1
|
Geesala R, Gongloor P, Recharla N, Shi XZ. Mechanisms of Action of Exclusive Enteral Nutrition and Other Nutritional Therapies in Crohn's Disease. Nutrients 2024; 16:3581. [PMID: 39519414 PMCID: PMC11547457 DOI: 10.3390/nu16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Crohn's disease (CD) is an inflammatory bowel disease (IBD) characterized by transmural inflammation and intestinal fibrosis involving mostly the small intestine and colon. The pathogenic mechanisms of CD remain incompletely understood and cures are unavailable. Current medical therapies are aimed at inducing prolonged remission. Most of the medical therapies such as corticosteroids have substantial adverse effects. Consequently, many dietary therapies have been explored for the management of CD. Up to now, exclusive enteral nutrition (EEN) has been considered the only established dietary treatment for IBD, especially CD. In this article, we aim to give a concise review about the current therapeutic options and challenges in the management of CD and aim to compare the efficacy of EEN with other dietary therapies and update on the possible mechanisms of the benefits of EEN and other nutritional therapies. METHODS We searched the literature up to August 2024 through PubMed, Web of Science, and other sources using search terms such as EEN, nutritional therapy, IBD, Crohn's disease, ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD were included in the summary of the therapeutic benefits. RESULTS AND CONCLUSIONS EEN involves oral or nasogastric tube feeding of a complete liquid diet with exclusion of normal foods for a defined period (usually 6 to 8 weeks). EEN treatment is demonstrated to have anti-inflammatory and healing effects in CD through various potential pathways, including altering gut bacteria and their metabolites, restoring the barrier function, direct anti-inflammatory action, and indirect anti-inflammatory action by eliminating mechanical stress in the bowel. However, efficacy of other nutritional therapies is not well established in CD, and mechanisms of action are largely unknown.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| | - Pratik Gongloor
- John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Neeraja Recharla
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| |
Collapse
|
2
|
Wolfson SM, Beigel K, Anderson SE, Deal B, Weiner M, Lee SH, Taylor D, Heo SC, Heuckeroth RO, Hashmi SK. Rapid cyclic stretching induces a synthetic, proinflammatory phenotype in cultured human intestinal smooth muscle, with the potential to alter signaling to adjacent bowel cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617767. [PMID: 39464046 PMCID: PMC11507745 DOI: 10.1101/2024.10.12.617767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background and Aims Bowel smooth muscle experiences mechanical stress constantly during normal function, and pathologic mechanical stressors in disease states. We tested the hypothesis that pathologic mechanical stress could alter transcription to induce smooth muscle phenotypic class switching. Methods Primary human intestinal smooth muscle cells (HISMCs), seeded on electrospun aligned poly-ε-caprolactone nano-fibrous scaffolds, were subjected to pathologic, high frequency (1 Hz) uniaxial 3% cyclic stretch (loaded) or kept unloaded in culture for 6 hours. Total RNA sequencing, qRT-PCR, and quantitative immunohistochemistry defined loading-induced changes in gene expression. NicheNet predicted how differentially expressed genes might impact HISMCs and other bowel cells. Results Loading induced differential expression of 4537 genes in HISMCs. Loaded HISMCs had a less contractile phenotype, with increased expression of synthetic SMC genes, proinflammatory cytokines, and altered expression of axon guidance molecules, growth factors and morphogens. Many differentially expressed genes encode secreted ligands that could act cell-autonomously on smooth muscle and on other cells in the bowel wall. Discussion HISMCs demonstrate remarkably rapid phenotypic plasticity in response to mechanical stress that may convert contractile HISMCs into proliferative, fibroblast-like cells or proinflammatory cells. These mechanical stress-induced changes in HISMC gene expression may be relevant for human bowel disease.
Collapse
Affiliation(s)
- Sharon M. Wolfson
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Katherine Beigel
- The Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sierra E. Anderson
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Brooke Deal
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Molly Weiner
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | | | - Deanne Taylor
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Chin Heo
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, 220 S 33rd St, Philadelphia, PA 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sohaib K. Hashmi
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, 220 S 33rd St, Philadelphia, PA 19104, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Chen L, Ai F, Wu X, Yu W, Jin X, Ma J, Xiang B, Shen S, Li X. Analysis of neutrophil extracellular trap-related genes in Crohn's disease based on bioinformatics. J Cell Mol Med 2024; 28:e70013. [PMID: 39199011 PMCID: PMC11358036 DOI: 10.1111/jcmm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Crohn's disease (CD) presents with diverse clinical phenotypes due to persistent inflammation of the gastrointestinal tract. Its global incidence is on the rise. Neutrophil extracellular traps (NETs) are networks released by neutrophils that capture microbicidal proteins and oxidases targeting pathogens. Research has shown that NETs are implicated in the pathogenesis of several immune-mediated diseases such as rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease. The goal of this study was to identify a panel of NET-related genes to construct a diagnostic and therapeutic model for CD. Through analysis of the GEO database, we identified 1950 differentially expressed genes (DEGs) associated with CD. Gene enrichment and immune cell infiltration analyses indicate that neutrophil infiltrates and chemokine-related pathways are predominantly involved in CD, with other immune cells such as CD4 and M1 macrophages also playing a role in disease progression. Utilizing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) networks, we identified six hub genes (SPP1, SOCS3, TIMP1, IRF1, CXCL2 and CD274). To validate the accuracy of our model, we performed external validation with statistical differences(p < 0.05). Additionally, immunohistochemical experiments demonstrated higher protein expression of the hub genes in colonic tissues from CD patients compared to healthy subjects (p < 0.05). In summary, we identified six effective hub genes associated with NETs as potential diagnostic markers for CD. These markers not only offer targets for future research but also hold promise for the development of novel therapeutic interventions for CD.
Collapse
Affiliation(s)
- Libin Chen
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Feiyan Ai
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xing Wu
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Wentao Yu
- Department of Pathology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xintong Jin
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Bo Xiang
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Shourong Shen
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiayu Li
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
4
|
Lin YM, Zhang K, Geesala R, Lipson KE, Qiu S, Powell DW, Cohn S, Shi XZ. Mechanical stress-induced connective tissue growth factor plays a critical role in intestinal fibrosis in Crohn's-like colitis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G295-G305. [PMID: 38954823 PMCID: PMC11427090 DOI: 10.1152/ajpgi.00123.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease characterized by transmural inflammation and intestinal fibrosis. Mechanisms of fibrosis in CD are not well understood. Transmural inflammation is associated with inflammatory cell infiltration, stenosis, and distention, which present mechanical stress (MS) to the bowel wall. We hypothesize that MS induces gene expression of profibrotic mediators such as connective tissue growth factor (CTGF), which may contribute to fibrosis in CD. A rodent model of CD was induced by intracolonic instillation of TNBS to the distal colon. TNBS instillation induced a localized transmural inflammation (site I), with a distended colon segment (site P) proximal to site I. We detected significant fibrosis and collagen content not only in site I but also in site P in CD rats by day 7. CTGF expression increased significantly in sites P and I, but not in the segment distal to the inflammation site. Increased CTGF expression was detected mainly in the smooth muscle cells (SMCs). When rats were fed exclusively with clear liquid diet to prevent mechanical distention in colitis, expression of CTGF in sites P and I was blocked. Direct stretch led to robust expression of CTGF in colonic SMC. Treatment of CD rats with anti-CTGF antibody FG-3149 reduced fibrosis and collagen content in both sites P and I and exhibited consistent trends toward normalizing expression of collagen mRNAs. In conclusion, our studies suggest that mechanical stress, by upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.NEW & NOTEWORTHY We found that CTGF expression increased significantly not only in the inflammation site but in the distended segment proximal to inflammation in a rodent model of CD-like colitis. Release of mechanical distention prevented CTGF expression in CD rats, whereas direct stretch induced CTGF expression. Treatment with anti-CTGF antibody reduced fibrosis and collagen contents in CD rats. Thus, mechanical stress, via upregulating profibrotic mediators, i.e., CTGF, may play a critical role in fibrosis in CD.
Collapse
Affiliation(s)
- You-Min Lin
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Ke Zhang
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Ramasatyaveni Geesala
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | | | - Suimin Qiu
- Department of Pathology, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Don W Powell
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Steven Cohn
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch, John Sealy School of Medicine, Galveston, Texas, United States
| |
Collapse
|
5
|
Retracted: PKC-delta and PKD activate MAPK signal pathway in mechano-transcription of colonic smooth muscle cells. Neurogastroenterol Motil 2024; 36:e14623. [PMID: 37278189 DOI: 10.1111/nmo.14623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Retraction: [PKC-delta and PKD activate MAPK signal pathway in mechano-transcription of colonic smooth muscle cells, Z. Yang, K. He, T. Wang, et al. Neurogastroenterology & Motility 2023; e14623 (https://onlinelibrary.wiley.com/doi/full/10.1111/nmo.14623)]. The above article, published online on June 6, 2023 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors, the Journal Editor in Chief, Maura Corsetti, and John Wiley & Sons Ltd. The retraction has been agreed due to unat[1]tributed overlap between this article and the abstract published in Gastroenterology: Li F, Sarna SK and Shi XP. Roles of PKCs and PKD in Mechanotranscription in Colonic Smooth Muscle Cells: Inhibition of Mechanotranscription as a Potential Treatment for Motility Dysfunction in Obstructive Disorders. In: 2012 Digestive Disease Week Abstract Supplement; May 19-22, San Diego, CA. Abstract 120 (https://www.gastrojournal.org/article/S0016-5085(12)60115-2/pdf).
Collapse
|
6
|
Goyal RK, Rattan S. Role of mechanoregulation in mast cell-mediated immune inflammation of the smooth muscle in the pathophysiology of esophageal motility disorders. Am J Physiol Gastrointest Liver Physiol 2024; 326:G398-G410. [PMID: 38290993 PMCID: PMC11213482 DOI: 10.1152/ajpgi.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Major esophageal disorders involve obstructive transport of bolus to the stomach, causing symptoms of dysphagia and impaired clearing of the refluxed gastric contents. These may occur due to mechanical constriction of the esophageal lumen or loss of relaxation associated with deglutitive inhibition, as in achalasia-like disorders. Recently, immune inflammation has been identified as an important cause of esophageal strictures and the loss of inhibitory neurotransmission. These disorders are also associated with smooth muscle hypertrophy and hypercontractility, whose cause is unknown. This review investigated immune inflammation in the causation of smooth muscle changes in obstructive esophageal bolus transport. Findings suggest that smooth muscle hypertrophy occurs above the obstruction and is due to mechanical stress on the smooth muscles. The mechanostressed smooth muscles release cytokines and other molecules that may recruit and microlocalize mast cells to smooth muscle bundles, so that their products may have a close bidirectional effect on each other. Acting in a paracrine fashion, the inflammatory cytokines induce genetic and epigenetic changes in the smooth muscles, leading to smooth muscle hypercontractility, hypertrophy, and impaired relaxation. These changes may worsen difficulty in the esophageal transport. Immune processes differ in the first phase of obstructive bolus transport, and the second phase of muscle hypertrophy and hypercontractility. Moreover, changes in the type of mechanical stress may change immune response and effect on smooth muscles. Understanding immune signaling in causes of obstructive bolus transport, type of mechanical stress, and associated smooth muscle changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.NEW & NOTEWORTHY Esophageal disorders such as esophageal stricture or achalasia, and diffuse esophageal spasm are associated with smooth muscle hypertrophy and hypercontractility, above the obstruction, yet the cause of such changes is unknown. This review suggests that smooth muscle obstructive disorders may cause mechanical stress on smooth muscle, which then secretes chemicals that recruit, microlocalize, and activate mast cells to initiate immune inflammation, producing functional and structural changes in smooth muscles. Understanding the immune signaling in these changes may help pathophysiology-based prevention and targeted treatment of esophageal motility disorders.
Collapse
Affiliation(s)
- Raj K Goyal
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, United States
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, United States
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kummel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
7
|
Geesala R, Zhang K, Lin YM, Johnson JC, Cong Y, Cohn S, Shi XZ. Exclusive Enteral Nutrition Alleviates Th17-Mediated Inflammation via Eliminating Mechanical Stress-Induced Th17-Polarizing Cytokines in Crohn's-like Colitis. Inflamm Bowel Dis 2024; 30:429-440. [PMID: 37536273 PMCID: PMC10906353 DOI: 10.1093/ibd/izad158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIMS Exclusive enteral nutrition (EEN) with a liquid diet is the only established dietary treatment for Crohn's' disease (CD). However, the mechanism of action of EEN in CD is unclear. T helper 17 (Th17) immune response plays a critical role in CD. We hypothesized that EEN alleviates Th17 response by eliminating mechanical stress-induced expression of Th17-polarizing cytokines. METHODS A rat model of Crohn's-like colitis was established by intracolonic instillation of TNBS (65 mg/kg in 250 µL of 40% ethanol). Control rats were treated with saline. We characterized immunophenotypes and molecular changes of the colon in control and colitis rats with and without EEN treatment. Th17 differentiation was determined using coculture assays. RESULTS TNBS instillation induced transmural inflammation with stenosis in the inflammation site and a marked increase of Th17-polarizing cytokines interleukin (IL)-6 and osteopontin and the Th17 cell population in the mechanically distended preinflammation site (P-site). EEN treatment eliminated mechanical distention and the increase of IL-6, osteopontin, and Th17 response in the P-site. IL-6 and osteopontin expression was found mainly in the muscularis externa. Mechanical stretch of colonic smooth muscle cells in vitro induced a robust increase of IL-6 and osteopontin. When naïve T cells were cultured with conditioned media from the P-site tissue or stretched cells, Th17 differentiation was significantly increased. Inhibition of IL-6, but not deletion of osteopontin, blocked the increase of Th17 differentiation. CONCLUSIONS Mechanical stress induces Th17-polarizing cytokines in the colon. EEN attenuates Th17 immune response by eliminating mechanical stress-induced IL-6 in Crohn's-like colitis.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ke Zhang
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - You-Min Lin
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - John C Johnson
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Steven Cohn
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
8
|
Johnson JC, Geesala R, Zhang K, Lin YM, M’Koma AE, Shi XZ. Smooth muscle dysfunction in the pre-inflammation site in stenotic Crohn's-like colitis: implication of mechanical stress in bowel dysfunction in gut inflammation. Front Physiol 2023; 14:1215900. [PMID: 37520831 PMCID: PMC10375711 DOI: 10.3389/fphys.2023.1215900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Background and Aims: Gut smooth muscle dysfunctions contribute to symptoms such as abdominal cramping, diarrhea, and constipation in inflammatory bowel disease (IBD). The mechanisms for muscle dysfunctions are incompletely understood. We tested the hypothesis that mechanical stress plays a role in muscle dysfunction in a rat model of Crohn's-like colitis where inflammatory stenosis leads to mechanical distention in the pre-inflammation site. Methods: Crohn's-like colitis was induced by intracolonic instillation of TNBS (65 mg/kg) in Sprague-Dawley rats. Control rats were instilled with saline. The rats were fed with either regular solid food or exclusively liquid diet. Rats were euthanized by day 7. Results: When rats were fed with solid food, TNBS treatment induced localized transmural inflammation with stenosis in the instillation site and marked distention with no inflammation in the pre-inflammation site of the colon. Smooth muscle contractility was suppressed, and expression of cyclo-oxygenase-2 (COX-2) and production of prostaglandin E2 (PGE2) were increased not only in the inflammation site but also in the pre-inflammation site. Liquid diet treatment, mimicking exclusive enteral nutrition, completely released mechanical distention, eliminated COX-2 expression and PGE2 production, and improved smooth muscle contractility especially in the pre-inflammation site. When rats were administered with COX-2 inhibitor NS-398 (5 mg/kg, i. p. daily), smooth muscle contractility was restored in the pre-inflammation site and significantly improved in the inflammation site. Conclusion: Colonic smooth muscle contractility is significantly impaired in stenotic Crohn's-like colitis rats not only in the inflammation site, but in the distended pre-inflammation site. Mechanical stress-induced expression of COX-2 plays a critical role in smooth muscle dysfunction in the pre-inflammation site in Crohn's-like colitis rats.
Collapse
Affiliation(s)
- John C. Johnson
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
- John Sealy School of Medicine Class of 2025, University of Texas Medical Branch, Galveston, TX, United States
| | - Ramasatyaveni Geesala
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - You-Min Lin
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Amosy E. M’Koma
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Lin YM, Hegde S, Cong Y, Shi XZ. Mechanisms of lymphoid depletion in bowel obstruction. Front Physiol 2022; 13:1005088. [PMID: 36213246 PMCID: PMC9533077 DOI: 10.3389/fphys.2022.1005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022] Open
Abstract
Background and aims: Bowel obstruction (BO) causes not only gastrointestinal dysfunctions but also systemic responses such as sepsis, infections, and immune impairments. The mechanisms involved are not well understood. In this study, we tested the hypothesis that BO leads to lymphoid depletion in primary and peripheral lymphoid organs, which may contribute to systemic responses. We also sought to uncover mechanisms of lymphoid depletion in BO. Methods: Partial colon obstruction was induced with a band in the distal colon of Sprague-Dawley rats, and wild-type and osteopontin knockout (OPN-/-) mice. Obstruction was maintained for 7 days in rats and 4 days in mice. Thymus, bone marrow, spleen, and mesenteric lymph node (MLN) were taken for flow cytometry analysis. Results: The weight of thymus, spleen, and MLN was significantly decreased in BO rats, compared to sham. B and T lymphopoiesis in the bone marrow and thymus was suppressed, and numbers of lymphocytes, CD4+, and CD8+ T cells in the spleen and MLN were all decreased in BO. Depletion of gut microbiota blocked BO-associated lymphopenia in the MLN. Corticosterone antagonism partially attenuated BO-associated reduction of lymphocytes in the thymus and bone marrow. Plasma OPN levels and OPN expression in the distended colon were increased in BO. Deletion of the OPN gene did not affect splenic lymphopenia, but attenuated suppression of lymphopoiesis in the bone marrow and thymus in BO. Conclusions: BO suppresses lymphocyte generation and maintenance in lymphoid organs. Mechanical distention-induced OPN, corticosterone, and gut microbiota are involved in the immune phenotype in BO.
Collapse
Affiliation(s)
- You-Min Lin
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States,Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Shrilakshmi Hegde
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States,*Correspondence: Xuan-Zheng Shi,
| |
Collapse
|