1
|
Zhou Z, Ma Y, Wu T, Xu T, Wu S, Yang GY, Ding J, Wang X. A Novel Neuroprotective Derived Peptide of Erythropoietin Improved Cognitive Function in Vascular Dementia Mice. Mol Neurobiol 2024:10.1007/s12035-024-04639-x. [PMID: 39702833 DOI: 10.1007/s12035-024-04639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
The effective therapeutics for vascular dementia are still lacking. Here, we designed a novel derived peptide of erythropoietin-DEPO and evaluated its safety, erythropoiesis effect, and neuroprotective effects in mice of vascular dementia. For evaluating the safety and erythropoiesis, DEPO was injected into naive C57BL6 mice (n = 5) for 4-8 weeks, and venous blood was collected at 1, 2, and 4 weeks after DEPO treatment. Neuroprotective effects of DEPO were studied in both cultured neurons and bilateral common carotid artery stenosis (BCAS) mice (n = 10/group). After 4-week DEPO administration, neurobehavioral tests and histology were applied to evaluate cognitive function and brain tissue damage of mice, respectively. Molecule docking, western blotting, pharmacological or genetic interference with EPOR, and JAK/STAT/AKT pathway were used to determine the mechanism of neuroprotective effects of DEPO. DEPO did not increase the hemoglobin concentration or red blood cell number in mice after 4-week treatment compared to the Vehicle group (p > 0.05). DEPO treatment alleviated spatial reference memory impairment and the anxiety level in mice (p < 0.05). Both gray and white matter injuries were significantly alleviated by DEPO treatment. DEPO activated JAK/STAT pathway in cultured neurons and protected neurons against chronic ischemia (p < 0.05). Pharmacological or genetic interference with JAK2 signaling or EPOR inhibited the pro-survival effect of DEPO on chronic ischemia neurons (p < 0.05). DEPO is a novel safe erythropoietin-derived peptide and exerted its neuroprotective effects in vascular dementia mice through activating EPOR and its downstream JAK/STAT signaling pathway. DEPO is a potential alternative agent for treatment of vascular dementia or chronic cerebral ischemia.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Tongtong Xu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shengju Wu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guo-Yuan Yang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of The State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| |
Collapse
|
2
|
Sinha A, Gupta M, Bhaskar SMM. Evolucollateral dynamics in stroke: Evolutionary pathophysiology, remodelling and emerging therapeutic strategies. Eur J Neurosci 2024; 60:6779-6798. [PMID: 39498733 DOI: 10.1111/ejn.16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Leptomeningeal collaterals (LMCs) are crucial in mitigating the impact of acute ischemic stroke (AIS) by providing alternate blood flow routes when primary arteries are obstructed. This article explores the evolutionary pathophysiology of LMCs, highlighting their critical function in stroke and the genetic and molecular mechanisms governing their development and remodelling. We address the translational challenges of applying animal model findings to human clinical scenarios, emphasizing the need for further research to validate emerging therapies-such as pharmacological agents, gene therapy and mechanical interventions-in clinical settings, aimed at enhancing collateral perfusion. Computational modelling emerges as a promising method for integrating experimental data, which requires precise parameterization and empirical validation. We introduce the 'Evolucollateral Dynamics' hypothesis, proposing a novel framework that incorporates evolutionary biology principles into therapeutic strategies, offering new perspectives on enhancing collateral circulation. This hypothesis emphasizes the role of genetic predispositions and environmental influences on collateral circulation, which may impact therapeutic strategies and optimize treatment outcomes. Future research must incorporate human clinical data to create robust treatment protocols, thereby maximizing the therapeutic potential of LMCs and improving outcomes for stroke patients.
Collapse
Affiliation(s)
- Akansha Sinha
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Muskaan Gupta
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Sonu M M Bhaskar
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital and South West Sydney Local Health District, Liverpool, NSW, Australia
- Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), Suita, Osaka, Japan
| |
Collapse
|
3
|
Wang R, Yang Z, Huang Y, Hu Y, Wang Y, Yan F, Zheng Y, Han Z, Fan J, Tao Z, Zhao H, Li S, Luo Y. Erythropoietin-derived peptide ARA290 mediates brain tissue protection through the β-common receptor in mice with cerebral ischemic stroke. CNS Neurosci Ther 2024; 30:e14676. [PMID: 38488446 PMCID: PMC10941562 DOI: 10.1111/cns.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
AIM To explore the neuroprotective effects of ARA290 and the role of β-common receptor (βCR) in a mouse model of middle cerebral artery occlusion (MCAO). METHODS This study included male C57BL/6J mice that underwent MCAO and reperfusion. The neuroprotective effect of ARA290 on MCAO-induced brain injury was investigated using neurological function tests (Longa and modified neurological severity score). Cerebral infarction was examined by 2, 3, 5-triphenyl tetrazolium chloride staining, neuronal apoptosis was assessed by immunofluorescence staining, blood parameters were measured using a flow cytometry-based automated hematology analyzer, liquid chromatography with tandem mass spectrometry was used to identify the serum metabolomics signature, inflammatory cytokines and liver index were detected by commercially available kits, and the protein levels of the erythropoietin (EPO) receptor and βCR were measured by western blot. RESULTS ARA290 exerted a qualitatively similar neuroprotective effect after MCAO as EPO. ARA290 significantly reduced neuronal apoptosis and the level of inflammatory cytokines in the brain tissue. However, ARA290's neuroprotective effect was significantly suppressed following the injection of siRNA against βCR. CONCLUSION ARA290 provided a neuroprotective effect via βCR in cerebral ischemic mice without causing erythropoiesis. This study provides novel insights into the role of ARA290 in ischemic stroke intervention.
Collapse
Affiliation(s)
- Rong‐Liang Wang
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zhen‐Hong Yang
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yu‐You Huang
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yue Hu
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yi‐Lin Wang
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yang‐Min Zheng
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zi‐Ping Han
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Jun‐Fen Fan
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Hai‐Ping Zhao
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Si‐Jie Li
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
- Emergency DepartmentXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yu‐Min Luo
- Institute of Cerebrovascular Diseases Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| |
Collapse
|
4
|
Amalia L, Saputra GN. Serum erythropoietin in acute ischemic stroke: preliminary findings. Sci Rep 2024; 14:2661. [PMID: 38302546 PMCID: PMC10834471 DOI: 10.1038/s41598-024-53180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Ischemic stroke is the most common stroke, caused by occlusion of cerebral vessels and leading causes of disability. Erythropoietin (EPO) has non-hematopoietic effects as a neuroprotectant after ischemic event. This study aimed to learn the serum level of EPO in acute ischemic stroke. This cross-sectional study of ischemic stroke patients with onset < 24 h and consecutive sampling was used to collect the data from medical records review, physical examinations, head CT, 24-h EPO, 24-h and seventh-day NIHSS. A total of 47 patients consisting of 59.6% women, with a median age of 53 years old (21-70). The median 24 h EPO level was 808.6 pg/mL (134.2-2988.9). The relationship between 24 h-EPO and 24-h NIHSS were not significant (r = 0.101; p = 0.250), nor to 7th day NIHSS (r = - 0.0174; p = 0.121) and to delta NIHSS (r = 0.186; p = 0.106). The relationship of blood collection time (hour) and EPO was significant (r = - 0.260; p = 0.039). There was a statistically significant difference between serum EPO levels in ischemic stroke patients with lacunar stroke compared to non-lacunar stroke (288.5 vs. 855.4 ng/mL; p = 0.021). There was a relationship between the time of collection of blood and the level of EPO and also there was difference EPO level in lacunar stroke subtype compared with non-lacunar. The relationship between EPO and NIHSS lost significance after analysis. There is a need for a future study comparing each stroke risk factor and the same blood collection time.
Collapse
Affiliation(s)
- Lisda Amalia
- Department of Neurology, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Jl. Eykman 38, Bandung, 40161, Indonesia.
| | - Gilang Nispu Saputra
- Department of Neurology, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Jl. Eykman 38, Bandung, 40161, Indonesia
| |
Collapse
|
5
|
Mallard C, Ferriero DM, Vexler ZS. Immune-Neurovascular Interactions in Experimental Perinatal and Childhood Arterial Ischemic Stroke. Stroke 2024; 55:506-518. [PMID: 38252757 DOI: 10.1161/strokeaha.123.043399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Emerging clinical and preclinical data have demonstrated that the pathophysiology of arterial ischemic stroke in the adult, neonates, and children share similar mechanisms that regulate brain damage but also have distinct molecular signatures and involved cellular pathways due to the maturational stage of the central nervous system and the immune system at the time of the insult. In this review, we discuss similarities and differences identified thus far in rodent models of 2 different diseases-neonatal (perinatal) and childhood arterial ischemic stroke. In particular, we review acquired knowledge of the role of resident and peripheral immune populations in modulating outcomes in models of perinatal and childhood arterial ischemic stroke and the most recent and relevant findings in relation to the immune-neurovascular crosstalk, and how the influence of inflammatory mediators is dependent on specific brain maturation stages. Finally, we discuss the current state of treatments geared toward age-appropriate therapies that signal via the immune-neurovascular interaction and consider sex differences to achieve successful translation.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden (C.M.)
| | - Donna M Ferriero
- Department of Pediatrics, UCSF, San Francisco, CA (D.M.F.)
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| | - Zinaida S Vexler
- Department of Neurology, UCSF, Weill Institute for Neurosciences, San Francisco, CA (D.M.F., Z.S.V.)
| |
Collapse
|
6
|
Kameda M, Kajimoto Y, Wanibuchi M. New therapeutic hypothesis for infantile extrinsic hydrocephalus. Front Neurol 2023; 14:1215560. [PMID: 37794877 PMCID: PMC10546040 DOI: 10.3389/fneur.2023.1215560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Affiliation(s)
- Masahiro Kameda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | | | | |
Collapse
|
7
|
Pouyan P, Zemella A, Schloßhauer JL, Walter RM, Haag R, Kubick S. One to one comparison of cell-free synthesized erythropoietin conjugates modified with linear polyglycerol and polyethylene glycol. Sci Rep 2023; 13:6394. [PMID: 37076514 PMCID: PMC10115831 DOI: 10.1038/s41598-023-33463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
With more than 20 Food and Drug Administration (FDA)-approved poly (ethylene glycol) (PEG) modified drugs on the market, PEG is the gold standard polymer in bioconjugation. The coupling improves stability, efficiency and can prolong blood circulation time of therapeutic proteins. Even though PEGylation is described as non-toxic and non-immunogenic, reports accumulate with data showing allergic reactions to PEG. Since PEG is not only applied in therapeutics, but can also be found in foods and cosmetics, anti-PEG-antibodies can occur even without a medical treatment. Hypersensitivity to PEG thereby can lead to a reduced drug efficiency, fast blood clearance and in rare cases anaphylactic reactions. Therefore, finding alternatives for PEG is crucial. In this study, we present linear polyglycerol (LPG) for bioconjugation as an alternative polymer to PEG. We report the conjugation of LPG and PEG by click-chemistry to the glycoprotein erythropoietin (EPO), synthesized in a eukaryotic cell-free protein synthesis system. Furthermore, the influence of the polymers on EPOs stability and activity on a growth hormone dependent cell-line was evaluated. The similar characteristics of both bioconjugates show that LPGylation can be a promising alternative to PEGylation.
Collapse
Affiliation(s)
- Paria Pouyan
- Institut for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| | - Jeffrey L Schloßhauer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry-Biochemistry, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Ruben M Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Rainer Haag
- Institut for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry-Biochemistry, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
- Faculty of Health Sciences, oint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
8
|
Kittur FS, Hung CY, Li PA, Sane DC, Xie J. Asialo-rhuEPO as a Potential Neuroprotectant for Ischemic Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:610. [PMID: 37111367 PMCID: PMC10143832 DOI: 10.3390/ph16040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Neuroprotective drugs to protect the brain against cerebral ischemia and reperfusion (I/R) injury are urgently needed. Mammalian cell-produced recombinant human erythropoietin (rhuEPOM) has been demonstrated to have excellent neuroprotective functions in preclinical studies, but its neuroprotective properties could not be consistently translated in clinical trials. The clinical failure of rhuEPOM was thought to be mainly due to its erythropoietic activity-associated side effects. To exploit its tissue-protective property, various EPO derivatives with tissue-protective function only have been developed. Among them, asialo-rhuEPO, lacking terminal sialic acid residues, was shown to be neuroprotective but non-erythropoietic. Asialo-rhuEPO can be prepared by enzymatic removal of sialic acid residues from rhuEPOM (asialo-rhuEPOE) or by expressing human EPO gene in glycoengineered transgenic plants (asialo-rhuEPOP). Both types of asialo-rhuEPO, like rhuEPOM, displayed excellent neuroprotective effects by regulating multiple cellular pathways in cerebral I/R animal models. In this review, we describe the structure and properties of EPO and asialo-rhuEPO, summarize the progress on neuroprotective studies of asialo-rhuEPO and rhuEPOM, discuss potential reasons for the clinical failure of rhuEPOM with acute ischemic stroke patients, and advocate future studies needed to develop asialo-rhuEPO as a multimodal neuroprotectant for ischemic stroke treatment.
Collapse
Affiliation(s)
- Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - David C. Sane
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA;
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| |
Collapse
|
9
|
Yun SW, Kim WY, Lee JB. Correlation between Serum Erythropoietin and Cerebral Collateral Flow in Acute Ischemic Stroke Patient. Korean J Fam Med 2023; 44:53-57. [PMID: 36709961 PMCID: PMC9887454 DOI: 10.4082/kjfm.22.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/08/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Erythropoietin (EPO), which is associated with anemia, exerts neuroprotective effects in ischemic stroke. In cases of stenosis or narrowing of the main cerebral blood vessel, the prognosis is favorable if collateral blood circulation is well developed in acute stroke. Several studies have investigated the relationship between EPO administration and stroke outcomes. The present study investigated the correlation between serum EPO level and cerebral collateral circulation, which could result in favorable clinical outcomes. METHODS The study subjects were patients diagnosed with acute ischemic stroke who underwent initial brain magnetic resonance imaging between January 2020 and March 2022. Following brain computed tomography perfusion for collateral flow, serum EPO levels were measured. Collaterals were assessed according to the Mass system and divided into good collateral (GC) or poor collateral (PC) groups. Serum EPO levels were determined using a chemiluminescence immunoassay method. A correlation coefficient analysis was conducted to determine the correlation between serum EPO levels and GC. A receiver operating characteristic curve analysis determined the cutoff value of EPO for GC. RESULTS Serum EPO levels were significantly higher in the GC than that in the PC group (P<0.05). The cut-off level of serum EPO for a good outcome was 9.1 mIU/mL. CONCLUSION A high serum EPO (>9.1 mIU/mL) could be a marker of GC in patients with acute ischemic stroke that predicts good clinical outcomes.
Collapse
Affiliation(s)
- Sung Won Yun
- Department of Family Medicine, Hong-Ik Hospital, Seoul, Korea
| | - Won Yong Kim
- Department of Family Medicine, Hong-Ik Hospital, Seoul, Korea
| | - Jun Beom Lee
- Department of Neurology, Hong-Ik Hospital, Seoul, Korea,Corresponding Author: Jun Beom Lee https://orcid.org/0000-0002-7361-3161 Tel: +82-2-2600-0578, Fax: +82-2-2697-4605, E-mail:
| |
Collapse
|
10
|
Zhang Y, Liu Q, Zhang T, Wang H, Fu Y, Wang W, Li D. The therapeutic role of Jingchuan tablet on ischaemic cerebral stroke via the HIF-1α/EPO/VEGFA signalling pathway. PHARMACEUTICAL BIOLOGY 2022; 60:2110-2123. [PMID: 36269045 PMCID: PMC9590438 DOI: 10.1080/13880209.2022.2134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/20/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
CONTEXT Jingchuan tablet (JCT) is a Chinese medicine prescription for treating ischaemic cerebral stroke (ICS). However, its relevant mechanisms remain unclear. OBJECTIVE To unravel the intrinsic mechanisms of JCT anti-ICS. MATERIALS AND METHODS 'Hongjingtian', 'chuanxiong', 'yanhusuo', 'bingpian', 'cerebral infarction', 'cerebral ischemia' or 'stroke' were used as keywords, and then components, targets and underlying mechanisms of JCT anti-ICS were analysed in TCMSP, TTD, DrugBank, STRING and Metascape databases up to June 2020. Male Sprague-Dawley rats under permanent middle cerebral artery occlusion (pMCAO) model, randomly assigned as: model, sham, nimodipine (0.012 g/kg/d) and JCT (0.78, 1.56 and 3.12 g/kg/d) groups, received oral gavage administration for a week. Therapeutic effects were evaluated by detecting the proportion of cerebral infarction, neuronal apoptosis and neurological deficits. Bioactive components were detected by HPLC-MS. Molecular biology and computational docking were used to verify the underlying mechanisms. RESULTS Eighty-one components, 166 targets and HIF-1α/EPO/VEGFA pathway contributed to the anti-ICS effect of JCT. JCT treatment effectively reduced the proportion of cerebral infarction (33.13%), apoptosis rate (14.80%) and neurobehavioural score (2.00). JCT increased the protein levels of HIF-1α (0.84), EPO (0.64) and VEGFA (0.69), respectively (p < 0.05). Gallic acid, salidroside, chlorogenic acid, ethyl gallate, ferulic acid and tetrahydropalmatine detected by HPLC-MS showed good interaction and binding with HIF-1α/EPO/VEGFA. CONCLUSIONS Our study demonstrated the mechanisms of JCT anti-ICS associated with the activation of the HIF-1α/EPO/VEGFA pathway, which provided a pharmacological basis for expanding the clinical application and some scientific ideas for further research into the material basis JCT anti-ICS.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Qinghuan Liu
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Ting Zhang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Hong Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Yu Fu
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Wentong Wang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Dongdong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| |
Collapse
|
11
|
Coliță D, Coliță CI, Hermann DM, Coliță E, Doeppner TR, Udristoiu I, Popa-Wagner A. Therapeutic Use and Chronic Abuse of CNS Stimulants and Anabolic Drugs. Curr Issues Mol Biol 2022; 44:4902-4920. [PMID: 36286048 PMCID: PMC9600088 DOI: 10.3390/cimb44100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The available evidence suggests that affective disorders, such as depression and anxiety, increase risk for accelerated cognitive decline and late-life dementia in aging individuals. Behavioral neuropsychology studies also showed that cognitive decline is a central feature of aging impacting the quality of life. Motor deficits are common after traumatic brain injuries and stroke, affect subjective well-being, and are linked with reduced quality of life. Currently, restorative therapies that target the brain directly to restore cognitive and motor tasks in aging and disease are available. However, the very same drugs used for therapeutic purposes are employed by athletes as stimulants either to increase performance for fame and financial rewards or as recreational drugs. Unfortunately, most of these drugs have severe side effects and pose a serious threat to the health of athletes. The use of performance-enhancing drugs by children and teenagers has increased tremendously due to the decrease in the age of players in competitive sports and the availability of various stimulants in many forms and shapes. Thus, doping may cause serious health-threatening conditions including, infertility, subdural hematomas, liver and kidney dysfunction, peripheral edema, cardiac hypertrophy, myocardial ischemia, thrombosis, and cardiovascular disease. In this review, we focus on the impact of doping on psychopathological disorders, cognition, and depression. Occasionally, we also refer to chronic use of therapeutic drugs to increase physical performance and highlight the underlying mechanisms. We conclude that raising awareness on the health risks of doping in sport for all shall promote an increased awareness for healthy lifestyles across all generations.
Collapse
Affiliation(s)
- Daniela Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
| | - Cezar-Ivan Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| | - Dirk M. Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Eugen Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075 Gottingen, Germany
- Department of Neurology, University Hospital Giessen, 35394 Giessen, Germany
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| |
Collapse
|
12
|
Bo C, Wang T, Hou C, Han J, Chen L, Zhang H, Wang L, Li H. Evolution of ischemic stroke drug clinical trials in mainland China from 2005 to 2021. CNS Neurosci Ther 2022; 28:1229-1239. [PMID: 35642775 PMCID: PMC9253749 DOI: 10.1111/cns.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background To assess the temporal changes in the characteristics of ischemic stroke drug clinical trials conducted in mainland China in 2005–2021. Methods A statistical analysis of registered clinical trials on ischemic stroke was performed using the platform of the Center for Drug Evaluation of China National Medical Products Administration, the Chinese Clinical Trial Registry, and ClinicalTrials.gov websites. Results From January 1, 2005 to August 1, 2021, a total of 384 registered drug clinical trials on ischemic stroke were identified in mainland China. Over time, the number of trials gradually increased each year, with a significant growth in 2014, from 16 in 2013 to 42 in 2014. Phase IV trials (31.8%) accounted for the majority, followed by phase II (16.4%), phase I (10.9%), and phase III (8.6%). In terms of sponsorship, the proportion of investigator‐initiated trials (IITs) (60.7%) was higher than industry‐sponsored trials (ISTs) (39.3%). Additionally, trials involving traditional Chinese medicines (TCMs) (36.2%) accounted for the largest proportion, followed by trials involving antithrombotic therapy (19.5%) and cerebral protection agents (16.7%). Furthermore, over the past 17 years, the number of leading drug clinical trial units for ischemic stroke in mainland China has continuously increased. The leading principal units from Beijing, Shanghai, Guangdong, Jiangsu, and Liaoning accounted for the majority of the trials (67.4%). Conclusion In the past 17 years, great progress has been made in the research and development (R&D) of drugs and clinical trials for ischemic stroke in mainland China. The most extensive progress was observed in TCMs, antithrombotic therapy, and cerebral protection agents. More clinical trials are needed to confirm whether the newly developed drugs can improve the clinical efficacy of ischemic stroke. Simultaneously, more pharmaceutical R&D efforts of innovative drugs are warranted.
Collapse
Affiliation(s)
- Chunrui Bo
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Beijing, China
| | - Tianqi Wang
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Chengbei Hou
- Center for Evidence-Based Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinming Han
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Lixia Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Beijing, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Beijing, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Beijing, China
| | - Hongyan Li
- Department of Neurology, Department of General Surgery, China National Clinical Research Center for Geriatric Diseases, XuanWu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|