1
|
Zhou S, Zheng L, Zheng T, Zhan H, Lin Q, Wei J, Huang Y. Shensu IV maintains the integrity of the glomerular filtration barrier and exerts renal protective effects by regulating endogenous hydrogen sulfide levels. Front Pharmacol 2024; 15:1447249. [PMID: 39720588 PMCID: PMC11667557 DOI: 10.3389/fphar.2024.1447249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Background Nephrotic syndrome has a significant impact on global health, often leading to cardiovascular disease and high mortality due to limited effective treatments. This study investigates the efficacy of Shensu IV in a puromycin aminonucleoside (PAN)-induced rat model of nephropathy. Methods Rat models and in vitro podocyte PAN nephropathy models were established with PAN and treated with Shensu IV. Renal function was evaluated by measuring urine output and protein content, while hydrogen sulfide (H2S) and oxidative stress markers were quantified in serum and podocyte lysates. We conducted histological examination on kidney tissues and analyzed molecular markers (CD2AP, nephrin, and PI3K/AKT pathway) using RT-qPCR and Western blot. Results Shensu IV significantly improved urine output and proteinuria, and attenuated glomerular damage, fibrosis, and mitochondrial swelling in PAN-treated rats. Mechanistically, Shensu IV enhanced endogenous H2S production, reducing oxidative stress and activating the PI3K/AKT pathway in vivo and in vitro. This facilitated the upregulation of the target genes CD2AP and nephrin, which are critical for maintaining glomerular integrity and improving renal function in PAN nephropathy models. Conclusion Shensu IV and NaHS confer renal protection primarily by modulating oxidative stress and restoring the integrity of the glomerular filtration barrier through mechanisms involving the enhancement of the PI3K/AKT pathway and modulation of H2S levels. These findings suggest a promising therapeutic potential for these metabolites in the treatment of nephrotic syndrome.
Collapse
Affiliation(s)
- Shuhui Zhou
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Liping Zheng
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Tingxuan Zheng
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Haiyan Zhan
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiuyuan Lin
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiaoao Wei
- Department of Nephrology, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yong Huang
- Department of Nephrology, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Medicine Formula-Pattern Research Center of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
2
|
Liu J, Qu L, Wang F, Mei Z, Wu X, Wang B, Liu H, He L. A study on the anti-senescent effects of flavones derived from Prinsepia utilis Royle seed residue. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118021. [PMID: 38492793 DOI: 10.1016/j.jep.2024.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-β, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-β, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-β signalling pathways to exert its influence. CONCLUSION The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.
Collapse
Affiliation(s)
- Junxi Liu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Liping Qu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Feifei Wang
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Zaoju Mei
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Xinlang Wu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Bo Wang
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Haiyang Liu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China
| | - Li He
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China.
| |
Collapse
|
3
|
Xu M, Zhang W, Xu S, Niu X, Wang L, Wang X, Hao H. Elucidation of the mechanism of Zhenbao pills for the treatment of spinal cord injury by network pharmacology and molecular docking: A review. Medicine (Baltimore) 2024; 103:e36970. [PMID: 38363936 PMCID: PMC10869052 DOI: 10.1097/md.0000000000036970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024] Open
Abstract
To explore the mechanism of the Zhenbao pill (ZBP) in treating spinal cord injury (SCI). The TCMSP Database, HERB Database and literature search were used to screen the effective ingredients and targets of ZBP; SCI-related genes were searched in GeneCards, OMIM, PharmGkb, TTD and DrugBank databases; the potential targets of ZBP for treating SCI were predicted and Venn diagrams were drawn, and the "herb-ingredient-target" network was constructed by Cytoscape software. The PPI network was constructed by STRING software, and the core targets were screened by cytoNCA plug-in; GO enrichment and KEGG pathway analysis were performed on the predicted targets using the DAVID Platform, and visualized with the Microbiology Network Platform. The molecular docking between the key ingredients and the core target was carried out by AutoDockVina software. 391 active ingredients and 836 action targets were obtained from ZBP and there are 1557 SCI related genes in 5 disease databases. The top 5 active ingredients were Quercetin, Camptothecin, Kaempferol, Ethyl iso-allocholate, and Ethyl linoleate, and 5 core genes were SRC, CTNNB1, TP53, AKT1, and STAT3. GO enrichment analysis showed that the core targets were involved in 1206 biological processes, 120 cellular components and 160 molecular functions; KEGG enrichment analysis showed that the core targets involved 183 pathways, including PI3K-Akt signaling pathway and other signaling pathways. Molecular docking indicated that CTNNB1, SRC, TP53, AKT1 and STAT3 showed good binding ability with the active ingredients quercetin, kaempferol and ethyl isobutyric acid. ZBP improves SCI through multi-components, multi-targets and multi-pathways.
Collapse
Affiliation(s)
- Mengru Xu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
- Periodical Press of Fujian Journal of TCM, Fujian University of traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Wenwen Zhang
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Sheng Xu
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Xiaochen Niu
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Wang
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaohui Wang
- Basic Medical Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Haihu Hao
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| |
Collapse
|
4
|
Wang Y, Chen D, Xie H, Zhou S, Jia M, He X, Guo F, Lai Y, Tang XX. LncRNA GAS5 suppresses TGF-β1-induced transformation of pulmonary pericytes into myofibroblasts by recruiting KDM5B and promoting H3K4me2/3 demethylation of the PDGFRα/β promoter. Mol Med 2023; 29:32. [PMID: 36918759 PMCID: PMC10015786 DOI: 10.1186/s10020-023-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a condition that may cause persistent pulmonary damage. The transformation of pericytes into myofibroblasts has been recognized as a key player during IPF progression. This study aimed to investigate the functions of lncRNA growth arrest-specific transcript 5 (GAS5) in myofibroblast transformation during IPF progression. METHODS We created a mouse model of pulmonary fibrosis (PF) via intratracheal administration of bleomycin. Pericytes were challenged with exogenous transforming growth factor-β1 (TGF-β1). To determine the expression of target molecules, we employed quantitative reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemical and immunofluorescence staining. The pathological changes in the lungs were evaluated via H&E and Masson staining. Furthermore, the subcellular distribution of GAS5 was examined using FISH. Dual-luciferase reporter assay, ChIP, RNA pull-down, and RIP experiments were conducted to determine the molecular interaction. RESULTS GAS5 expression decreased whereas PDGFRα/β expression increased in the lungs of IPF patients and mice with bleomycin-induced PF. The in vitro overexpression of GAS5 or silencing of PDGFRα/β inhibited the TGF-β1-induced differentiation of pericytes to myofibroblasts, as evidenced by the upregulation of pericyte markers NG2 and desmin as well as downregulation of myofibroblast markers α-SMA and collagen I. Further mechanistic analysis revealed that GAS5 recruited KDM5B to promote H3K4me2/3 demethylation, thereby suppressing PDGFRα/β expression. In addition, KDM5B overexpression inhibited pericyte-myofibroblast transformation and counteracted the promotional effect of GAS5 knockdown on pericyte-myofibroblast transformation. Lung fibrosis in mice was attenuated by GAS5 overexpression but promoted by GAS5 deficiency. CONCLUSION GAS5 represses pericyte-myofibroblast transformation by inhibiting PDGFRα/β expression via KDM5B-mediated H3K4me2/3 demethylation in IPF, identifying GAS5 as an intervention target for IPF.
Collapse
Affiliation(s)
- Yichun Wang
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China.
| | - Diyu Chen
- CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Han Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shuhua Zhou
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mingwang Jia
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Xiaobo He
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Feifei Guo
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Yihuan Lai
- Department of Critical Care Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, 510150, Guangdong Province, People's Republic of China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, No. 195 Dongfeng West Road, Yuexiu District, Guangzhou, 510150, Guangdong Province, People's Republic of China.
| |
Collapse
|
5
|
Chen G, Li J, Liu H, Zhou H, Liu M, Liang D, Meng Z, Gan H, Wu Z, Zhu X, Han P, Liu T, Gu R, Liu S, Dou G. Cepharanthine Ameliorates Pulmonary Fibrosis by Inhibiting the NF-κB/NLRP3 Pathway, Fibroblast-to-Myofibroblast Transition and Inflammation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020753. [PMID: 36677811 PMCID: PMC9864377 DOI: 10.3390/molecules28020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Pulmonary fibrosis (PF) is one of the sequelae of Corona Virus Disease 2019 (COVID-19), and currently, lung transplantation is the only viable treatment option. Hence, other effective treatments are urgently required. We investigated the therapeutic effects of an approved botanical drug, cepharanthine (CEP), in a cell culture model of transforming growth factor-β1 (TGF-β1) and bleomycin (BLM)-induced pulmonary fibrosis rat models both in vitro and in vivo. In this study, CEP and pirfenidone (PFD) suppressed BLM-induced lung tissue inflammation, proliferation of blue collagen fibers, and damage to lung structures in vivo. Furthermore, we also found increased collagen deposition marked by α-smooth muscle actin (α-SMA) and Collagen Type I Alpha 1 (COL1A1), which was significantly alleviated by the addition of PFD and CEP. Moreover, we elucidated the underlying mechanism of CEP against PF in vitro. Various assays confirmed that CEP reduced the viability and migration and promoted apoptosis of myofibroblasts. The expression levels of myofibroblast markers, including COL1A1, vimentin, α-SMA, and Matrix Metallopeptidase 2 (MMP2), were also suppressed by CEP. Simultaneously, CEP significantly suppressed the elevated Phospho-NF-κB p65 (p-p65)/NF-κB p65 (p65) ratio, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels, and elevated inhibitor of NF-κB Alpha (IκBα) degradation and reversed the progression of PF. Hence, our study demonstrated that CEP prevented myofibroblast activation and treated BLM-induced pulmonary fibrosis in a dose-dependent manner by regulating nuclear factor kappa-B (NF-κB)/ NLRP3 signaling, thereby suggesting that CEP has potential clinical application in pulmonary fibrosis in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ruolan Gu
- Correspondence: (R.G.); (S.L.); (G.D.)
| | | | | |
Collapse
|