1
|
Zhou C, Peng B, Zhang M, Yang Y, Yi Z, Wu Y. Ganjiang Huangqin Huanglian Renshen Decoction protects against ulcerative colitis by modulating inflammation, oxidative stress, and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156172. [PMID: 39471735 DOI: 10.1016/j.phymed.2024.156172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a disease that is difficult to treat and has been associated with high rates of recurrence. Moreover, the current medications for UC induce serious side effects following prolonged use. Ganjiang Huangqin Huanglian Renshen Decoction (GJHQHLRSD), has been traditionally used to treat UC. However, its protective mechanisms have not been fully studied. PURPOSE In this study the mechanisms by which GJHQHLRSD treats UC was investigated. METHODS The GJHQHLRSD and GJHQHLRSD drug-containing serum (GJHQHLRSD-DS) were characterized using LC-MS/MS. The therapeutic effect of GJHQHLRSD on dextran sodium sulfate (DSS)-induced UC was explored by assessing various parameters including intestinal flora 16S rRNA, intestinal barrier function, oxidative stress (OS) response, inflammatory cytokines, colonic histopathological injury, colon length, disease activity index (DAI) and body weight. RESULTS Treatment with GJHQHLRSD increased body weight, ameliorated colon length shortening and edema, reduced the DAI score, improved the pathological injury, down-regulated the levels of IL-1β, IL-6, IL-8, TNF-α, LPS, LDH, TLR4, and NLRP3, and up-regulated the ZO-1 and Occludin levels in UC mice. It also decreased intestinal oxidative stress in UC mice and improved mitogenic activity by modulating mitochondrial ultrastructure as well as the expression level of PINK1, LC3-II/Ⅰ, Beclin-1, p62, and Parkin proteins. In addition, we found that the effects of GJHQHLRSD on UC mice were inhibited by 3-MA.GJHQHLRSD treatment reduced the imbalance of intestinal flora in UC mice, by regulating the inflammation and oxidative stress. CONCLUSION These findings suggested that GJHQHLRSD effectively attenuated inflammatory responses, inhibited the TLR4/NF-κB/NLRP3 signalling, oxidative stress, and modulated the gut microbiota, and alleviated the DSS-induced UC symptoms, making it a promising and innovative therapeutic option for the treatment of UC.
Collapse
Affiliation(s)
- Ce Zhou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Bo Peng
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Mingxing Zhang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yang Yang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Zelin Yi
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yinghua Wu
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| |
Collapse
|
2
|
Ma S, Wang Q, Wang H, Yang Q, Li C, Yu Y, Xie Y, Shi X, Wang S. Investigation of the mechanism of Bark of Ailanthus altissima in the treatment of ulcerative colitis based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118916. [PMID: 39393560 DOI: 10.1016/j.jep.2024.118916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Ailanthus altissima (Mill.) Swingle (BAA), a widely used Chinese medicinal herb in traditional remedies for bowel disorders, has yet to be explored in the context of ulcerative colitis (UC), and its therapeutic mechanisms remain unclear. AIM OF THE STUDY This study integrated network pharmacology and experimental validation to investigate the effects and underlying mechanisms of BAA in treating UC. MATERIALS AND METHODS First, UPLC-MS/MS analysis was employed to identify the chemical constituents of BAA. Network pharmacology was then applied to analyze the potential mechanisms of BAA based on these identified compounds. Lastly, a dextran sulfate sodium (DSS)-induced UC mouse model was utilized to assess BAA's therapeutic efficacy, with Western blotting performed to examine changes in protein expression within the key pathway influenced by BAA. RESULTS UPLC-MS/MS and SwissADME analysis identified 223 active compounds in BAA. Network pharmacology suggested that the PI3K/AKT pathway may serve as a primary mechanism by which BAA exerts its anti-UC effects. In the DSS-induced UC mouse model, BAA significantly mitigated colonic injury, reduced DAI scores, and promoted weight recovery in mice. Additionally, BAA downregulated pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, thereby suppressing inflammatory responses in the colon. Western blot analysis further demonstrated that BAA primarily inhibited the PI3K/AKT pathway in UC mouse colon tissue. CONCLUSION This study highlights that BAA effectively reduces colonic inflammation and preserves intestinal mucosal integrity, likely through the inhibition of PI3K/AKT pathway activity, positioning it as a potential treatment for UC.
Collapse
Affiliation(s)
- Shanbo Ma
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Qianru Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Haiqin Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Qian Yang
- Department of Chinese Materia Medica and Natural Medicines, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Chengwen Li
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Yuanyuan Yu
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Yanhua Xie
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| | - Siwang Wang
- The College of Life Sciences, Northwest University, 710069, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Wang ZZ, Wang HL, Xiong W, Du J, Liu R. Traditional Chinese Medicine Erhuang Suppository for Treatment of Persistent High-risk Human Papillomavirus Infection and Its Impact on Transcriptome of Uterine Cervix. Curr Med Sci 2024; 44:841-853. [PMID: 39039373 DOI: 10.1007/s11596-024-2898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE High-risk human papillomavirus (HR-HPV) infection is the chief cause of cervical intraepithelial neoplasia (CIN) and cervical carcinoma. The Erhuang suppository (EHS) is a traditional Chinese medicine (TCM) prepared from realgar (As2S2), Coptidis rhizoma, alumen, and borneolum syntheticum and has been used for antiviral and antitumor purposes. However, whether EHS can efficiently alleviate HR-HPV infection remains unclear. This study was conducted to evaluate the efficacy of EHS for the treatment of persistent HR-HPV infection in the uterine cervix. METHODS In this study, we evaluated the therapeutic efficacy of EHS in a randomized controlled clinical trial with a 3-month follow-up. Totally, 70 patients with persistent HR-HPV infection were randomly assigned to receive intravaginal administration of EHS or placebo. HPV DNA, ThinPrep cytologic test (TCT), colposcopy, and safety evaluation were carried out after treatment. Microarray analysis was performed to compare transcriptome profiles before and after EHS treatment. A K14-HPV16 mouse model was generated to confirm the efficiency of EHS. RESULTS After 3 months, 74.3% (26/35) of the patients in the treatment group were HPV negative, compared to 6.9% (2/29) in the placebo group. High-throughput microarrays revealed distinct transcriptome profiles after treatment. The differentially expressed genes were significantly enriched in complement activation, immune response, and apoptotic processes. The K14-HPV16 mouse model also validated the remarkable efficacy of EHS. CONCLUSION This study demonstrated that EHS is effective against HR-HPV infection and cervical lesions. Additionally, no obvious systemic toxicity was observed in patients during the trial. The superior efficacy and safety of EHS demonstrated its considerable value as a potential cost-effective drug for the treatment of HPV infection and HPV-related cervical diseases.
Collapse
Affiliation(s)
- Zi-Zhuo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Li Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Xiong
- Department of Pharmacology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Juan Du
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Chen Y, Zhang M, He Y, Li S, Feng S, Liu Z, Zhang N, Liu M, Wang Q. Canadine Platinum(IV) Complexes Targeting Epithelial-Mesenchymal Transition as Antiproliferative and Antimetastatic Agents. J Med Chem 2024. [PMID: 39069665 DOI: 10.1021/acs.jmedchem.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process for cancer progression, which is crucial in inhibiting the immunity in tumors and further boosting tumor metastasis. The suppression of EMT represents a promising strategy for inhibiting metastatic tumors. Herein, a series of new canadine platinum(IV) conjugates with potent antiproliferative and antimetastatic activities were developed, which activated by suppressing EMT and provoking immune response in tumors besides causing DNA injury. The complexes could covalently conjugate to DNA and induce mitochondria-mediated apoptosis via Bcl-2/Bax/caspase3 signaling. The EMT process was remarkably inhibited by suppressing the Wnt/β-catenin pathway, reversing the inflammatory tumor microenvironment, and inhibiting the HIF-1α pathway, which further resulted in the inhibited angiogenesis in tumors. Moreover, the antitumor immunity was elevated by blocking immune checkpoints PD-L1 and CD47 accompanied by the improvement of CD3+ and CD8+ T lymphocytes and the macrophage polarization from M2- toward M1-type simultaneously in tumors.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Yanqin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China
| |
Collapse
|
5
|
Lv J, Fu Y, Ga Y, Han C, Fan Y, Wei Y, Hao S, Hao Z. Lianweng Granules Alleviate Intestinal Barrier Damage via the IL-6/STAT3/PI3K/AKT Signaling Pathway with Dampness-Heat Syndrome Diarrhea. Antioxidants (Basel) 2024; 13:661. [PMID: 38929100 PMCID: PMC11201218 DOI: 10.3390/antiox13060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Dampness-heat syndrome diarrhea (DHSD) is a common clinical disease with a high prevalence but still has no satisfactory therapeutic medicine, so the search for a safe and effective drug candidate is ongoing. This study aims to explore the efficacy and mechanisms of Lianweng granules (LWG) in the treatment of DHSD and to identify the blood transport components of LWG. We assessed the efficacy of LWG in DHSD by various in vivo metrics such as body weight, disease activity index (DAI), histopathologic examination, intestinal barrier function, levels of inflammatory, apoptotic biomarkers, and oxidative stress. We identified the blood components of LWG using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS), and the resolved key components were used to explore the relevant targets. We next predicted the potential mechanisms of LWG in treating DHSD using network pharmacology and molecular docking based on the relevant targets. Finally, the mechanisms were validated in vivo using RT-qPCR, Western blotting, ELISA, and immunofluorescence and evaluated in vitro using Cell Counting Kit-8 (CCK-8), small interfering RNA, cellular enthusiasm transfer assay (CETSA), and drug affinity response target stability (DARTS). Ninety-one pharmacodynamic components of LWG enter the bloodstream and exert possible therapeutic effects. In vivo, LWG treatment improved body weight, reduced colonic injury and DAI scores, lowered inflammation, oxidative stress, and apoptosis markers, and partially restored intestinal barrier function in DHSD mice. Guided by network pharmacology and molecular docking, it is suggested that LWG may exert therapeutic effects by inhibiting IL-6/STAT3/PI3K/AKT signaling. LWG significantly decreased the expression of IL-6, p-STAT3, p-PI3K, p-AKT, and other proteins. These findings were supported by in vitro experiments, where CETSA, DARTS, and siRNA evidenced LWG's targeting of STAT3. LWG targeted STAT3 to inhibit inflammation, oxidative stress, and apoptosis in the colon, thereby restoring the intestinal barrier function to some extent and exerting a therapeutic effect on DHSD.
Collapse
Affiliation(s)
- Jianyu Lv
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuchen Fu
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yu Ga
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Chao Han
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yimeng Fan
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Yuanyuan Wei
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| | - Sijia Hao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot 010059, China;
| | - Zhihui Hao
- Innovation Centre of Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (J.L.); (Y.F.); (Y.G.); (C.H.); (Y.F.); (Y.W.)
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- National Center of Technology Innovation for Medicinal Function of Food, National Food and Strategic Reserves Administration, Beijing 100193, China
| |
Collapse
|
6
|
Zhou Y, Gu J, Li J, Zhang H, Wang M, Li Y, Wang T, Wang J, Shi R. Obacunone, a Promising Phytochemical Triterpenoid: Research Progress on Its Pharmacological Activity and Mechanism. Molecules 2024; 29:1791. [PMID: 38675611 PMCID: PMC11054759 DOI: 10.3390/molecules29081791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Obacunone, a natural triterpenoid, is an active component of the herbs Dictamnus dasycarpus Turcz. and Phellodendron amurense Rupr, and an indicator of the herbs' quality. Owing to its multiple health benefits, several studies have investigated the multi-targeting potential action mechanisms of obacunone. To summarize recent developments on the pharmacological actions of obacunone and focus on the underlying molecular mechanisms and signaling networks, we searched PubMed, Europe PMC, Wiley Online Library, Web of Science, Google Scholar, Wanfang Medical Network, and China National Knowledge Infrastructure for articles published prior to March 2024. Existing research indicates obacunone has great potential to become a promising therapeutic option against tumors, fibrotic diseases, bone and cholesterol metabolism diseases, and infections of pathogenic microorganisms, among others. The paper contributes to providing up-to-date references for further research and clinical applications of obacunone.
Collapse
Affiliation(s)
- Yuyang Zhou
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA
| | - Jifeng Gu
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China;
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jiahui Li
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Huishan Zhang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| | - Mei Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| | - Yuanyuan Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (T.W.)
| | - Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (T.W.)
| | - Jiajie Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Rong Shi
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| |
Collapse
|
7
|
Ni S, Liu Y, Zhong J, Shen Y. Identification and immunoinfiltration analysis of key genes in ulcerative colitis using WGCNA. PeerJ 2024; 12:e16921. [PMID: 38426148 PMCID: PMC10903335 DOI: 10.7717/peerj.16921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease characterized by an unclear pathogenesis. This study aims to screen out key genes related to UC pathogenesis. Methods Bioinformatics analysis was conducted for screening key genes linked to UC pathogenesis, and the expression of the screened key genes was verified by establishing a UC mouse model. Results Through bioinformatics analysis, five key genes were obtained. Subsequent infiltration analysis revealed seven significantly different immune cell types between the UC and general samples. Additionally, animal experiment results illustrated markedly decreased body weight, visible colonic shortening and damage, along with a significant increase in the DAI score of the DSS-induced mice in the UC group in comparison with the NC group. In addition, H&E staining results demonstrated histological changes including marked inflammatory cell infiltration, loss of crypts, and epithelial destruction in the colon mucosa epithelium. qRT-PCR analysis indicated a down-regulation of ABCG2 and an up-regulation of IL1RN, REG4, SERPINB5 and TRIM29 in the UC mouse model. Notably, this observed trend showed a significant dependence on the concentration of DSS, with the mouse model of UC induced by 7% DSS demonstrating a more severe disease state compared to that induced by 5% DSS. Conclusion ABCG2, IL1RN, REG4, SERPINB5 and TRIM29 were screened out as key genes related to UC by bioinformatics analysis. The expression of ABCG2 was down-regulated, and that of IL1RN, REG4, SERPINB5 and TRIM29 were up-regulated in UC mice as revealed by animal experiments.
Collapse
Affiliation(s)
- Siyi Ni
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingchao Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jihong Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Wang X, Liang F, Dai Z, Feng X, Qiu F. Combination of Coptis chinensis polysaccharides and berberine ameliorates ulcerative colitis by regulating gut microbiota and activating AhR/IL-22 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117050. [PMID: 37595814 DOI: 10.1016/j.jep.2023.117050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch. polysaccharide (CCP) and berberine (BBR) are the primary active components of Coptis chinensis Franch. BBR is clinically used for the treatment of intestinal infections and gastroenteritis. CCP was also reported to be effective for the treatment of ulcerative colitis (UC). However, whether CCP combined with BBR shows a synergistic effect on the treatment of UC has not been elucidated yet. AIM OF THE STUDY This study aspired to investigate the therapeutic effect and the possible mechanisms of the combination of CCP with BBR on chronic UC. MATERIALS AND METHODS By periodic administration of dextran sulfate sodium (DSS) to C57BL/6J mice, chronic UC model mice were induced. CCP (15 mg/kg), BBR (50 mg/kg), and CCP.BBR (a combination of 15 mg/kg CCP and 50 mg/kg BBR) were orally administered to the model mice for 10 days. Changes of body weight, disease activity index, colon length, organ index, histopathological damage, expression of cytokines, and intestinal tight junction proteins were determined to evaluate the therapeutic effects. 16S rDNA sequencing, targeted short-chain fatty acid metabolomics, qPCR, and western blotting were performed to elucidate the potential mechanism. RESULTS Both CCP and BBR alleviated UC via improving colon pathological damage, inhibiting the inflammatory response, and regulating the expression of intestinal tight junction proteins. The combination of CCP with BBR showed a more substantial therapeutic effect via increasing the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, thereby increasing the contents of SCFAs in vivo and activating AhR/IL-22 pathway. CONCLUSION The combination of CCP and BBR showed a synergistic effect on the therapy of chronic UC and the mechanism was associated with regulating gut microbiota and activating AhR/IL-22 pathway.
Collapse
Affiliation(s)
- Xuemei Wang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Fengni Liang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zhaoyuan Dai
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Wen Y, Wang X, Si K, Xu L, Huang S, Zhan Y. Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking. Curr Comput Aided Drug Des 2024; 20:534-550. [PMID: 37190808 DOI: 10.2174/1573409919666230515103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/24/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) and irritable bowel syndrome (IBS) are common intestinal diseases. According to the clinical experience and curative effect, the authors formulated Kuiyu Pingchang Decoction (KYPCD) comprised of Paeoniae radix alba, Aurantii Fructus, Herba euphorbiae humifusae, Lasiosphaera seu Calvatia, Angelicae sinensis radix, Panax ginseng C.A. Mey., Platycodon grandiforus and Allium azureum Ledeb. OBJECTIVE The aim of the present study was to explore the mechanisms of KYPCD in the treatment of UC and IBS following the Traditional Chinese Medicine (TCM) theory of "Treating different diseases with the same treatment". METHODS The chemical ingredients and targets of KYPCD were obtained using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP). The targets of UC and IBS were extracted using the DisGeNET, GeneCards, DrugBANK, OMIM and TTD databases. The "TCM-component-target" network and the "TCM-shared target-disease" network were imaged using Cytoscape software. The protein-protein interaction (PPI) network was built using the STRING database. The DAVID platform was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Autodock Tools software, the main active components of KYPCD were molecularly docked with their targets and visualized using PyMOL. RESULTS A total of 46 active ingredients of KYPCD corresponding to 243 potential targets, 1,565 targets of UC and 1,062 targets of IBS, and 70 targets among active ingredients and two diseases were screened. Core targets in the PPI network included IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA. GO and KEGG enrichment analysis demonstrated 563 biological processes, 48 cellular components, 82 molecular functions and 144 signaling pathways. KEGG enrichment results revealed that the regulated pathways were mainly related to the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways. The results of molecular docking analysis indicated that the core active ingredients of KYPCD had optimal binding activity to their corresponding targets. CONCLUSION KYPCD may use IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA as the key targets to achieve the treatment of UC and IBS through the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways.
Collapse
Affiliation(s)
- Yong Wen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Anorectal Integration of Traditional Chinese and Western Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoxiang Wang
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ke Si
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
| | - Ling Xu
- Anorectal Department, Luzhou Hospital of Traditional Chinese Medicine, Luzhou, 646000, China
| | - Shuoyang Huang
- Gastrointestinal Surgery Department, Chengdu Second People's Hospital, Chengdu, 610017, China
| | - Yu Zhan
- Gastroenterology Department, Chengdu First People's Hospital, Chengdu, 610000, China
- Anorectal Department, Chengdu First People's Hospital, Chengdu, 610000, China
- Anorectal Department, Affiliated Hospital of Integrative Chinese Medicine and Western Medicine of Chengdu University of TCM, Chengdu 610041, China
| |
Collapse
|
10
|
Liu HB, Yang M, Li W, Luo T, Wu Y, Huang XY, Zhang YL, Liu T, Luo Y. Dispelling Dampness, Relieving Turbidity and Dredging Collaterals Decoction, Attenuates Potassium Oxonate-Induced Hyperuricemia in Rat Models. Drug Des Devel Ther 2023; 17:2287-2301. [PMID: 37551408 PMCID: PMC10404409 DOI: 10.2147/dddt.s419130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Purpose Dispelling dampness, relieving turbidity and dredging collaterals decoction (DED), is a traditional Chinese medicine used in the treatment of hyperuricemia. We aimed to explore the effect and mechanism of DED in the treatment of hyperuricemia. Methods The effects of DED (9.48, 4.74, and 2.37 g/kg/d) on potassium oxonate (750 mg/kg/d)-induced hyperuricemia in rats were evaluated by serum uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), and renal pathological changes. Network pharmacology was used to identify the effective components and targets of DED, and the key targets and signaling pathways for its effects on hyperuricemia were screened. Molecular docking was used to predict the action of DED. H&E, immunohistochemistry, WB, and PCR were used to validate the network pharmacology results. Results DED can effectively alleviate hyperuricemia, inhibit UA, CRE, BUN, and xanthine oxidase (XOD) activity, and reduce renal inflammatory cell infiltration and glomerular atrophy. The experiment identified 27 potential targets of DED for hyperuricemia, involving 9 components: wogonin, stigmasterol 3-O-beta-D-glucopyranoside, 3β-acetoxyatractylone, beta-sitosterol, stigmasterol, diosgenin, naringenin, astilbin, and quercetin. DED can relieve hyperuricemia mainly by inhibiting RAGE, HMGB1, IL17R, and phospho-TAK1, and by regulating the AGE-RAGE and IL-17 signaling pathways. Conclusion DED can alleviate hyperuricemia by inhibiting XOD activity and suppressing renal cell apoptosis and inflammation via the AGE-RAGE signaling pathway and IL-17 signaling pathway. This study provides a theoretical basis for the clinical application of DED.
Collapse
Affiliation(s)
- Hai-bo Liu
- Department of Biomedical Engineer, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Min Yang
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Wan Li
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Ting Luo
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Yang Wu
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Xiang-yu Huang
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Yao-lei Zhang
- Basic Medical Laboratory, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Tao Liu
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Yong Luo
- Department of Traditional Chinese Medicine, General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
11
|
Cheng W, Wang X, Wu Y, Li W, Fu C, Zou L, Zhang J. Huanglian-Houpo extract attenuates DSS-induced UC mice by protecting intestinal mucosal barrier and regulating macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116181. [PMID: 36738944 DOI: 10.1016/j.jep.2023.116181] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huanglian-Houpo Decoction (HLHP), a classical prescription, has been used to treat gastrointestinal diseases for hundreds of years in TCM. However, the effective constituents and underlying mechanisms of HLHP in the treatment of ulcerative colitis (UC) have not been fully investigated. AIM OF THE STUDY This study aimed to reveal the potential anti-UC mechanisms of 50% ethanol extraction of HL and HP (EHLHP), combining transcriptomes and network pharmacology, as well as the animal experiment verification. METHODS Primarily, we identified the chemical composition of EHLHP via UPLC-QE-MS analysis. A visualization network with components-targets-pathways on UC treatment were constructed using network pharmacology. And then, the transcriptomics sequencing method was applied to screen out the differentially expressed genes (DEGs) of EHLHP in the treatment of UC. The key targets and pathways of EHLHP were selected by the combination of the network pharmacology and transcriptomics results. Ultimately, the potential mechanisms of EHLHP on DSS-induced UC mice were verified. RESULTS A total of 34 components of EHLHP were identified by UPLC-QE-MS analysis. Combined with the analysis of network pharmacology and transcriptomics, there were 262 DEGs between the normal group and the model group, and 151 DEGs between the model group and the EHLHP group. At the same time, there are 79 interaction paths, such as PI3K-Akt signaling pathway, MAPK signaling pathway, etc. These results indicated that the anti-UC mechanisms would be involved in calcium signaling pathway, inflammatory signaling pathway (JAK-STAT, TNF-α, cGMP-PKG) and immune regulation (IL-17, B cell receptor). After 160 mg/kg and 320 mg/kg EHLHP were given to DSS induced UC mice, these typical symptoms could be significantly alleviated, such as the decrease of DAI value and inflammation level. The IHC staining results of ZO-1, Occludin and Claudin-1 suggested that the intestinal barrier of UC mice was enhanced by EHLHP. The expression of macrophages and immune cells in F4/80+, CD11c+, Gr-1+, NK1.1+ by FCM determination indicated that EHLHP could suppress UC by immunosuppression and macrophage polarization M1 to M2. CONCLUSION The potential mechanisms of HLHP extract on DSS-induced UC mice were revealed, by the prediction of integrated analysis of transcriptomes and network pharmacology, and subsequently animal test verification. It would provide a viable strategy to elucidate the mechanisms of TCM classical formula.
Collapse
Affiliation(s)
- Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- School of Food and Biological Engineering Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|