1
|
Yu W, Zheng X, Li X, Zhu J, Liu H, Xu Q, Shen A, Liu Y, Liang X. An algorithm-driven intelligent mining and identification strategy for natural product mass spectrometry. J Chromatogr A 2024; 1734:465288. [PMID: 39213841 DOI: 10.1016/j.chroma.2024.465288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Efficiently mining and identification of new compounds from the extensive MS/MS datasets of plant extracts poses a significant challenge due to the structural diversity and compositional complexity inherent in natural products (NPs). Various data post-processing techniques have been developed to simplify the interpretation of MS/MS data; however, they often suffer from limited specificity and precision. Meanwhile, structure annotation following data post-processing is particularly time-consuming. In this study, we introduced an innovative strategy named MS-SMART, which integrates three intelligent algorithms: automatic mining of diagnostic ions, rapid filtration of alkaloids from untargeted MS/MS data, and structural recommendations for filtered components. The feasibility of this approach for rapidly discovering novel compounds was demonstrated using berberine-type alkaloids as an example. Firstly, diagnostic ions were automatically extracted and validated using available reference data. Subsequently, berberine-type compounds were filtered from raw MS/MS data. Finally, the structures of the target components were recommended using building blocks derived from berberines reported in various plants. A total of 103, 198, 60, 80 and 51 berberines were efficiently identified in diverse families and genera, including Stephaniae Epigaeae Radix, Coptidis Rhizoma, Phellodendri Chinensis Cortex, Phellodendri Amurensis Cortex and Corydalis Decumbentis Rhizoma, with 99, 169, 50, 64 and 40 new compounds identified, respectively. Among these, 8, 14, 8, 7 and 12 berberines were confirmed by reference compounds. This strategy provides a new research paradigm for the rapid discovery and identification of different types of new compounds in complex samples.
Collapse
Affiliation(s)
- Wenyi Yu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xunhao Zheng
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xiaonong Li
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Jinfeng Zhu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjiang Liu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Qing Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Aijin Shen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| |
Collapse
|
2
|
Zhang JN, Pei ZD, Wang WY, Zhao MY, Pei WH, Zhang H, Yin HB, Wang TM, Xin GZ, Xie M, Kang TG, Chen YH, Song HP. Integration of High-Resolution LC-Q-TOF Mass Spectrometry and Multidimensional Chemical-Biological Analysis to Detect Nanomolar-Level Acetylcholinesterase Inhibitors from Different Parts of Zanthoxylum nitidum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17328-17342. [PMID: 39045647 DOI: 10.1021/acs.jafc.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Zanthoxyli radix is a popular tea among the elderly, and it is believed to have a positive effect on Alzheimer's disease. In this study, a highly effective three-step strategy was proposed for comprehensive analysis of the active components and biological functions of Zanthoxylum nitidum (ZN), including high-resolution LC-Q-TOF mass spectrometry (HRMS), multivariate statistical analysis for heterogeneity (MSAH), and experimental and virtual screening for bioactivity analysis (EVBA). A total of 117 compounds were identified from the root, stem, and leaf of ZN through HRMS. Bioactivity assays showed that the order of acetylcholinesterase (AChE) inhibitory activity from strong to weak was root > stem > leaf. Nitidine, chelerythrine, and sanguinarine were found to be the main differential components of root, stem, and leaf by OPLS-DA. The IC50 values of the three compounds are 0.81 ± 0.02, 0.14 ± 0.01, and 0.48 ± 0.01 μM respectively, indicating that they are potent and high-quality AChE inhibitors. Molecular docking showed that pi-pi T-shaped interactions and pi-lone pairs played important roles in AChE inhibition. This study not only explains the biological function of Zanthoxyli radix in alleviating Alzheimer's disease to some extent, but also lays the foundation for the development of stem and leaf of ZN.
Collapse
Affiliation(s)
- Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zhi-Dong Pei
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Yu Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Yue Zhao
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Wen-Han Pei
- Macau University of Science and Technology, Macau 999078, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Tian-Min Wang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ting-Guo Kang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
3
|
Zhou C, Huang C, Zhang H, Yang W, Jiang F, Chen G, Liu S, Chen Y. Machine-learning-driven optical immunosensor based on microspheres-encoded signal transduction for the rapid and multiplexed detection of antibiotics in milk. Food Chem 2024; 437:137740. [PMID: 37871421 DOI: 10.1016/j.foodchem.2023.137740] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Antibiotic residues are the most common contaminants in milk and other related dairy products. Simultaneous, convenient, and stable detection of antibiotic residues in foods is vital to secure public health. Herein, we proposed an optical immunosensor with easily-functionalized polystyrene nanoparticles differing in size and quantity, and bearing multiplex signal probes for the simultaneous detection of multiple antibiotics through a simple one-step signal conversion reaction. After the integration of the machine-learning-based transcoding analysis, this sensor is suitable for multiplexed detection of antibiotics in a broad linear range from pg/mL to ng/mL within 30 min, with an overall accuracy of >99 %. Compared to the conventional standard chemiluminescence immunoassays, this immunosensor is suitable for the accurate quantification of multiple antibiotics in milk, with improved accuracy, reduced costs, and simplified procedure. This ensures its applications in food safety monitoring when simultaneous detection of multiple hazardous substances in food matrices is needed.
Collapse
Affiliation(s)
- Cuiyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hongyu Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihai Yang
- Qingdao Customs District P.R.China, Qingdao 266000, Shandong, China
| | - Feng Jiang
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan 430075, Hubei, China
| | - Guoxun Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Shanmei Liu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Shenzhen Institute of Food Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
4
|
Du R, Ye L, Chen X, Meng Y, Zhou L, Chen Q, Zheng G, Hu J, Shi Z. Screening of Key Components for Melanogenesis Inhibition of Polygonum cuspidatum Extract Based on the Spectrum-Effect Relationship and Molecular Docking. Molecules 2024; 29:857. [PMID: 38398609 PMCID: PMC10891599 DOI: 10.3390/molecules29040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024] Open
Abstract
Polygonum cuspidatum (PC) extract has been listed in the "Catalog of Used Cosmetic Ingredients (2021 Edition)", which can inhibit melanogenesis, thus exerting a whitening effect, and has been widely used in cosmetics. However, there are currently no quality standards for PC extract used in cosmetics, and the bioactive components associated with anti-melanogenesis remain unclear. In view of this, the present study was the first to investigate the spectrum-effect relationship between fingerprints of PC extract and melanogenesis inhibition. Ten batches of PC extract fingerprints were established by HPLC. Pearson's correlation analysis, gray correlation analysis (GRA) and orthogonal partial least squares regression analysis (OPLSR) were used to screen out resveratrol, emodin and physcion as the main whitening active ingredients using the inhibition of tyrosinase in B16F10 cells as the pharmacological index. Then, the melanogenesis inhibitory effects of the above three components were verified by tyrosinase inhibition and a melanin content assay in B16F10 cells. The interaction between small molecules and proteins was investigated by the molecular docking method, and it was confirmed by quantitative real-time PCR (qRT-PCR) that resveratrol, emodin and physcion significantly down-regulated the transcript levels of melanogenesis-related factors. In conclusion, this study established a general model combining HPLC fingerprinting and melanogenesis inhibition and also analyzed the spectrum-effect relationship of PC extract, which provided theoretical support for the quality control of PC extract in whitening cosmetics.
Collapse
Affiliation(s)
- Ruojun Du
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Lichun Ye
- Clinical College of Chinese Medicine, Hubei University of Traditional Chinese Medicine, Wuhan 430065, China;
| | - Xinyan Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Lei Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Qiao Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (R.D.); (X.C.); (Y.M.); (L.Z.); (Q.C.)
| | - Zhaohua Shi
- Key Laboratory of Resources and Compound of Traditional Chinese Medicine, Ministry of Education, Hubei University of Traditional Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
| |
Collapse
|
5
|
Kimani CN, Reuter H, Kotzé SH, Venter P, Ramharack P, Muller CJF. Pancreatic beta cell regenerative potential of Zanthoxylum chalybeum Engl. Aqueous stem bark extract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117374. [PMID: 37944876 DOI: 10.1016/j.jep.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum chalybeum Engl. is endemic to Africa and has been used traditionally to treat diabetes mellitus. Moreover, its pharmacological efficacy has been confirmed experimentally using in vitro and in vivo models of diabetes. However, the effects of Z. chalybeum extracts and its major constituent compounds on beta cell and islet regeneration are not clear. Further, the mechanisms associated with observed antidiabetic effects at the beta cell level are not fully elucidated. AIM OF THE STUDY We determined the beta cell regenerative efficacy of Z. chalybeum aqueous stem bark extract, identified the chemical compounds in Z. chalybeum aqueous stem bark extracts and explored their putative mechanisms of action. MATERIALS AND METHODS Phytochemical profiling of the Z. chalybeum extract was achieved using ultra high-performance liquid chromatography hyphenated to high-resolution mass spectrometry. Thereafter, molecular interactions of the compounds with beta cell regeneration targets were evaluated via molecular docking. In vitro, effects of the extract on cell viability, proliferation, apoptosis and oxidative stress were investigated in RIN-5F beta cells exposed to palmitate or streptozotocin. In vivo, pancreas tissue sections from streptozotocin-induced diabetic male Wistar rats treated with Z. chalybeum extract were stained for insulin, glucagon, pancreatic duodenal homeobox protein 1 (Pdx-1) and Ki-67. RESULTS Based on ligand target and molecular docking interactions diosmin was identified as a dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitor. In vitro, Z. chalybeum augmented cell viability and cell proliferation while in palmitate-pre-treated cells, the extract significantly increased cell activity after 72 h. In vivo, although morphometric analysis showed decreased islet and beta cell size and density, observation of increased Pdx-1 and Ki-67 immunoreactivity in extract-treated islets suggests that Z. chalybeum extract has mild beta cell regenerative potential mediated by increased cell proliferation. CONCLUSIONS Overall, the mitogenic effects observed in vitro, were not robust enough to elicit sufficient recovery of functional beta cell mass in our in vivo model, in the context of a sustained diabetic milieu. However, the identification of diosmin as a potential Dyrk1A inhibitor merits further inquiry into the attendant molecular interactions.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Department of Non-communicable Diseases, Institute of Primate Research, PO Box 24481, Karen, Nairobi, Kenya.
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, PO Box 334, Basseterre, Saint Kitts and Nevis
| | - Pieter Venter
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Christo John Frederick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
6
|
Shan X, Yang X, Li D, Zhou L, Qin S, Li J, Tao W, Peng C, Wei J, Chu X, Wang H, Zhang C. Research on the quality markers of antioxidant activity of Kai-Xin-San based on the spectrum-effect relationship. Front Pharmacol 2023; 14:1270836. [PMID: 38205371 PMCID: PMC10777484 DOI: 10.3389/fphar.2023.1270836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024] Open
Abstract
Background: Kai-Xin-San (KXS) is one of the classic famous traditional Chinese medicine prescriptions for amnesia, which has been applied for thousands of years. Modern pharmacological research has found that KXS has significant therapeutic efficacy on nervous system diseases, which is related to its antioxidant activity. However, the antioxidant material basis and quality markers (Q-makers) of KXS have not been studied. Objective: The objective of this study is to explore the Q-makers of antioxidant activity of KXS based on spectrum-effect relationship. Methods: Specifically, the metabolites in KXS extracts were identified by UPLC-Q-Exactive Orbitrap MS/MS. The fingerprint profile of KXS extracts were established by high-performance liquid chromatography (HPLC) and seven common peaks were identified. Meanwhile, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test was used to evaluate the free radical scavenging ability of KXS. The spectrum-effect relationship between its HPLC fingerprint and DPPH free radical scavenging activity was preliminarily examined by the Pearson correlation analysis, grey relation analysis (GRA), and orthogonal partial least squares discrimination analysis (OPLS-DA). Further, the antioxidant effect of KXS and its Q-makers were validated through human neuroblastoma (SH-SY5Y) cells experiment. Results: The results showed that 103 metabolites were identified from KXS, and the similarity values between HPLC fingerprint of twelve batches of KXS were greater than 0.900. At the same time, the results of Pearson correlation analysis showed that the peaks 8, 1, 14, 17, 18, 24, 16, 21, 15, 13, 6, 5, and 3 from KXS were positively correlated with the scavenging activity values of DPPH. Combined with the results of GRA and OPLS-DA, peaks 1, 3, 5 (Sibiricose A6), 6, 13 (Ginsenoside Rg1), 15, and 24 in the fingerprints were screen out as the potential Q-makers of KXS for antioxidant effect. Besides, the results of CCK-8 assay showed that KXS and its Q-makers remarkably reduced the oxidative damage of SH-SY5Y cells caused by H2O2. However, the antioxidant activity of KXS was decreased significantly after Q-makers were knocked out. Conclusion: In conclusion, the metabolites in KXS were successfully identified by UPLC-Q-Exactive Orbitrap MS/MS, and the Q-makers of KXS for antioxidant effect was analyzed based on the spectrum-effect relationship. These results are beneficial to clarify the antioxidant material basis of KXS and provide the quality control standards for new KXS products development.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xuan Yang
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Dawei Li
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lele Zhou
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shaogang Qin
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Hefei Food and Drug Inspection Center, Hefei, Anhui, China
| | - Junying Li
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wenkang Tao
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Can Peng
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinming Wei
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Haixuan Wang
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Hefei Food and Drug Inspection Center, Hefei, Anhui, China
| | - Caiyun Zhang
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Sun H, Chen M, He X, Sun Y, Feng J, Guo X, Li L, Zhu J, Xia G, Zang H. Phytochemical analysis and in vitro and in vivo antioxidant properties of Plagiorhegma dubia Maxim as a medicinal crop for diabetes treatment. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
8
|
Zhu K, Wang MY, Li HF, Dong ZL, Li WW, Liu C, Zhang L, Jiang S, Shang EX, Qian DW, Duan JA. Investigation of the Material Basis of Xiexin Tang to Alleviate Type 2 Diabetes Mellitus Based on Spectrum-Effect Analysis by UPLC-Q-TOF/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1221:123691. [PMID: 37011544 DOI: 10.1016/j.jchromb.2023.123691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Xiexin Tang (XXT) is a classic prescription for treating diabetes in clinical practices for thousands of years in China, which has been also proved by a large number of modern pharmacological studies. However, due to its complex composition, the bioactive ingredients of XXT is still unclear. In present researches, spectrum-effect relationship analysis is widely used to explore the material basis of traditional medical herbs, so this method was adopted in this study. Firstly, the extract of XXT was separated and enriched into 5 fractions by macroporous adsorption resin. Then, UPLC-Q-TOF/MS method was used for qualitative identification of components in each eluting part, and efficacy of each fraction was assessed by the T2DM rat model. Based on grey relational analysis and pearson bivariate correlation analysis, it was found that the components such as berberine, gallic acid, catechin, epicatechin, acteoside, berberastine and 1-O-galloyl-β-D-glucose might be the main effective basis of XXT to improve T2DM.
Collapse
|
9
|
Song Y, Yang J, Hu X, Gao H, Wang P, Wang X, Liu Y, Cheng X, Wei F, Ma S. A stepwise strategy integrating metabolomics and pseudotargeted spectrum–effect relationship to elucidate the potential hepatotoxic components in Polygonum multiflorum. Front Pharmacol 2022; 13:935336. [PMID: 36091795 PMCID: PMC9459084 DOI: 10.3389/fphar.2022.935336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Polygonummultiflorum (PM) Thunb., a typical Chinese herbal medicine with different therapeutic effect in raw and processed forms, has been used worldwide for thousands of years. However, hepatotoxicity caused by PM has raised considerable concern in recent decades. The exploration of toxic components in PM has been a great challenge for a long time. In this study, we developed a stepwise strategy integrating metabolomics and pseudotargeted spectrum–effect relationship to illuminate the potential hepatotoxic components in PM. First, 112 components were tentatively identified using ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS). Second, based on the theory of toxicity attenuation after processing, we combined the UPLC-Q-TOF-MS method and plant metabolomics to screen out the reduced differential components in PM between raw and processed PM. Third, the proposed pseudotargeted MS of 16 differential components was established and applied to 50 batches of PM for quantitative analysis. Fourth, the hepatocytotoxicity of 50 batches of PM was investigated on two hepatocytes, LO2 and HepG2. Last, three mathematical models, gray relational analysis, orthogonal partial least squares analysis, and back propagation artificial neural network, were established to further identify the key variables affecting hepatotoxicity in PM by combining quantitative spectral information with toxicity to hepatocytes of 50 batches of PM. The results suggested that 16 components may have different degrees of hepatotoxicity, which may lead to hepatotoxicity through synergistic effects. Three components (emodin dianthrones, emodin-8-O-β-D-glucopyranoside, PM 14-17) were screened to have significant hepatotoxicity and could be used as toxicity markers in PM as well as for further studies on the mechanism of toxicity. Above all, the study established an effective strategy to explore the hepatotoxic material basis in PM but also provides reference information for in-depth investigations on the hepatotoxicity of PM.
Collapse
Affiliation(s)
- Yunfei Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaowen Hu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Huiyu Gao
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Pengfei Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xueting Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xianlong Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Feng Wei, ; Shuangcheng Ma,
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Feng Wei, ; Shuangcheng Ma,
| |
Collapse
|