1
|
Jin Q, Li Q, Yang L, Ma F, Mao H, Wang Y, Liu T, Peng L, Li P, Zhan Y. Yiqi Qingre Gao alleviates renal fibrosis in UUO mice via PI3K/AKT pathway. Front Pharmacol 2025; 16:1538061. [PMID: 40196370 PMCID: PMC11973907 DOI: 10.3389/fphar.2025.1538061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction: Renal fibrosis is an endpoint event of various progressive chronic kidney diseases (CKD), but there are no effective antifibrotic treatments. Yiqi Qingre Gao (YQQRG) has shown potential in alleviating CKD, although its exact mechanism of action remains uncertain. This study aims to evaluate the impact of YQQRG on renal fibrosis and to explore the molecular pathways involved. Methods: The study employed a unilateral ureteral obstruction (UUO) mouse model, followed by a 2-week course of YQQRG treatment. Renal function was assessed through measurements of serum creatinine (SCr) and blood urea nitrogen (BUN). Kidneys were collected for histological and molecular biology analysis. To identify the detailed mechanisms, network pharmacology, RNA sequencing (RNA-Seq), transforming growth factor-beta1 (TGF-β1)-stimulated human renal proximal tubular epithelial (HK-2) cells, and molecular docking were used. Results: YQQRG treatment significantly improved renal function, pathological damage, and renal fibrosis in UUO mice. Ten blood-entering components and 403 potential targets of YQQRG were identified by liquid chromatography-mass spectrometry (LC-MS) and network pharmacology. 20,107 targets of renal fibrosis were revealed by RNA-Seq of kidneys from the control and UUO groups. The results of the KEGG pathway enrichment analysis of YQQRG and renal fibrosis were combined, which showed that YQQRG's renoprotective effects were strongly associated with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Experimental validation further confirmed that YQQRG suppressed the PI3K/AKT pathway in the renal tissues of UUO mice; the addition of the PI3K/AKT agonist reversed the antifibrotic effects of YQQRG in TGF-β1-stimulated HK-2 cells. Furthermore, molecular docking indicated that YQQRG's primary active components exhibited a strong binding affinity to critical targets. Discussion: This study initially demonstrated that YQQRG improved renal function and kidney injury in UUO mice by revealing its antifibrotic mechanism, and it operates through the inhibition of the PI3K/AKT pathway, which highlights YQQRG as a potential therapeutic option for treating CKD.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Tuoheti K, Bai X, Yang L, Wang X, Cao Y, Yisha Z, Guo L, Zhan S, Wu Z, Liu T. Forsythiaside A suppresses renal fibrosis and partial epithelial-mesenchymal transition by targeting THBS1 through the PI3K/AKT signaling pathway. Int Immunopharmacol 2024; 129:111650. [PMID: 38342062 DOI: 10.1016/j.intimp.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Renal fibrosis is a key feature of chronic kidney disease (CKD) progression, whereas no proven effective anti-fibrotic treatments. Forsythiaside A (FTA), derived from Forsythia suspense, has been found to possess nephroprotective properties. However, there is limited research on its anti-fibrotic effects, and its mechanism of action remains unknown. This study aimed to investigate the suppressive effects of FTA on renal fibrosis and explore the underlying mechanisms. In vitro, we established a HK2 cell model induced by transforming growth factor β1 (TGF-β1), and in vivo, we used a mice model induced by unilateral ureteral obstruction (UUO). CCK-8 assay, qRT-PCR, Western blotting, immunofluorescence, flow cytometry, histological staining, immunohistochemistry, TUNEL assay, RNA transcriptome sequencing, and molecular docking were performed. The results showed that FTA (40 μM or 80 μM) treatment improved cell viability and suppressed TGF-β1-induced fibrotic changes and partial epithelial-mesenchymal transition (EMT). Furthermore, FTA treatment reversed the activation of the PI3K/AKT signaling pathway, and THBS1 was identified as the target gene. We found that THBS1 knockdown suppressed the activation of the PI3K/AKT signaling pathway and reduced the fibrosis and partial EMT-related protein level. Conversely, THBS1 overexpression activated the PI3K/AKT signaling pathway and exacerbated renal fibrosis and partial EMT. In vivo, mice were administered FTA (30 or 60 mg/kg) for 2 weeks, and the results demonstrated that FTA administration significantly mitigated tubular injury, tubulointerstitial fibrosis, partial EMT, and apoptosis. In conclusion, FTA inhibited renal fibrosis and partial EMT by targeting THBS1 and inhibiting activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Kuerban Tuoheti
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaojie Bai
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijie Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolong Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanfei Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zuhaer Yisha
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linfa Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shanzhi Zhan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhonghua Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China; Hubei Province Key Laboratory of Urinary System Diseases, Wuhan, China.
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China; Hubei Province Key Laboratory of Urinary System Diseases, Wuhan, China.
| |
Collapse
|
3
|
Marková S, Lanier HC, Escalante MA, da Cruz MOR, Horníková M, Konczal M, Weider LJ, Searle JB, Kotlík P. Local adaptation and future climate vulnerability in a wild rodent. Nat Commun 2023; 14:7840. [PMID: 38030627 PMCID: PMC10686993 DOI: 10.1038/s41467-023-43383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus). We found that peripheral populations of bank vole in Britain are already at the extreme bounds of potential genetic adaptation and may require an influx of adaptive variation in order to respond. Analyses of adaptive loci suggest regional differences in climate variables select for variants that influence patterns of population adaptive resilience, including genes associated with antioxidant defense, and support a pattern of thermal/hypoxic cross-adaptation. Our findings indicate that understanding potential shifts in genomic composition in response to climate change may be key to predicting species' fate under future climates.
Collapse
Affiliation(s)
- Silvia Marková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Hayley C Lanier
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
- Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Ave, Norman, OK, 73072, USA
| | - Marco A Escalante
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Marcos O R da Cruz
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
- Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Ave, Norman, OK, 73072, USA
| | - Michaela Horníková
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Mateusz Konczal
- Faculty of Biology, Evolutionary Biology Group, Adam Mickiewicz University, Poznań, Poland
| | - Lawrence J Weider
- School of Biological Sciences, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Petr Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic.
| |
Collapse
|