1
|
Shao CL, Meng WT, Wang YC, Liu JJ, Ning K, Hou XX, Guo HD. Regulating NETs contributes to a novel antiatherogenic effect of MTHSWD via inhibiting endothelial injury and apoptosis. Int Immunopharmacol 2024; 143:113368. [PMID: 39418732 DOI: 10.1016/j.intimp.2024.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the occurrence and progression of atherosclerosis (AS), which can result in adverse cardiovascular events. We investigated the potential mechanism of action of Modified Taohong Siwu Decoction (MTHSWD) against AS based on its effect on NETs. A model of unstable plaque in AS was established by tandem stenosis (TS) of the right common carotid artery in ApoE-/- mice combined with a western diet (WD). The research found that MTHSWD reduced the weight of mice with AS to varying degrees, and significantly decreased the levels of plasma total cholesterol (TC) and triglycerides (TG). Meanwhile, we found that MTHSWD not only significantly improved cardiac EF, FS, cardiac hypertrophy, and ventricular remodeling, but also ameliorated the silent and depressed hypoactivity state caused by AS in ApoE-/- mice. Additionally, the study revealed that MTHSWD improved the severity of AS, protected the vascular structure, increased plaque stability and vessel patency. It also significantly reduced vascular cell apoptosis, platelet aggregation, and the presence of inflammatory cells such as neutrophils (NEUs), as well as the expression of neutrocyte elastase (NE) and myeloperoxidase (MPO), which are components of NETs. Subsequently, NEUs studies have shown that MTHSWD not only significantly reduces the dsDNA content of NETs, but also lowers the expression of NETs components NE and citH3. NETs treating the human umbilical vein endothelial cells (HUVECs) demonstrated that NETs differentially increased the protein expression of endothelial inflammatory adhesion factors CD62P, VCAM-1 and ICAM-1, while significantly decreasing the viability of HUVECs. Pharmacological treatment discovered that MTHSWD significantly improved HUVECs viability impaired by NETs, and promoted the growth and proliferation of endothelial cells. Furthermore, it significantly reduced early and late apoptosis of HUVECs caused by NETs, decreased the expression of pro-apoptotic proteins BAX and Cleaved-Caspase-3, and increased the expression of anti-apoptotic protein Bcl-2. Thus, study suggests that MTHSWD may improve body weight, lipid levels, cardiac function, vigour, and the severity of AS in ApoE-/- AS mice. The novel effect of MTHSWD against AS may be attributed to the inhibition of endothelial injury and apoptosis through the regulation of NETs. This, in turn, reduces the levels of platelets, inflammatory cells, and components of NETs in AS plaques, achieving a benign cycle that protects endothelial cells and vascular structure and function. This result provides some clues and evidence for studying the mechanism of action and clinical application of MTHSWD and its active ingredients against AS.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Extracellular Traps/drug effects
- Extracellular Traps/metabolism
- Humans
- Male
- Mice
- Human Umbilical Vein Endothelial Cells
- Mice, Inbred C57BL
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Neutrophils/drug effects
- Neutrophils/immunology
- Apolipoproteins E/genetics
- Mice, Knockout
- Disease Models, Animal
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/pathology
- Mice, Knockout, ApoE
- Cells, Cultured
Collapse
Affiliation(s)
- Chang-le Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan-Ting Meng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Chao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Liu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Xin Hou
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hai-Dong Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Han X, Zhang G, Pang M, Hu C, Xu T, Wu Y, Xie L, Chen G, Xu H, Liu M, Hua Y, Tan Z, Bi Y, Fan H, Liu B, Zhou Y. Taohong siwu decoction suppresses oxidative stress-induced myocardial apoptosis post-myocardial infarction by inhibiting PTEN pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155388. [PMID: 39515108 DOI: 10.1016/j.phymed.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is an important factor inducing mortality globally. Apoptosis and oxidative stress have been identified as major drivers for MI development. Anti-apoptosis therapies exhibit promising effects in protecting against MI. Typically, Taohong Siwu Decoction (THSWD) exerts cardioprotective properties. However, whether THSWD suppresses oxidative stress-induced myocardial apoptosis after MI and the associated mechanisms remain unclear. PURPOSE The present work focused on examining the protective effects of THSWD on oxidative stress-induced myocardial apoptosis after MI and its possible mechanisms. METHODS The MI mouse model was established via left anterior descending coronary artery (LAD) ligation. Thereafter, echocardiography and histopathology were performed to examine the cardioprotective effects of THSWD. Meanwhile, the protective potential of THSWD against myocardial apoptosis and oxidative stress, as well as modulation of phosphatase and tensin homolog (PTEN) pathway in MI were investigated through TUNEL staining, ROS analysis, immunohistochemistry (IHC), Western blot (WB) and oxidative stress-related biochemical enzyme assay, respectively. Further, the apoptosis of neonatal cardiomyocytes (NCMs) and H9C2 cells was induced by TBHP in vitro. Thereafter, the impacts of THSWD on the TBHP-induced H9C2 and NCMs were detected by Hoechst33342/PI fluorescent staining, WB, ROS analysis, and oxidative stress-related biochemical enzyme assay. In addition, PTEN was overexpressed using transfection viruses in vivo and in vitro for further investigation. RESULTS THSWD might inhibit PTEN and promote the PI3K/AKT pathway in MI mice to prevent myocardial apoptosis. In vitro, THSWD prevented the TBHP-induced apoptosis of NCMs and H9C2 cells. This was achieved by blocking PTEN activity and regulating PI3K/AKT pathway. Moreover, PTEN overexpression significantly enhanced the TBHP-induced H9C2 apoptosis and oxidative stress-induced myocardial apoptosis after MI, and partially blocked the protection of THSWD against myocardial apoptosis and modulating PI3K/AKT pathway in vitro and in vivo. CONCLUSION THSWD suppressed oxidative stress-induced myocardial apoptosis in vitro and in vivo by inhibiting PTEN pathway.
Collapse
Affiliation(s)
- Xin Han
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Guoyong Zhang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Mingjie Pang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Changlei Hu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Tong Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Lingpeng Xie
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, PR China
| | - Guanghong Chen
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Honglin Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Min Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Yue Hua
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhangbin Tan
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Yiming Bi
- The Affliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510515, PR China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang, 529500, PR China
| | - Bin Liu
- Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, PR China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
3
|
Chen J, Ye W. Molecular mechanisms underlying Tao-Hong-Si-Wu decoction treating hyperpigmentation based on network pharmacology, Mendelian randomization analysis, and experimental verification. PHARMACEUTICAL BIOLOGY 2024; 62:296-313. [PMID: 38555860 PMCID: PMC11632782 DOI: 10.1080/13880209.2024.2330609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
CONTEXT Hyperpigmentation, a common skin condition marked by excessive melanin production, currently has limited effective treatment options. OBJECTIVE This study explores the effects of Tao-Hong-Si-Wu decoction (THSWD) on hyperpigmentation and to elucidate the underlying mechanisms. MATERIALS AND METHODS We employed network pharmacology, Mendelian randomization, and molecular docking to identify THSWD's hub targets and mechanisms against hyperpigmentation. The Cell Counting Kit-8 (CCK-8) assay determined suitable THSWD treatment concentrations for PIG1 cells. These cells were exposed to graded concentrations of THSWD-containing serum (2.5%, 5%, 10%, 15%, 20%, 30%, 40%, and 50%) and treated with α-MSH (100 nM) to induce an in vitro hyperpigmentation model. Assessments included melanin content, tyrosinase activity, and Western blotting. RESULTS ALB, IL6, and MAPK3 emerged as primary targets, while quercetin, apigenin, and luteolin were the core active ingredients. The CCK-8 assay indicated that concentrations between 2.5% and 20% were suitable for PIG1 cells, with a 50% cytotoxicity concentration (CC50) of 32.14%. THSWD treatment significantly reduced melanin content and tyrosinase activity in α-MSH-induced PIG1 cells, along with downregulating MC1R and MITF expression. THSWD increased ALB and p-MAPK3/MAPK3 levels and decreased IL6 expression in the model cells. DISCUSSION AND CONCLUSION THSWD mitigates hyperpigmentation by targeting ALB, IL6, and MAPK3. This study paves the way for clinical applications of THSWD as a novel treatment for hyperpigmentation and offers new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wenyi Ye
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
4
|
Fan LL, Fang H, Zheng JY, Qiu YH, Wu GL, Cai YF, Chen YB, Zhang SJ. Taohong Siwu decoction alleviates cognitive impairment by suppressing endoplasmic reticulum stress and apoptosis signaling pathway in vascular dementia rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118407. [PMID: 38824979 DOI: 10.1016/j.jep.2024.118407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (TSD), a classic traditional Chinese medicine formula, is used for the treatment of vascular diseases, including vascular dementia (VD). However, the mechanisms remain unclear. AIM OF STUDY This study aimed to investigate whether TSD has a positive effect on cognitive impairment in VD rats and to confirm that the mechanism of action is related to the Endoplasmic Reticulum stress (ERs) and cell apoptosis signaling pathway. MATERIALS AND METHODS A total of 40 male adult Sprague-Dawley rats were divided into four groups: sham-operated group (Sham), the two-vessel occlusion group (2VO), the 2VO treated with 4.5 g/kg/d TSD group (2VO + TSD-L), the 2VO treated with 13.5 g/kg/d TSD group (2VO + TSD-H). The rats underwent either 2VO surgery or sham surgery. Postoperative TSD treatment was given for 4 consecutive weeks. Behavioral tests were initiated at the end of gastrulation. Open-field test (OFT) was used to detect the activity level. The New Object Recognition test (NOR) was used to test long-term memory. The Morris water maze (MWM) test was used to examine the foundation of spatial learning and memory. As a final step, the hippocampus was taken for molecular testing. The protein levels of GRP78 (Bip), p-PERK, PERK, IRE1α, p-IRE1α, ATF6, eIF2α, p-eIF2α, ATF4, XBP1, Bcl-2 and Bax were determined by Western blot. Immunofluorescence visualizes molecular expression. RESULTS In the OFT, residence time in the central area was significantly longer in both TSD treatment groups compared to the 2VO group. In the NOR, the recognition index was obviously elevated in both TSD treatment groups. The 2VO group had a significantly longer escape latency and fewer times in crossing the location of the platform compared with the Sham group in MWM. TSD treatment reversed this notion. Pathologically, staining observations confirmed that TSD inhibited hippocampal neuronal loss and alleviated the abnormal reduction of the Nissl body. In parallel, TUNEL staining illustrated that TSD decelerated neuronal apoptosis. Western Blot demonstrated that TSD reduces the expression of ERs and apoptotic proteins. CONCLUSION In this study, the significant ameliorative effect on cognitive impairment of TSD has been determined by comparing the behavioral data of the 4 groups of rats. Furthermore, it was confirmed that this effect of TSD was achieved by suppressing the ERs-mediated apoptosis signaling pathway.
Collapse
Affiliation(s)
- Ling-Ling Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Hao Fang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu-Hui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China.
| | - Yun-Bo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM Guangzhou, 510000, China.
| |
Collapse
|
5
|
Shi Y, Wang S, Deng D, Wang Y. Taohong Siwu Decoction: a classical Chinese prescription for treatment of orthopedic diseases. Chin J Nat Med 2024; 22:711-723. [PMID: 39197962 DOI: 10.1016/s1875-5364(24)60581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 09/01/2024]
Abstract
The pathogenesis of orthopedic diseases is intimately linked to blood stasis, frequently arising from damage to primary and secondary blood channels. This disruption can lead to "blood leaving the meridians" or Qi stagnation, resulting in blood stasis syndrome. Taohong Siwu Decoction (THSWD) is a renowned classical Chinese medicinal formula extensively used to promote blood circulation and mitigate blood stasis. Clinical studies have demonstrated its significant therapeutic effects on various orthopedic conditions, particularly its anti-inflammatory and analgesic properties, as well as its efficacy in preventing deep vein thrombosis post-surgery. Despite these findings, research on THSWD remains fragmented, and its interdisciplinary impact is limited. This review aims to provide a comprehensive evaluation of the efficacy and pharmacological mechanisms of THSWD in treating common orthopedic diseases. Additionally, we employ bibliometric analysis to explore research trends and hotspots related to THSWD. We hope this review will enhance the recognition and application of THSWD in orthopedic treatments and guide future research into its pharmacological mechanisms.
Collapse
Affiliation(s)
- Yunzhen Shi
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Disi Deng
- Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
6
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
7
|
He Y, Gu X, Yang Z, Wang H, Liu P. Study on the mechanism underlying Trichosanthis peel injection-induced improvements in myocardial fibrosis markers in patients with chronic heart failure. Clin Exp Pharmacol Physiol 2024; 51:e13848. [PMID: 38423007 DOI: 10.1111/1440-1681.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
In this research, we aimed to observe the changes in myocardial fibrosis indices in patients with chronic heart failure before and after treatment and to evaluate the anti-chronic heart failure and ventricular remodelling effects of Trichosanthis peel (TP) injection. This study was a single-center, open, single-blind, randomized controlled study with an optimal efficacy design. Patients were consecutively and randomly divided into two groups, with 36 patients in the TP injection group and 36 patients in the conventional treatment group. ELISA was used to measure changes in myocardial fibrosis indices before and after discharge, including transforming growth factor β (TGF-β), serum hyaluronic acid (HA), type I procollagen (PCI), laminin (LN) and type III procollagen (PCIII). There was no significant difference between the two groups in clinical data or baseline level of myocardial fibrosis before treatment. After treatment, compared with the conventional treatment group, the myocardial fibrosis index was significantly decreased following TP injection. Our findings indicate that TP injection combined with conventional medicine can attenuate myocardial fibrosis by reducing angiotensin II, aldosterone, TGFβ, HA, PCI, metallomatrix proteinase 2, connective tissue growth factor and LN and promote ventricular remodelling in patients with chronic heart failure.
Collapse
Affiliation(s)
- Yue He
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Cardiology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Xinsheng Gu
- Department of Cardiology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zhou Yang
- Department of General Surgery, Affiliated Cancer Hospital of Fudan University, Shanghai, China
| | - Hao Wang
- Experimental Teaching Center of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ping Liu
- Shanghai University of Traditional Chinese Medicine, Longhua Hospital, Shanghai, China
| |
Collapse
|
8
|
Cai N, Han Y, Wang G, Huang X, Bo X, Qin H. Effectiveness of Taohong Siwu decoction in the prevention of deep vein thrombosis in hip surgery patients: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2024; 103:e37241. [PMID: 38428876 PMCID: PMC10906615 DOI: 10.1097/md.0000000000037241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis aimed to evaluate the effects of Taohong Siwu Decoction (THSWD) combined with low molecular weight heparin (LMWH), as well as THSWD alone, on the incidence of Deep vein thrombosis (DVT), D-dimer levels, prothrombin time (PT), activated partial thromboplastin time (APTT), visual analogue scale (VAS) pain score, and calf swelling in patients undergoing hip fracture or replacement surgery, compared to LMWH. METHODS According to the predefined inclusion criteria, we conducted a comprehensive search for randomized controlled trials (RCTs) examining the efficacy of THSWD combined with LMWH or THSWD compared to LMWH in patients with hip fractures or undergoing replacement surgery. The search was performed across multiple databases including China National Knowledge Internet, WanFang, Sinomed, Duxiu, PubMed, Embase, Google Scholar, Cochrane, and Web of Science from their inception until December 2023. Additionally, relevant literature references were retrieved and hand searching of pertinent journals was conducted. The methodological quality assessment of the included trials was carried out following the guidelines outlined in the Cochrane Handbook. Review Manager 5.4 was applied in analyzing and synthesizing. RESULTS A total of 18 RCTs with 1353 patients were included. The results of meta-analysis showed that compared with the control group, the combined group had a better effect on the incidence of DVT [RR = 0.32, 95% CI(0.17, 0.58; P = .0002], D-dimer [SMD = -5.88, 95% CI(-7.66, -4.11); P < .00001], VAS [MD = -1.16, 95% CI(-1.81, -0.50); P = .0005], Calf circumference difference [MD = -0.56, 95% CI(-1.05, -0.08); P = .02]. There was no significant difference in PT and APTT between the combined group and the control group. Meta-analysis results show that the D-dimer, incidence of DVT, PT, and APTT did not significantly differ between the THSWD and the LMWH groups. CONCLUSION This meta-analysis shows that compared with LMWH, THSWD combined with LMWH has a better efficacy in the treatment of DVT after hip surgery, without a significant increase in the incidence of adverse events. Additionally, the combined therapy can also reduce D-dimer, VAS, and swelling. However, due to the limitations of the included studies (such as small sample size and low-quality evidence), the results need to be further verified in more rigorous multicenter clinical trials with a large sample size.
Collapse
Affiliation(s)
- Ningning Cai
- Fuzhou Medical College of Nanchang University, Jiangxi, China
| | | | - Gang Wang
- Xi’an Physical Education University, Shanxi, China
| | - Xiongfeng Huang
- Fuzhou Medical College of Nanchang University, Jiangxi, China
| | - Xueping Bo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China
| | - Han Qin
- Anhui No.2 Provincial People’s Hospital, Anhui, China
| |
Collapse
|
9
|
Yang Y, Zhu Y, Liu C, Cheng J, He F. Taohong Siwu decoction reduces acute myocardial ischemia-reperfusion injury by promoting autophagy to inhibit pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117515. [PMID: 38042386 DOI: 10.1016/j.jep.2023.117515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu decoction (TSD) is a classic traditional Chinese medicine (TCM) prescription used to promote the blood circulation and alleviate blood stasis. TSD consists of Paeonia lactiflora Pall., Conioselinum anthriscoides (H. Boissieu) Pimenov & Kljuykov, Rehmannia glutinosa (Gaertn.) DC., Prunus persica (L.) Batsch, Angelica sinensis (Oliv.) Diels, and Carthamus creticus L. in the ratio of 3:2:4:3:3:2. Studies on the effects of TSD on myocardial ischemia-reperfusion injury (MIRI) from the perspective of autophagy and pyroptosis have not been reported. AIM OF THE STUDY Investigate the effect of TSD on MIRI and explore the underlying mechanisms. MATERIALS AND METHODS We searched the main components and corresponding potential targets of TSD on The Pharmacology of Traditional Chinese Medicine Systems database for target prediction. We identified targets for MIRI on Online Mendelian Inheritance in Man and GeneCards databases. The intersection of the compound target and disease target was obtained and a protein-protein interaction network constructed. We undertook enrichment analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The results of network pharmacology were verified by in vivo experiments in mice. RESULTS In mice, TSD significantly reduced the volume of the myocardial infarct, significantly reduced serum levels of cardiac troponin-nI (CTnI), creatine kinase-myocardial band (CK-MB), malonaldehyde (MDA), interleukin (IL)-6, increased the activity of superoxide dismutase (SOD) and IL-10 level, reduced the level of pyroptosis in myocardial tissue, increased the number of autophagosomes, and significantly reduced the fluorescence intensity of apoptosis-associated speck-like protein (ASC), Nod-like receptor protein 3 (NLRP3), and caspase-1. TSD administration increased the protein expression of microtubule-associated protein light chain 3 (LC3), but reduced the protein expression of p62, NLRP3, ASC, caspase-1, cleaved caspase-1, pro-caspase-1, gasdermin D (GSDMD), GSDMD-N-terminal, IL-18, and IL-1β. Administration of 3-Methyladenin could reverse the effect of TSD in inhibiting inflammation and the release of proinflammatory factors. CONCLUSION TSD treatment alleviated MIRI by promoting autophagy to suppress activation of the NLRP3 inflammasome and reducing the release of proinflammatory factors.
Collapse
Affiliation(s)
- Yuming Yang
- College of the Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Ying Zhu
- College of the Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Changyi Liu
- College of the Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Cheng
- College of the Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Fei He
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Cai M, Chen Z, Zhang M, Xia W, Dai W, Zhao M, Xie R, Ji Z, Han L, Peng D. The Tao Hong Si Wu Decoction ameliorates diabetes-associated cognitive dysfunction by inhibiting the formation of amyloid plaques. Int J Geriatr Psychiatry 2024; 39:e6076. [PMID: 38488826 DOI: 10.1002/gps.6076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/03/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES The herbs in Tao Hong Si Wu Decoction (THSWD) are beneficial in the treatment of cognitive impairment. However, the underlying mechanisms of THSWD in treating diabetes-associated cognitive dysfunction (DACD) are not entirely explored. This study is aimed to investigate the therapeutic effects of THSWD in DACD model rats and the underlying mechanism. METHODS Ultra-high-phase liquid chromatography was employed to identify the main compounds contained in the THSWD extract. DACD rat model was induced by feeding with a high-sugar and high-fat diet and injecting streptozotocin (35 mg/kg). DACD rats were gavaged with THSWD for 1 week. The learning and memory abilities of the rats were measured by using the Morris water maze. Western blotting was used to detect the changes in DACD rat targets. Statistical methods were used to evaluate the correlation between proteins. RESULTS The results show that THSWD effectively reduced the escape latency, hippocampal neuron damage, glycosylated hemoglobin, type A1C, and blood lipid levels in DACD rats. Furthermore, DACD rats showed significantly increased amyloid precursor protein, β-secretase, Aβ1-40 , Aβ1-42 , Tau phosphorylation, and advanced glycation end products (AGEs) expression. However, THSWD treatment can reverse this phenomenon. CONCLUSIONS THSWD can improve the learning and memory abilities of DACD rats by inhibiting the expression of AEGs-AGE receptors pathway, which provides an experimental basis for the clinical application of THSWD. In addition, the experiment combines pharmacological and statistical methods, which offers a new perspective for the study of Chinese herbal medicine.
Collapse
Affiliation(s)
- Ming Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhen Chen
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei, Anhui, China
- Department of Pharmacy, Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Mengling Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenwen Xia
- Department of Pharmacy, Lu'an City Hospital of Traditional Chinese Medicine, Lu'an, Anhui, China
| | - Wentao Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengdie Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ruonan Xie
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaojie Ji
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
11
|
Luo ZR, Meng WT, Li H, Wang Y, Wang YC, Zhao Y, Lu PP, Yuan Y, Huang W, Guo HD. Transplantation of induced pluripotent stem cells-derived cardiomyocytes combined with modified Taohong Siwu decoction improved heart repair after myocardial infarction. Heliyon 2024; 10:e26700. [PMID: 38434034 PMCID: PMC10906439 DOI: 10.1016/j.heliyon.2024.e26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Objective This study aimed to study whether modified Taohong Siwu decoction (MTHSWD) combined with human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs) transplantation can promote cardiac function in myocardial infarction (MI) nude mouse model and explore its possible mechanism. Methods The MI mouse model was established by the ligation of left anterior descending coronary artery. After 4 weeks of gavage of MTHSWD combined with iPS-CMs transplantation, the changes in heart function of mice were examined by echocardiography. The histological changes were observed by Masson's trichrome staining. The survival and differentiation of transplanted cells were detected by double immunofluorescence staining of human nuclear antigen (HNA) and cardiac troponin T (cTnT). The number of c-kit-positive cells in the infarct area were evaluated by immunofluorescent staining. The levels of stromal cell-derived factor 1 (SDF-1), stem cell factor (SCF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor in infarcted myocardium tissues were detected by ELISA. Results MTHSWD combined with iPS-CMs transplantation can improve the heart function of MI mice, reduce the infarct size and collagen deposition in infarct area. By immunofluorescence double-label detection of HNA and cTnT, it was found that MTHSWD combined with iPS-CMs transplantation can improve the survival and maturation of iPS-CMs. In addition, MTHSWD combined with iPS-CMs transplantation can activate more endogenous c-kit positive cardiac mesenchymal cells, and significantly increase the content of SDF-1, SCF and VEGF in myocardial tissues. Conclusions The combination of MTHSWD with iPS-CMs transplantation promoted cardiac function of nude mice with MI by improving the survival and maturation of iPS-CMs in the infarct area, activating the endogenous c-kit positive cardiac mesenchymal cells, and increasing paracrine.
Collapse
Affiliation(s)
- Zhi-rong Luo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wan-ting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Han Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-chao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping-ping Lu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Huang
- Department of Chinese Internal Medicine, Dahua Hospital, Xuhui District, Shanghai, China
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
12
|
Tu B, Wang Y, Wu Z, Zhou W, Tang X, Zhang C, Gao Y. DIA-based serum proteomics revealed the protective effect of modified siwu decoction against hypobaric hypoxia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117303. [PMID: 37827297 DOI: 10.1016/j.jep.2023.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Siwu decoction (SWD) is a common traditional formula for nourishing blood, and its derived formulas are also widely used in traditional Chinese medicine (TCM) clinic. However, the protective effects of SWD and its derived formulas on blood deficiency and blood stasis caused by rushing to the plateau are rarely reported, and the underlying mechanism has not been fully elucidated. AIM OF THE STUDY This study explores the pharmacological effects and mechanisms of modified siwu decoction (MSWD) adding Persicae Semans (Prunus persica (L.) Batsch) and Carthami Flos (Carthamus tinctorius L.) against hypobaric hypoxia (HH). The acute toxicity of MSWD was also evaluated to further validate the potential of MSWD as a therapeutic candidate for HH. MATERIALS AND METHODS Hypoxic models of C57BL/6 J and KM male mice were used to evaluate the pharmacological effect of MSWD. 2 μL serum sample of C57BL/6 J mice was digested into peptide mixtures and analyzed with DIA mode on an Orbitrap Fusion Lumos mass spectrometer after LC separation. The peptide and protein identifications were limited to a 1% FDR. Screening of differential expressed proteins, correlation analysis, hierarchical clustering analysis, principal components analysis and Mfuzz analysis were all performed by R packages. The protein-protein interaction network was analyzed using the STRING website and constructed with Cytoscape software. RESULTS MSWD showed a protective effect against acute hypoxia exposure through increasing the number of red blood cells and improving hemodynamics indexes in mice. Meanwhile, the biochemical results showed that MSWD could reduce the inflammation and oxidative stress, reduce the content of organ injury biomarkers and significantly improve the high-intensity exercise ability of mice. Subsequently, serum DIA proteomic results revealed significant changes in proteomic characteristics after MSWD intervention. Specifically, proteins related to oxidative stress and ubiquitin-proteasome system, such as Sod1, Gstp1, Vcp and Usp14, were down-regulated after MSWD intervention, suggesting that the protective effect of MSWD involved the reduction of oxidative stress and energy expenditure. MSWD also intervened in energy metabolism and lipid metabolism processes by altering the expression levels of Eno1, Sphk1 and Apoa1 to ameliorate hypoxia-induced disorders. At the same time, MSWD acute toxicity test showed no obvious toxicity. CONCLUSIONS MSWD has a good protective effect against HH by ameliorating hypoxia-induced disorders of energy and lipid metabolism, supporting MSWD as a safe drug candidate for the prevention and treatment of acute hypoxia fatigue.
Collapse
Affiliation(s)
- Bodan Tu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yihao Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zhenhui Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xianglin Tang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Cheng Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guang Zhou, 510006, China
| | - Yue Gao
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330000, China; Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guang Zhou, 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
13
|
Fan W, Liu J, Liu Q. Exploring the potential mechanism and molecular targets of Taohong Siwu Decoction against deep vein thrombosis based on network pharmacology and analysis docking. Medicine (Baltimore) 2024; 103:e36220. [PMID: 38215128 PMCID: PMC10783296 DOI: 10.1097/md.0000000000036220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 01/14/2024] Open
Abstract
This study aims to investigate the mechanism of Taohong Siwu Decoction (THSWD) against deep vein thrombosis (DVT) using network pharmacology and molecular docking technology. We used the Traditional Chinese Medicine Systems Pharmacology database and reviewed literature to identify the main chemical components of THSWD. To find targets for DVT, we consulted GeneCards, Therapeutic Target Database, and PharmGKB databases. We used Cytoscape 3.8.2 software to construct herb-disease-gene-target networks. Additionally, we integrated drug targets and disease targets on the STRING platform to create a protein-protein interaction network. Then, we conducted Kyoto Encyclopedia of Genes and Genomes and gene ontology analysis. Finally, We employed the molecular docking method to validate our findings. We identified 56 potential targets associated with DVT and found 61 effective components. beta-sitosterol, quercetin, and kaempferol were the most prominent among these components. Our analysis of the protein-protein interaction network revealed that IL6, L1B, and AKT1 had the highest degree of association. Gene ontology analysis showed that THSWD treatment for DVT may involve response to inorganic substances, negative regulation of cell differentiation, plasma membrane protein complex, positive regulation of phosphorylation, and signaling receptor regulator activity. Kyoto Encyclopedia of Genes and Genomes analysis indicated that lipid and atherosclerosis, pathways in cancer, as well as the PI3K-Akt pathway are the main signal pathways involved. Molecular docking results demonstrated strong binding affinity between beta-sitosterol, quercetin, kaempferol, and AKT1 proteins as well as IL1B and IL6 proteins. The main targets for THSWD treatment of DVT may include AKT1, IL1B, and IL6. Beta-sitosterol, quercetin, and kaempferol may be the active ingredients responsible for producing this effect. These compounds may slow down the progression of DVT by regulating the inflammatory response through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wei Fan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, China
| | - Jinhui Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, China
| | - Qingyan Liu
- The Operating Room, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Chen R, Song C, Qiu J, Su Q, Wang X, Deng G, Cheng K, Chen X, Xiang W, Liu T, Chen X, Wu J. Exploring the potential mechanism of Taohong Siwu decoction in the treatment of avascular necrosis of the femoral head based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e35312. [PMID: 38115279 PMCID: PMC10727545 DOI: 10.1097/md.0000000000035312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 12/21/2023] Open
Abstract
Based on network pharmacology and molecular docking, this study seeks to investigate the mechanism of Taohong Siwu decoction (THSWD) in the treatment of avascular necrosis of the femoral head (AVNFH). The Traditional Chinese Medicine Systems Pharmacology database was used in this investigation to obtain the active ingredients and related targets for each pharmaceutical constituent in THSWD. To find disease-related targets, the terms "avascular necrosis of the femoral head," "necrosis of the femoral head," "steroid-induced necrosis of the femoral head," "osteonecrosis," and "avascular necrosis of the bone" were searched in the databases DisGeNET, GeneCards, Comparative Toxicogenomics Database, and MalaCards. Following the identification of the overlap targets of THSWD and AVNFH, enrichment analysis using gene ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, and WikiPathways was conducted. The "THSWD-drug-active compound-intersection gene-hub gene-AVNFH" network and protein-protein interaction network were built using Cytoscape 3.9.1 and string, and CytoHubba was used to screen hub genes. The binding activities of hub gene targets and key components were confirmed by molecular docking. 152 prospective therapeutic gene targets were found in the bioinformatics study of ONFH treated with THSWD, including 38 major gene targets and 10 hub gene targets. The enrichment analysis of 38 key therapeutic targets showed that the biological process of gene ontology analysis mainly involved cytokine-mediated signaling pathway, angiogenesis, cellular response to reactive oxygen species, death-inducing signaling complex. The Kyoto Encyclopedia of Genes and Genomes signaling pathway mainly involves TNF signaling pathway, IL-17 signaling pathway, and the Recactome pathway mainly involves Signaling by Interleukins, Apoptosis, and Intrinsic Pathway for Apoptosis. WikiPathways signaling pathway mainly involves TNF-related weak inducer of apoptosis signaling pathway, IL-18 signaling pathway. According to the findings of enrichment analysis, THSWD cured AVNFH by regulating angiogenesis, cellular hypoxia, inflammation, senescence, apoptosis, cytokines, and cellular proliferation through the aforementioned targets and signaling pathways. The primary component of THSWD exhibits a strong binding force with the key protein of AVNFH. This study sheds new light on the biological mechanism of THSWD in treating AVNFH by revealing the multi-component, multi-target, and multi-pathway features and molecular docking mechanism of THSWD.
Collapse
Affiliation(s)
- Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Junjie Qiu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qifan Su
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoqiang Wang
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Guanghui Deng
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoyu Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wei Xiang
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaojun Chen
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiaqi Wu
- Department of Orthopedics and Traumatology (Trauma and Bone-Setting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
15
|
Luo X, Wang R, Zhang X, Wen X, Xie W. Identification of key genes associated with heart failure based on bioinformatics analysis and screening of traditional Chinese medicines for the prevention and treatment of heart failure. Medicine (Baltimore) 2023; 102:e35959. [PMID: 38065888 PMCID: PMC10713177 DOI: 10.1097/md.0000000000035959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure (HF) is the final stage of heart disease. An increasing number of experiments and clinical reports have shown that traditional Chinese medicine (TCM) has many therapeutic effects and advantages in treating HF. In this study, we used bioinformatics methods to screen key genes and predict the components of Chinese herbal medicines with preventive and therapeutic effects on HF. GSE120895 and GSE21610 HF chips were downloaded from the Gene Expression Omnibus database. We screened differentially expressed genes (DEGs). Weighted gene coexpression network analysis was performed to determine key modules. Genes in key modules were used for Gene Ontology and Kyoto Encyclopedia of Genes Genomes analysis to determine the biological functions. Finally, receiver operating characteristic curve analysis was used to screen out key genes, and single-sample GSEA was conducted to screen TCM compounds and effective ingredients of TCM compounds related to HF. We have selected a key module (MeTerquoise) and identified 489 DEGs, of which 357 are up regulated and 132 are down regulated. Gene Ontology and Kyoto Encyclopedia of Genes Genomes analyses indicated that the DEGs were associated with the extracellular matrix, fat metabolism and inflammatory response. We identified IL2, CXCR4, CCL5, THY1, CCN2, and IL7R as key genes. Single-sample GSEA showed that key genes were mainly related to energy metabolism, mitochondrial oxidative phosphorylation, extracellular matrix, and immunity. Finally, a total of 70 TCM compounds and 30 active ingredients of TCM compounds were identified. Bioinformatics methods were applied to preliminarily predict the key genes and TCM compounds involved in HF. These results provide theoretical support for the treatment of HF with TCM compounds and provide targets and research strategies for the development of related new Chinese medicines.
Collapse
Affiliation(s)
- Xu Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Cardiology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine (Traditional Chinese Medicine Hospital of Sichuan), Chengdu, Sichuan, China
| |
Collapse
|
16
|
Lu X, Li J, Zhou B, Lu X, Li W, Ouyang J. Taohong Siwu Decoction enhances human bone marrow mesenchymal stem cells proliferation, migration and osteogenic differentiation via VEGF-FAK signaling in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116203. [PMID: 36682599 DOI: 10.1016/j.jep.2023.116203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (THSWD) is a conventional traditional Chinese prescription aiming at promoting blood circulation and alleviating blood stasis. It is widely prescribed in instances of ischemic strokes, cardiovascular diseases, osteoporosis and bone fracture. However, its molecular functions in bone formation remain uncharacterized. AIM OF STUDY This study aims to explore the potential effects of THSWD treatment on human bone marrow mesenchymal stem cells (BMSCs) proliferation, osteogenic differentiation, and migration. MATERIALS AND METHODS BMSCs undergo osteogenic, adipogenic, and chondrogenic differentiation to determine cell stemness. BMSCs were treated with low dose (200 μg/ml), medium dose (400 μg/ml) and high dose (600 μg/ml) THSWD. The cell viability was determined by CCK-8 assays, the osteogenic differentiation ability was determined by alizarin red staining and ALP staining, and cell migration was determined by wound healing and transwell assays. The effect of THSWD on the vascular endothelial growth factor (VEGF)/focal adhesion kinase (FAK) pathway was determined by immunoblotting. RESULTS THSWD time-dependently and dose-dependently promoted BMSC viability. Moreover, THSWD also promoted BMSC osteogenic differentiation and migration. As opposed to THSWD, VEGF receptor inhibitor Bevacizumab suppressed BMSC osteogenic differentiation and migration. In BMSCs that have been co-treated with THSWD and Bevacizumab, THSWD effects on BMSC functions were partially eliminated by Bevacizumab. Moreover, THSWD treatment boosted VEGF content in the supernatant and was conducive to the phosphorylation of FAK and Src, whereas Bevacizumab exerted opposite effects; similarly, Bevacizumab partially abolished THSWD effects on VEGF and FAK (Tyr397) and Src (Tyr418) phosphorylation. CONCLUSION THSWD enhances the capacities of BMSCs to proliferate, differentiate, and migrate, possibly through VEGF and the FAK-Src, thereby improving fracture healing.
Collapse
Affiliation(s)
- Xiaolong Lu
- Department of Orthopedics, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China.
| | - Juan Li
- Department of Orthopedics, Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China
| | - Biao Zhou
- Department of Orthopedics, Wangjing Hospital of Chinese Academy of Chinese Medical Science, Beijing, 100102, PR China; Department of Orthopedics, Xiangtan Hospital Affiliated to University of South China, Xiangtan, 411101, Hunan Province, PR China
| | - Xuedi Lu
- Department of Orthopedics, Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China
| | - Wei Li
- Department of Orthopedics, Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China
| | - Jian Ouyang
- Department of Orthopedics, Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410005, Hunan Province, PR China
| |
Collapse
|
17
|
Chen WC, Liang XY, Xie LY, Wu MA, Shen Q, Yao LM, Zhao W, Zhang SJ, Wang Q, Liang Y, Li WR. Comparative Study on the Pharmacokinetics of Paeoniflorin, White Peony Root Water Extract, and Taohong Siwu Decoction After Oral Administration in Rats. Eur J Drug Metab Pharmacokinet 2023; 48:301-310. [PMID: 37079249 DOI: 10.1007/s13318-023-00825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Taohong Siwu Decoction (TSD) is a classic traditional Chinese medicine (TCM) compound with pharmacological effects such as vasodilation and hypolipidemia. Paeoniflorin (PF) is one of the active ingredients of TSD. The aim of this study was to evaluate the pharmacokinetics of PF in herbal extracts and their purified forms in rats. METHOD A sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) method for the determination of PF in rat plasma was developed. Rats were divided into three groups, and given PF solution, water extract of white peony root (WPR), or TSD by gavage. At different predetermined timepoints after gavage, blood was collected from the orbital vein. The pharmacokinetic parameters of PF in the plasma of rats in the three groups was determined. RESULTS The pharmacokinetic studies showed that the time to reach maximum concentration (Tmax) of PF in the purified forms group was relatively high, while the half-lives (T½) of PF in the TSD and WPR groups were longer. Among the three groups, PF in the purified forms group had the maximum area under the concentration-time curve (AUC0-t = 732.997 µg/L·h) and the largest maximum concentration (Cmax = 313.460 µg/L), which showed a significant difference compared with the TSD group (P < 0.05). Compared with the purified group, the clearance (CLz/F = 86.004 L/h/kg) and the apparent volume of distribution (Vz/F = 254.787 L/kg) of PF in the TSD group increased significantly (P < 0.05). CONCLUSIONS A highly specific, sensitive, and rapid HPLC-MS-MS method was developed and applied for the determination of PF in rat plasma. It was found that TSD and WPR can prolong the action time of paeoniflorin in the body.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Xiao-Yi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Li-Yuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Ming-An Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Qi Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Li-Mei Yao
- School of TCM Healthcare, Guangdong Food and Drug Vocational College, Guangzhou, 510520, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China.
| | - Wei-Rong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
18
|
Wang X, Lu J, Li G, Luo L, Yuan Z, Li M, Zhang J, Liu D. Established UPLC-MS/MS procedure for multicomponent quantitative analysis of rat plasma: Pharmacokinetics of Taohong Siwu Decoction in normal and acute blood stasis models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116094. [PMID: 36632856 DOI: 10.1016/j.jep.2022.116094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As one of China's 100 classic recipes, Taohong Siwu Decoction (THSWD) consists of Siwu Tang flavored peach kernel and safflower, and is used to nourish and activate blood. Accordingly, THSWD is mainly administered to treat blood deficiency and stasis syndrome. According to prior studies, THSWD induces antioxidant stress, inhibits inflammatory reactions, inhibits platelet aggregation, prevents fibrosis, reduces blood lipids, prolongs clotting time, prevents atherosclerosis and vascular pathology, improves hemorheological changes, and regulates related signaling pathways. MATERIALS AND METHODS A sensitive analytical method was developed to detect the marker components of THSWD using UPLC-Q-TOF-MS. A rapid and sensitive UPLC-MS/MS analytical method was developed and applied to detect 16 major bioactive components in normal and acute blood stasis (ABS) rats following oral administration of THSWD. The metabolic process of THSWD in vivo was evaluated and the differences in pharmacokinetic parameters between the normal and ABS rat metabolic processes were compared. RESULTS This method was fully validated based on its excellent linearity (r2 < 0.99), satisfactory intra- and inter-day precisions (RSD <15%), and good accuracy (RE within ±14.83%). The stability, matrix effects, and extraction recoveries of the rat plasma samples were also within the acceptable limits (RSD <15%). Compared to normal rats, the pharmacokinetics of the major active constituents (except Senkyunolide G) were significantly different (P < 0.05) in the ABS model rats, indicating that the metabolism of the 16 compounds in vivo may change under disease conditions. CONCLUSIONS In this study, a sensitive UPLC-Q-TOF-MS method was established to analyze the main components of THSWD, and a UPLC-MS/MS analytical method was developed and applied for the pharmacokinetic parameter detection of the 16 main bioactive components in normal and ABS rats. Our findings lay the foundation for further studies on the pharmacokinetic-pharmacodynamic correlation for THSWD.
Collapse
Affiliation(s)
- Xinrui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Jianzhong Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Guotong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lifei Luo
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Zhen Yuan
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Min Li
- Xiuzheng Pharmaceutical Group Stock Co., Ltd., Jilin, China
| | - Jingze Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Dailin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China.
| |
Collapse
|