1
|
Yuan Y, Li Z, Wang K, Zhang S, He Q, Liu L, Tang Z, Zhu X, Chen Y, Cai W, Peng C, Xiang X. Pharmacokinetics of Novel Furoxan/Coumarin Hybrids in Rats Using LC-MS/MS Method and Physiologically Based Pharmacokinetic Model. Molecules 2023; 28:molecules28020837. [PMID: 36677893 PMCID: PMC9866629 DOI: 10.3390/molecules28020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Novel furoxan/coumarin hybrids were synthesized, and pharmacologic studies showed that the compounds displayed potent antiproliferation activities via downregulating both the phosphatidylinositide 3-kinase (PI3K) pathway and the mitogen-activated protein kinase (MAPK) pathway. To investigate the preclinical pharmacokinetic (PK) properties of three candidate compounds (CY-14S-4A83, CY-16S-4A43, and CY-16S-4A93), liquid chromatography, in tandem with the mass spectrometry LC-MS/MS method, was developed and validated for the simultaneous determination of these compounds. The absorption, distribution, metabolism, and excretion (ADME) properties were investigated in in vitro studies and in rats. Meanwhile, physiologically based pharmacokinetic (PBPK) models were constructed using only in vitro data to obtain detailed PK information. Good linearity was observed over the concentration range of 0.01−1.0 μg/mL. The free drug fraction (fu) values of the compounds were less than 3%, and the clearance (CL) values were 414.5 ± 145.7 mL/h/kg, 2624.6 ± 648.4 mL/h/kg, and 500.6 ± 195.2 mL/h/kg, respectively. The predicted peak plasma concentration (Cmax) and the area under the concentration-time curve (AUC) were overestimated for the CY-16S-4A43 PBPK model compared with the experimental ones (fold error > 2), suggesting that tissue accumulation and additional elimination pathways may exist. In conclusion, the LC-MS/MS method was successively applied in the preclinical PK studies, and the detailed information from PBPK modeling may improve decision-making in subsequent new drug development.
Collapse
Affiliation(s)
- Yawen Yuan
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhihong Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shunguo Zhang
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lucy Liu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhijia Tang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ying Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weimin Cai
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Correspondence: (C.P.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
- Correspondence: (C.P.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| |
Collapse
|
2
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
He Q, Bu F, Wang Q, Li M, Lin J, Tang Z, Mak WY, Zhuang X, Zhu X, Lin HS, Xiang X. Examination of the Impact of CYP3A4/5 on Drug-Drug Interaction between Schizandrol A/Schizandrol B and Tacrolimus (FK-506): A Physiologically Based Pharmacokinetic Modeling Approach. Int J Mol Sci 2022; 23:ijms23094485. [PMID: 35562875 PMCID: PMC9103789 DOI: 10.3390/ijms23094485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Schizandrol A (SZA) and schizandrol B (SZB) are two active ingredients of Wuzhi capsule (WZC), a Chinese proprietary medicine commonly prescribed to alleviate tacrolimus (FK-506)-induced hepatoxicity in China. Due to their inhibitory effects on cytochrome P450 (CYP) 3A enzymes, SZA/SZB may display drug–drug interaction (DDI) with tacrolimus. To identify the extent of this DDI, the enzymes’ inhibitory profiles, including a 50% inhibitory concentration (IC50) shift, reversible inhibition (RI) and time-dependent inhibition (TDI) were examined with pooled human-liver microsomes (HLMs) and CYP3A5-genotyped HLMs. Subsequently, the acquired parameters were integrated into a physiologically based pharmacokinetic (PBPK) model to quantify the interactions between the SZA/SZB and the tacrolimus. The metabolic studies indicated that the SZB displayed both RI and TDI on CYP3A4 and CYP3A5, while the SZA only exhibited TDI on CYP3A4 to a limited extent. Moreover, our PBPK model predicted that multiple doses of SZB would increase tacrolimus exposure by 26% and 57% in CYP3A5 expressers and non-expressers, respectively. Clearly, PBPK modeling has emerged as a powerful approach to examine herb-involved DDI, and special attention should be paid to the combined use of WZC and tacrolimus in clinical practice.
Collapse
Affiliation(s)
- Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Fengjiao Bu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Qizhen Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Min Li
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Jiaying Lin
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Zhijia Tang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Wen Yao Mak
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
- Clinical Research Centre, Hospital Pulau Pinang, Pinang 10450, Malaysia
- Institute for Clinical Research, National Institute of Health, Shah Alam 40170, Malaysia
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Hai-Shu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (H.-S.L.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
- Correspondence: (H.-S.L.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| |
Collapse
|