methods Genome-wide association study (GWAS) data for GM were obtained from the MiBioGen consortium. GWAS data for DN and related phenotypes were collected from the FinngenR9 and CKDGen databases. The inverse variance weighted (IVW) model was used as the primary analysis model, supplemented by various sensitivity analyses. Heterogeneity was assessed using Cochran's Q test, while horizontal pleiotropy was evaluated through MR-Egger regression and the MR-PRESSO global test. Reverse MR analysis was conducted to identify any reverse causal effects. Results Our analysis identified twenty-five bacterial taxa that have a causal association with DN and its related phenotypes (p < 0.05). Among them, only the g_Eubacterium_coprostanoligenes_group showed a significant causal association with type 1 DN (p < Bonferroni-adjusted p-value). Our findings remained consistent regardless of the analytical approach used, with all methods indicating the same direction of effect. No evidence of heterogeneity or horizontal pleiotropy was observed. Reverse MR analysis did not reveal any causal associations. Conclusions This study established a causal association between specific GM and DN. Our findings contribute to current understanding of the role of GM in the development of DN, offering potential insights for the prevention and treatment strategies for this condition.
Collapse
Affiliation(s)
- Yipeng Fang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | | | - Qian Liu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Zenan Zheng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Chunhong Ren
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Engineering Research Center of Key Technique for Biotherapy of Guangdong, Shantou, Guangdong, China
| |
Collapse
|
10
|
Shen Z, Cui T, Liu Y, Wu S, Han C, Li J. Astragalus membranaceus and Salvia miltiorrhiza ameliorate diabetic kidney disease via the "gut-kidney axis". PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155129. [PMID: 37804821 DOI: 10.1016/j.phymed.2023.155129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND The combination of Astragalus membranaceus and Salvia miltiorrhiza (AS) is an effective prescription for treating diabetic kidney disease (DKD) in traditional Chinese medicine. Its efficacy in treating DKD has been confirmed, but the potential regulatory mechanism has not yet been fully clarified. PURPOSE To explore the mechanism by which AS regulates the "gut-metabolism-transcription" coexpression network under the action of the "gut-kidney axis" to ameliorate DKD. METHODS SD rats were used to establish the DKD model by injecting STZ. After AS intervention, the structure and function of the kidney and colon were observed. We sequenced the gut microbiota utilizing 16S rDNA, identified serum differential metabolites using LC‒MS/MS, and observed renal mRNA expression by RNA seq. The "gut-metabolism-transcription" coexpression network was further constructed, and the target bacteria, target metabolites, and target genes of AS were ultimately screened and validated. RESULTS AS improved renal pathology and functional damage and increased the abundance of Akkermansia, Akkermansia_muciniphila, Lactobacillus and Lactobacillus_murinus. Fourteen target metabolites of AS were identified, which were mainly concentrated in 19 KEGG pathways, including sphingolipid metabolism and glycerophospholipid metabolism. Sixty-three target mRNAs of AS were identified. The top 20 pathways were closely related to glycolipid metabolism, and 14 differential mRNAs were expressed in these pathways. Correlation analysis showed that Akkermansia, Akkermansia muciniphila, Lactobacillus and Lactobacillus murinus were closely associated with sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, ascorbate and aldarate metabolism and galactose metabolism. Moreover, the target metabolites and target mRNAs of AS were also enriched in five identical pathways of sphingolipid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, ascorbate and aldarate metabolism and galactose metabolism, including 8 different metabolites, such as sphingosine, and 5 different genes, such as Kng1. The 8 metabolites had high AUC prediction values, and the validation of the 5 genes was consistent with the sequencing results. CONCLUSION Our research showed that AS can improve DKD via the "gut-kidney axis". Akkermansia muciniphila and Lactobacillus murinus were the main driving bacteria, and five pathways related to glycolipid metabolism, especially sphingolipid metabolism and glycerophospholipid metabolism, may be important follow-up reactions and regulatory mechanisms.
Collapse
Affiliation(s)
- Zhen Shen
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China
| | - Tao Cui
- Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan 250200, China
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China
| | - Shuai Wu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Jinan 250014, China
| | - Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Jinan 250014, China.
| | - Jie Li
- Shandong University of Traditional Chinese Medicine, No.4655 Daxue Road, Jinan 250014, China.
| |
Collapse
|
11
|
Liang J, Wei X, Hou W, Wang H, Ma R, Gao Y, Du Y, Zhang Q. Liver metabolomics reveals potential mechanism of Jieduan-Niwan formula against acute-on-chronic liver failure (ACLF) by improving mitochondrial damage and TCA cycle. Chin Med 2023; 18:157. [PMID: 38037150 PMCID: PMC10691013 DOI: 10.1186/s13020-023-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However, the intrinsic mechanism of its anti-ACLF effect still need to be studied systematically. PURPOSE This study aimed to investigate the mechanism of JDNWF against ACLF based on altered substance metabolic profile in ACLF the expression levels of related molecules. MATERIALS AND METHODS The chemical characteristics of JDNWF were characterized using ultra performance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry. Wistar rats subjected to a long-term CCL4 stimulation followed by a combination of an acute attack with LPS/D-GalN were used to establish the ACLF model. Liver metabolites were analyzed by LC-MS/MS and multivariate analysis. Liver function, coagulation function, histopathology, mitochondrial metabolic enzyme activity and mitochondrial damage markers were evaluated. The protein expression of mitochondrial quality control (MQC) was investigated by western blot. RESULTS Liver function, coagulation function, inflammation, oxidative stress and mitochondrial enzyme activity were significantly improved by JDNWF. 108 metabolites are considered as biomarkers of JDNWF in treating ACLF, which were closely related to TCA cycle. It was further suggested that JDNWF alleviated mitochondrial damage and MQC may be potential mechanism of JDNWF improving mitochondrial function. CONCLUSIONS Metabolomics revealed that TCA cycle was impaired in ACLF rats, and JDNWF had a regulatory effect on it. The potential mechanism may be improving the mitochondrial function through MQC pathway, thus restoring energy metabolism.
Collapse
Affiliation(s)
- Jiajun Liang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Xiaoyi Wei
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weixin Hou
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hanjing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ruimin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Yuqiong Du
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
12
|
Xie L, Chi X, Wang H, Dai A, Dong J, Liu S, Zhang D. Mechanism of action of buckwheat quercetin in regulating lipid metabolism and intestinal flora via Toll-like receptor 4 or nuclear factor κB pathway in rats on a high-fat diet. Nutrition 2023; 115:112148. [PMID: 37541145 DOI: 10.1016/j.nut.2023.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVES Buckwheat quercetin (QUE) was used as a dietary supplement to investigate the mechanism of QUE on the regulation of lipid metabolism and intestinal flora in hyperlipidemic rats. METHODS Here, using a high-fat diet-induced hyperlipidemia model, the intervention was carried out by gavage of QUE at doses of 50, 100, and 200 mg/kg. Serum lipid levels, liver biochemical parameters, and histopathologic changes in the liver and intestinal microorganisms were measured in rats by enzyme-linked immunosorbent assay, hematoxylin-eosin, and high-throughput sequencing, respectively. RESULTS Our results found that QUE, at a dose of 200 mg/kg, significantly reduced body weight, liver index, and lipid levels in rats (P < 0.05); improved hepatic oxidative stress; and repaired liver injury. In addition, the upregulation of beneficial bacteria, such as christensenellaceae and Bifidobacterium, in the organism increased the content of short-chain fatty acids, thus interfering with intestinal pH and improving the intestinal environment, while downregulating the relative abundance of Proteobacteria and Eubacterium_coprostanoligenes_group, and regulating the overproduction of butyrate. The real-time fluorescence quantitative polymerase chain reaction results found that QUE inhibited the expression of Toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) mRNA content and blocked the activation of the TLR4/NF-κB signaling pathway, thus affecting the downregulation of lipid levels and restoring intestinal homeostasis. CONCLUSIONS A QUE dose of 200 mg/kg may improve lipid levels and the composition of intestinal flora through the TLR4/NF-κB pathway, suggesting that proteobacteria and christensenellaceae abundance changes may be biomarkers of potential diseases.
Collapse
Affiliation(s)
- Linlin Xie
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Xiaoxing Chi
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China; National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang Province, China.
| | - Helin Wang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Anna Dai
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Jiaping Dong
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Shufan Liu
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Dongjie Zhang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China; National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang Province, China
| |
Collapse
|
13
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
14
|
Han C, Shen Z, Cui T, Ai SS, Gao RR, Liu Y, Sui GY, Hu HZ, Li W. Yi-Shen-Hua-Shi granule ameliorates diabetic kidney disease by the "gut-kidney axis". JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116257. [PMID: 36787845 DOI: 10.1016/j.jep.2023.116257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi-Shen-Hua-Shi (YSHS) granule is an effective prescription widely used in traditional Chinese medicine to treat diabetic kidney disease (DKD), its exact efficacy in treating DKD has been confirmed but the underlying regulatory mechanism has not been fully elucidated. AIM OF THE STUDY To explore the mechanism by which YSHS granule regulates intestinal flora and serum metabolites and then regulates renal mRNA expression through the "gut-kidney axis", so as to improve DKD. MATERIALS AND METHODS 40 rats were divided into five groups: Normal group (N) (normal saline), model group (M) (STZ + normal saline), YSHS granule low-dose group (YL) (STZ + 2.27 g kg-1 d-1), YSHS granule high-dose group (YH) (STZ + 5.54g kg-1 d-1) and valsartan group (V) (STZ + 7.38mg kg-1 d-1). After 6 weeks, changes in blood glucose, blood lipids, and renal function related indexes were observed, as well as pathological changes in the kidney and colon. Intestinal microbiota was sequenced by 16S rDNA, serum differential metabolites were identified by LC-MS/MS, and renal differences in mRNA expression were observed by RNA-seq. Further, through the association analysis of intestinal differential microbiota, serum differential metabolites and kidney differential mRNAs, the target flora, target metabolites and target genes of YSHS granule were screened and verified, and the "gut-metabolism-transcription" co-expression network was constructed. RESULTS In group M, blood glucose, blood lipid and proteinuria were increased, inflammation, oxidative stress and renal function were aggravated, with the proliferation of mesangial matrix, vacuolar degeneration of renal tubules, accumulation of collagen and lipid, and increased intestinal permeability, and YSHS granule and valsartan improved these disorders to varying degrees. High dose of YSHS granule improved the diversity and abundance of flora, decreased the F/B value, greatly increased the abundance of Lactobacillus and Lactobacillus_murinus, and decreased the abundance of Prevoella UCG_001. 14 target metabolites of YSHS granule were identified, which were mainly enriched in 20 KEGG pathways, such as Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis. 96 target mRNAs of YSHS granule were also identified. The enriched top 20 pathways were closely related to glucose and lipid metabolism, of which a total of 21 differential mRNAs were expressed. Further correlation analysis revealed that Lactobacillus, Lactobacillus_murinus and Prevotella UCG_001 were highly correlated with Glycerophospholipid metabolism, Sphingolipid metabolism and Phenylalanine, tyrosine and tryptophan biosynthesis pathways. At the same time, 6 pathways including Glycerophospholipid metabolism, Arachidonic acid metabolism, Purine metabolism, Primary bile acid biosynthesis, Ascorbate and aldarate metabolism and Galactose metabolism were co-enriched by the target metabolites and the target mRNAs of YSHS granule, including 7 differential metabolites such as phosphatidylethanolamine and 7 differential genes such as Adcy3. The 7 differential metabolites had high predictive value of AUC, and the validation of 7 differential genes were highly consistent with the sequencing results. CONCLUSION YSHS granule could improve DKD through the "gut-kidney axis". Lactobacillus and Lactobacillus_murinus were the main driving forces. 6 pathways related to glucose and lipid metabolism, especially Glycerophospholipid metabolism, may be an important follow-up response and regulatory mechanism.
Collapse
Affiliation(s)
- Cong Han
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhen Shen
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Tao Cui
- Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan, 250200, China
| | - Shan-Shan Ai
- Jining Medical University, Jining, 272067, China
| | - Ran-Ran Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yao Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Gui-Yuan Sui
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Hong-Zhen Hu
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
15
|
Jing N, Liu F, Wang R, Zhang Y, Yang J, Hou Y, Zhang H, Xie Y, Liu H, Ge S, Jin J. Both live and heat-killed Bifidobacterium animalis J-12 alleviated oral ulcers in LVG golden Syrian hamsters by gavage by directly intervening in the intestinal flora structure. Food Funct 2023; 14:2045-2058. [PMID: 36723265 DOI: 10.1039/d2fo03751c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Live and heat-killed Bifidobacterium has been proven to have anti-inflammatory and antioxidant effects. In this study, we evaluated the effects of live and heat-killed Bifidobacterium animalis J-12 (J-12) on the oral ulceration of LVG golden Syrian hamsters after buccal membrane injection with methyl viologen dichloride. Results showed that interleukin-1β, glutathione, and malondialdehyde in serum were downregulated by the gavage of live and heat-killed J-12 bacteria. The J-12 live and heat-killed bacteria can reduce the expression of matrix metalloproteinase-9 by reducing the expression of nuclear factor kappa-B, thus reducing the expression of anti-inflammatory factors lipoxin A4 and prostaglandin E2. Reducing the expression of caspase-3 and adenosine diphosphate ribose polymerase resulted in a reduction of ulcer tissue DNA damage. In addition, regulating the structure of the intestinal flora prevented the process of oral ulcer formation. This study shows that J-12 can reduce the risk of oral ulcer formation while also having a positive effect on inhibiting existing oral ulcer growth.
Collapse
Affiliation(s)
- Nanqing Jing
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China.,Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China
| | - Yan Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Jianjun Yang
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yubing Hou
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Shaoyang Ge
- BEIJING HEYIYUAN BIOTECHNOLOGY Co, Ltd., Beijing 100088, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| |
Collapse
|
16
|
Hu H, Zhao G, Wang K, Han P, Ye H, Wang F, Liu N, Zhou P, Lu X, Zhou Z, Cui H. Study on the Mechanism of Qing-Fei-Shen-Shi Decoction on Asthma Based on Integrated 16S rRNA Sequencing and Untargeted Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1456844. [PMID: 36846048 PMCID: PMC9946754 DOI: 10.1155/2023/1456844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 11/24/2022] [Indexed: 02/17/2023]
Abstract
Qing-Fei-Shen-Shi decoction (QFSS) consists of Prunus armeniaca L., Gypsum Fibrosum, Smilax glabra Roxb., Coix lacryma-jobi L., Benincasa hispida (Thunb.) Cogn., Plantago asiatica L., Pyrrosia lingua (Thunb.) Farw., Houttuynia cordata Thunb., Fritillaria thunbergii Miq., Cicadae Periostracum, and Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle. QFSS shows significant clinical efficacy in the treatment of asthma. However, the specific mechanism of QFSS on asthma remains unclear. Recently, multiomics techniques are widely used in elucidating the mechanisms of Chinese herbal formulas. The use of multiomics techniques can better illuminate the multicomponents and multitargets of Chinese herbal formulas. In this study, ovalbumin (OVA) was first employed to induce an asthmatic mouse model, followed by a gavage of QFSS. First, we evaluated the therapeutic effects of QFSS on the asthmatic model mice. Second, we investigated the mechanism of QFSS in treating asthma by using an integrated 16S rRNA sequencing technology and untargeted metabolomics. Our results showed that QFSS treatment ameliorated asthma in mice. In addition, QFSS treatment affected the relative abundances of gut microbiota including Lactobacillus, Dubosiella, Lachnospiraceae_NK4A136_group, and Helicobacter. Untargeted metabolomics results showed that QFSS treatment regulated the metabolites such as 2-(acetylamino)-3-[4-(acetylamino) phenyl] acrylic acid, D-raffinose, LysoPC (15 : 1), methyl 10-undecenoate, PE (18 : 1/20 : 4), and D-glucose6-phosphate. These metabolites are associated with arginine and proline metabolism, arginine biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism. Correlation analysis indicated that arginine and proline metabolism and pyrimidine metabolism metabolic pathways were identified as the common metabolic pathways of 16s rRNA sequencing and untargeted metabolomics. In conclusion, our results showed that QFSS could ameliorate asthma in mice. The possible mechanism of QFSS on asthma may be associated with regulating the gut microbiota and arginine and proline metabolism and pyrimidine metabolism. Our study may be useful for researchers to study the integrative mechanisms of Chinese herbal formulas based on modulating gut microbiota and metabolism.
Collapse
Affiliation(s)
- Haibo Hu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Guojing Zhao
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Kun Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Ping Han
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Haiyan Ye
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Fengchan Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Na Liu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Peixia Zhou
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Xuechao Lu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Zhaoshan Zhou
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
18
|
Li H, Dong A, Li N, Ma Y, Zhang S, Deng Y, Chen S, Zhang M. Mechanistic Study of Schisandra chinensis Fruit Mixture Based on Network Pharmacology, Molecular Docking and Experimental Validation to Improve the Inflammatory Response of DKD Through AGEs/RAGE Signaling Pathway. Drug Des Devel Ther 2023; 17:613-632. [PMID: 36875720 PMCID: PMC9983444 DOI: 10.2147/dddt.s395512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is a major cause of end-stage renal disease (ESRD), and inflammation is the main causative mechanism. Schisandra chinensis fruit Mixture (SM) is an herbal formulation that has been used for a long time to treat DKD. However, its pharmacological and molecular mechanisms have not been clearly elucidated. The aim of this study was to investigate the potential mechanisms of SM for the treatment of DKD through network pharmacology, molecular docking and experimental validation. Methods The chemical components in SM were comprehensively identified and collected using liquid chromatography-tandem mass spectrometry (LC-MS) and database mining. The mechanisms were investigated using a network pharmacology, including obtaining SM-DKD intersection targets, completing protein-protein interactions (PPI) by Cytoscape to obtain key potential targets, and then revealing potential mechanisms of SM for DKD by GO and KEGG pathway enrichment analysis. The important pathways and phenotypes screened by the network analysis were validated experimentally in vivo. Finally, the core active ingredients were screened by molecular docking. Results A total of 53 active ingredients of SM were retrieved by database and LC-MS, and 143 common targets of DKD and SM were identified; KEGG and PPI showed that SM most likely exerted anti-DKD effects by regulating the expression of AGEs/RAGE signaling pathway-related inflammatory factors. In addition, our experimental validation results showed that SM improved renal function and pathological changes in DKD rats, down-regulated AGEs/RAGE signaling pathway, and further down-regulated the expression of TNF-α, IL-1β, IL-6, and up-regulated IL-10. Molecular docking confirmed the tight binding properties between (+)-aristolone, a core component of SM, and key targets. Conclusion This study reveals that SM improves the inflammatory response of DKD through AGEs/RAGE signaling pathway, thus providing a novel idea for the clinical treatment of DKD.
Collapse
Affiliation(s)
- Hongdian Li
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ao Dong
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Na Li
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yu Ma
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Sai Zhang
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuanyuan Deng
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shu Chen
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mianzhi Zhang
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China.,Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| |
Collapse
|
19
|
Wu X, Zhao L, Zhang Y, Li K, Yang J. The role and mechanism of the gut microbiota in the development and treatment of diabetic kidney disease. Front Physiol 2023; 14:1166685. [PMID: 37153213 PMCID: PMC10160444 DOI: 10.3389/fphys.2023.1166685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication in patients with diabetes mellitus (DM). Increasing evidence suggested that the gut microbiota participates in the progression of DKD, which is involved in insulin resistance, renin-angiotensin system (RAS) activation, oxidative stress, inflammation and immunity. Gut microbiota-targeted therapies including dietary fiber, supplementation with probiotics or prebiotics, fecal microbiota transplantation and diabetic agents that modulate the gut microbiota, such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors. In this review, we summarize the most important findings about the role of the gut microbiota in the pathogenesis of DKD and the application of gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaofang Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujiang Zhang
- Department of Nephrology, Chongqing Jiangjin Second People’s Hospital, Chongqing, China
| | - Kailong Li
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
20
|
Wang P, Guo R, Bai X, Cui W, Zhang Y, Li H, Shang J, Zhao Z. Sacubitril/Valsartan contributes to improving the diabetic kidney disease and regulating the gut microbiota in mice. Front Endocrinol (Lausanne) 2022; 13:1034818. [PMID: 36589853 PMCID: PMC9802116 DOI: 10.3389/fendo.2022.1034818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic kidney disease (DKD), as a serious microvascular complication of diabetes, has limted treatment options. It is reported that the Sacubitril/Valsartan (Sac/Val) can improve kidney function, and the disordered gut microbiota and part of its metabolites are related to the development of DKD. Therefore, we aim to explore whether the effect of Sac/Val on DKD is associated with the gut microbiota and related plasma metabolic profiles. Methods Male C57BL/6J mice were randomly divided into 3 groups: Con group (n = 5), DKD group (n = 6), and Sac/Val group (n = 6) . Sac/Val group was treated with Sac/Val solution. The intervention was given once every 2 days for 6 weeks. We measured the blood glucose and urine protein level of mice at different times. We then collected samples at the end of experiment for the 16s rRNA gene sequencing analysis and the untargeted plasma metabonomic analysis. Results We found that the plasma creatinine concentration of DKD-group mice was significantly higher than that of Con-group mice, whereas it was reduced after the Sac/Val treatment. Compared with DKD mice, Sac/Val treatment could decrease the expression of indicators related to EndMT and renal fibrosis like vimentin, collagen IV and fibronectin in kidney. According to the criteria of LDA ≥ 2.5 and p<0.05, LefSe analysis of gut microbiota identified 13 biomarkers in Con group, and 33 biomarkers in DKD group, mainly including Prevotella, Escherichia_Shigella and Christensenellaceae_R_7_group, etc. For the Sac/Val group, there were 21 biomarkers, such as Bacteroides, Rikenellaceae_RC9_gut_group, Parabacteroides, Lactobacillus, etc. Plasma metabolomics analysis identified a total of 648 metabolites, and 167 important differential metabolites were screened among groups. KEGG pathway of tryptophan metabolism: M and bile secretion: OS had the highest significance of enrichment. Conclusions Sac/Val improves the renal function of DKD mice by inhibiting renal fibrosis. This drug can also regulate gut microbiota in DKD mice.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Mary School, Nanchang, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Du J, Yang M, Zhang Z, Cao B, Wang Z, Han J. The modulation of gut microbiota by herbal medicine to alleviate diabetic kidney disease - A review. Front Pharmacol 2022; 13:1032208. [PMID: 36452235 PMCID: PMC9702521 DOI: 10.3389/fphar.2022.1032208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/09/2023] Open
Abstract
The treatment of diabetic kidney disease (DKD) has been the key concern of the medical community. Herbal medicine has been reported to alleviate intestinal dysbiosis, promote the excretion of toxic metabolites, and reduce the secretion of uremic toxins. However, the current understanding of the modulation of the gut microbiota by herbal medicine to delay the progression of DKD is still insufficient. Consequently, we reviewed the knowledge based on peer-reviewed English-language journals regarding regulating gut microbiota by herbal medicines in DKD. It was found that herbal medicine or their natural extracts may have the following effects: modulating the composition of intestinal flora, particularly Akkermansia, Lactobacillus, and Bacteroidetes, as well as adjusting the F/B ratio; increasing the production of SCFAs and restoring the intestinal barrier; reducing the concentration of uremic toxins (p-cresol sulfate, indole sulfate, TMAO); inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
23
|
Wang D, Liu J, Zhong L, Ding L, Zhang Q, Yu M, Li M, Xiao X. Potential benefits of metformin and pioglitazone combination therapy via gut microbiota and metabolites in high-fat diet-fed mice. Front Pharmacol 2022; 13:1004617. [PMID: 36304148 PMCID: PMC9592694 DOI: 10.3389/fphar.2022.1004617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Metformin and pioglitazone monotherapy have been proven to alter gut microbiota in diabetes and obesity. The present study aimed to investigated whether the combined administration of pioglitazone and metformin achieved superior protective effects on high-fat diet (HFD)-fed obese mice and elucidated its molecular mechanism via the gut microbiota and its metabolites. C57BL/6 males were randomly divided into five groups: the control group, fed a normal control diet; the HFD group, fed an HFD; the metformin monotherapy group, fed an HFD and treated with metformin; the pioglitazone monotherapy group, fed an HFD and treated with pioglitazone; and the combination therapy group, fed an HFD and treated with metformin and pioglitazone combination therapy. The cecal contents were collected for 16S rDNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the combination therapy of metformin and pioglitazone significantly improved insulin sensitivity and glucolipid metabolism in HFD-fed mice. Combination therapy markedly altered gut microbiota by increasing beneficial bacteria, such as Bifidobacterium, Christensenellaceae_R-7_group, Faecalibacterium and Roseburia, and decreasing harmful bacteria, such as Oscillibacter and Eubacterium_xylanophilum_group. Fecal metabolites were significantly changed in the combination therapy group, including a reduction in amino acid metabolism and augmentation of lipid metabolism, such as citrulline, sarcosine, D-glutamine, lipoxin A4, prostaglandin E2, stearidonic acid and lucidenic acid A. These results revealed that combined metformin and pioglitazone therapy had synergistic effects or at least have an additive effect on modifying gut microbiota and metabolites, closely associated with improved glucolipid metabolic parameters in HFD-fed mice, which provides novel evidence and promising targets for metformin and pioglitazone combination therapy in type 2 diabetes.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Zhong
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Ding
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, NHC Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Xinhua Xiao,
| |
Collapse
|
24
|
Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. Toxins (Basel) 2022; 14:toxins14070486. [PMID: 35878224 PMCID: PMC9322933 DOI: 10.3390/toxins14070486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Mesaconitine (MA), one of the main diterpenoid alkaloids in Aconitum, has a variety of pharmacological effects, such as analgesia, anti-inflammation and relaxation of rat aorta. However, MA is a highly toxic ingredient. At present, studies on its toxicity are mainly focused on the heart and central nervous system, and there are few reports on the hepatotoxic mechanism of MA. Therefore, we evaluated the effects of MA administration on liver. SD rats were randomly divided into a normal saline (NS) group, a low-dose MA group (0.8 mg/kg/day) and a high-dose MA group (1.2 mg/kg/day). After 6 days of administration, the toxicity of MA on the liver was observed. Metabolomic and network toxicology methods were combined to explore the effect of MA on the liver of SD rats and the mechanism of hepatotoxicity in this study. Through metabonomics study, the differential metabolites of MA, such as L-phenylalanine, retinyl ester, L-proline and 5-hydroxyindole acetaldehyde, were obtained, which involved amino acid metabolism, vitamin metabolism, glucose metabolism and lipid metabolism. Based on network toxicological analysis, MA can affect HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway and FoxO signal pathway by regulating ALB, AKT1, CASP3, IL2 and other targets. Western blot results showed that protein expression of HMOX1, IL2 and caspase-3 in liver significantly increased after MA administration (p < 0.05). Combined with the results of metabonomics and network toxicology, it is suggested that MA may induce hepatotoxicity by activating oxidative stress, initiating inflammatory reaction and inducing apoptosis.
Collapse
|
25
|
Liu S, Li A, Jiang B, Mi J, Nan H, Bao P, Nan Z. Comparison of efficacy and safety of traditional Chinese patent medicines for diabetic nephropathy: A protocol for Bayesian network meta-analysis. Medicine (Baltimore) 2022; 101:e29152. [PMID: 35583526 PMCID: PMC9276373 DOI: 10.1097/md.0000000000029152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most serious complications of diabetes. It has become a global public health problem among humans. DN is the leading cause of end-stage renal disease. At present, there is no specific medicine or modern medicinal therapy. In recent years, studies have shown that traditional Chinese patent medicines have been effective in treating DN, with few side effects. There is no systematic review on the treatment of DN with Chinese patent medicines. The current systematic review aims to evaluate the efficacy and safety of Chinese patent medicines for the treatment of DN. METHODS We will develop a search strategy to search major Chinese and English databases from inception to February 25, 2022 for randomized controlled trials examining the use of traditional Chinese patent medicine for the treatment of DN. The search will be conducted in accordance with the participants, interventions, comparisons, outcomes (PICOS) framework. Two researchers will use EndnoteX9 software to extract data and independently evaluate the quality of the included trials. Finally, the Bayesian network meta-analysis will be carried out by using software such as ReviewManager, Stata16.0, and WinBUGS1.4.3. RESULTS The primary outcomes will be urine albumin excretion rate, urea nitrogen, serum creatinine, total effective rate, and adverse events, and the secondary outcomes will be body mass index, fasting blood glucose, and 2-hPG during 75-g OGTT. These outcomes will be examined to provide a reliable basis for the treatment of DN with different traditional Chinese patent medicines. CONCLUSION This review will compare the efficacy and safety of different traditional Chinese patent medicines for treating DN. The results of the study will provide a basis for the selection of adjuvant treatment options for DN.
Collapse
Affiliation(s)
- Shilin Liu
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Andong Li
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Bin Jiang
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Jia Mi
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Endocrinology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| | - Hongmei Nan
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Endocrinology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| | - Pengjie Bao
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
| | - Zheng Nan
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China
- Endocrinology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun City, Jilin Province, China
| |
Collapse
|
26
|
Miao J, Guo L, Cui H, Wang L, Zhu B, Lei J, Li P, Jia J, Zhang Z. Er-Chen Decoction Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Rats through Remodeling Gut Microbiota and Regulating the Serum Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6221340. [PMID: 35399623 PMCID: PMC8991405 DOI: 10.1155/2022/6221340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Many studies have found that the dysfunction in gut microbiota and the metabolic dysfunction can promote nonalcoholic fatty liver disease (NAFLD) development. Er-Chen decoction (EC) can be used in the treatment of NAFLD. However, the mechanism of this hepatoprotection is still unknown. In this study, we constructed a rat model with NAFLD fed with high-fat chow and administered EC treatment. The therapeutic effects of EC on NAFLD were evaluated by measuring transaminases, blood lipid levels, and pathological changes in the liver. In addition, we measured the effects of EC on liver inflammatory response and oxidative stress. The changes in gut microbiota after EC treatment were studied using 16S rRNA sequencing. Serum untargeted metabolomics analysis was also used to study the metabolic regulatory mechanisms of EC on NAFLD. The results showed that EC decreased the serum transaminases and lipid levels and improved the pathological changes in NAFLD rats. Furthermore, EC enhanced the activities of SOD and GSH-Px and decreased MDA level in the liver. EC treatment also decreased the gene and protein levels of IL-6, IL-1β, and TNF-α in the liver and serum. The 16S rRNA sequencing and untargeted metabolomics indicated that EC treatment affected the gut microbiota and regulated serum metabolism. Correlation analysis showed that the effects of EC on taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways were associated with affecting in the abundance of Lactobacillus, Dubosiella, Lachnospiraceae, Desulfovibri, Romboutsia, Akkermansia, Intestinimonas, and Candidatus_saccharimonas in the gut. In conclusion, our study confirmed the protective effect of EC on NAFLD. EC could treat NAFLD by inhibiting oxidative stress, reducing inflammatory responses, and improving the dysbiosis of gut microbiota and the modulation of the taurine and hypotaurine metabolism, cysteine and methionine metabolism, and vitamin B6 metabolism pathways in serum.
Collapse
Affiliation(s)
- Jing Miao
- Tianjin Second People's Hospital, Tianjin, China
| | - Liying Guo
- Tianjin Second People's Hospital, Tianjin, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Li Wang
- Tianjin Second People's Hospital, Tianjin, China
| | - Bo Zhu
- Tianjin Second People's Hospital, Tianjin, China
| | - Jinyan Lei
- Tianjin Second People's Hospital, Tianjin, China
| | - Peng Li
- Tianjin Second People's Hospital, Tianjin, China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Tianjin, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
27
|
Su M, Hu R, Tang T, Tang W, Huang C. Review of the correlation between Chinese medicine and intestinal microbiota on the efficacy of diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1085092. [PMID: 36760813 PMCID: PMC9905712 DOI: 10.3389/fendo.2022.1085092] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetes mellitus is a serious metabolic disorder that can lead to a number of life-threatening complications. Studies have shown that intestinal microbiota is closely related to the development of diabetes, making it a potential target for the treatment of diabetes. In recent years, research on the active ingredients of traditional Chinese medicine (TCM), TCM compounds, and prepared Chinese medicines to regulate intestinal microbiota and improve the symptoms of diabetes mellitus is very extensive. We focus on the research progress of TCM active ingredients, herbal compounds, and prepared Chinese medicines in the treatment of diabetes mellitus in this paper. When diabetes occurs, changes in the abundance and function of the intestinal microbiota disrupt the intestinal environment by disrupting the intestinal barrier and fermentation. TCM and its components can increase the abundance of beneficial bacteria while decreasing the abundance of harmful bacteria, regulate the concentration of microbial metabolites, improve insulin sensitivity, regulate lipid metabolism and blood glucose, and reduce inflammation. TCM can be converted into active substances with pharmacological effects by intestinal microbiota, and these active substances can reverse intestinal microecological disorders and improve diabetes symptoms. This can be used as a reference for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Min Su
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Rao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Ting Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Weiwei Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Chunxia Huang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
- *Correspondence: Chunxia Huang,
| |
Collapse
|