1
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
2
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
3
|
Hirai K, Shimotashiro M, Okumura T, Ookawara S, Morishita Y. Anti-SARS-CoV-2 Spike Antibody Response to the Fourth Dose of BNT162b2 mRNA COVID-19 Vaccine and Associated Factors in Japanese Hemodialysis Patients. Int J Nephrol Renovasc Dis 2024; 17:135-149. [PMID: 38774113 PMCID: PMC11108064 DOI: 10.2147/ijnrd.s452964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
Background We assessed the anti-SARS-CoV-2 spike antibody response to four doses of BNT162b2 mRNA COVID-19 vaccine in Japanese hemodialysis patients and determined factors associated with the anti-SARS-CoV-2 spike antibody titer after the fourth dose. Methods Fifty-one patients were enrolled in this single-center, prospective, longitudinal study. Change in anti-SARS-CoV-2 spike antibody titers between after the second and fourth doses were evaluated. Multiple linear regression analysis was used to identify factors associated with the anti-SARS-CoV-2 spike antibody titer after the fourth dose. Results The anti-SARS-CoV-2 spike antibody titer was higher 4 weeks after the fourth dose compared with 4 weeks after the third dose (30,000 [interquartile range (IQR), 14,000-56,000] vs 18,000 [IQR, 11,000-32,500] AU/mL, p<0.001) and 4 weeks after the second dose (vs 2896 [IQR, 1110-4358] AU/mL, p<0.001). Hypoxia-inducible factor prolyl hydroxylase inhibitor use (standard coefficient [β]=0.217, p=0.011), and the log-anti-SARS-CoV-2 spike antibody titer 1 week before the fourth dose (β=0.810, p<0.001) were correlated with the log-anti-SARS-CoV-2 spike antibody titer 4 weeks after the fourth dose, whereas only the log-anti-SARS-CoV-2 spike antibody titer 1 week before the fourth dose (β=0.677, p<0.001) was correlated with the log-anti-SARS-CoV-2 spike antibody titer 12 weeks after the fourth dose. Conclusion Hypoxia-inducible factor prolyl hydroxylase inhibitor use and the anti-SARS-CoV-2 spike antibody titer before the fourth dose were associated with the anti-SARS-CoV-2 spike antibody titer after the fourth dose in Japanese hemodialysis patients.
Collapse
Affiliation(s)
- Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | | | | | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
4
|
Barbieri M, Chiodini P, Di Gennaro P, Hafez G, Liabeuf S, Malyszko J, Mani LY, Mattace-Raso F, Pepin M, Perico N, Simeoni M, Zoccali C, Tortorella G, Capuano A, Remuzzi G, Capasso G, Paolisso G. Efficacy of erythropoietin as a neuroprotective agent in CKD-associated cognitive dysfunction: A literature systematic review. Pharmacol Res 2024; 203:107146. [PMID: 38493928 DOI: 10.1016/j.phrs.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Patients with chronic kidney disease (CKD) often experience mild cognitive impairment and other neurocognitive disorders. Studies have shown that erythropoietin (EPO) and its receptor have neuroprotective effects in cell and animal models of nervous system disorders. Recombinant human EPO (rHuEPO), commonly used to treat anemia in CKD patients, could be a neuroprotective agent. In this systematic review, we aimed to assess the published studies investigating the cognitive benefits of rHuEPO treatment in individuals with reduced kidney function. We comprehensively searched Pubmed, Cochrane Library, Scopus, and Web of Science databases from 1990 to 2023. After selection, 24 studies were analyzed, considering study design, sample size, participant characteristics, intervention, and main findings. The collective results of these studies in CKD patients indicated that rHuEPO enhances brain function, improves performance on neuropsychological tests, and positively affects electroencephalography measurements. These findings suggest that rHuEPO could be a promising neuroprotective agent for managing CKD-related cognitive impairment.
Collapse
Affiliation(s)
- Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Paolo Chiodini
- Medical Statistics Unit, University of Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Piergiacomo Di Gennaro
- Medical Statistics Unit, University of Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Sophie Liabeuf
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens University Medical Center, Amiens, France; MP3CV Laboratory, EA7517, Jules Verne University of Picardie, Amiens, France
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Laila-Yasmin Mani
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Francesco Mattace-Raso
- Department of Internal Medicine, Section of Geriatric Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Marion Pepin
- Clinical Epidemiology, CESP, INSERM, UMR 1018, Paris Saclay University, Villejuif, France; Department of Geriatrics, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt, France
| | - Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, USA; Institute of Biology and Molecular Biology (BIOGEM), Ariano Irpino, Italy; IPNET, Reggio Calabria, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Section of Pharmacology 'L. Donatelli', Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy
| | | | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| |
Collapse
|
5
|
Fiorini G, Schofield CJ. Biochemistry of the hypoxia-inducible factor hydroxylases. Curr Opin Chem Biol 2024; 79:102428. [PMID: 38330792 DOI: 10.1016/j.cbpa.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
The hypoxia-inducible factors are α,β-heterodimeric transcription factors that mediate the chronic response to hypoxia in humans and other animals. Protein hydroxylases belonging to two different structural subfamilies of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily modify HIFα. HIFα prolyl-hydroxylation, as catalysed by the PHDs, regulates HIFα levels and, consequently, α,β-HIF levels. HIFα asparaginyl-hydroxylation, as catalysed by factor inhibiting HIF (FIH), regulates the transcriptional activity of α,β-HIF. The activities of the PHDs and FIH are regulated by O2 availability, enabling them to act as hypoxia sensors. We provide an overview of the biochemistry of the HIF hydroxylases, discussing evidence that their kinetic and structural properties may be tuned to their roles in the HIF system. Avenues for future research and therapeutic modulation are discussed.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
6
|
Fujii K, Fujishima Y, Kita S, Kawada K, Fukuoka K, Sakaue TA, Okita T, Kawada-Horitani E, Nagao H, Fukuda S, Maeda N, Nishizawa H, Shimomura I. Pharmacological HIF-1 activation upregulates extracellular vesicle production synergistically with adiponectin through transcriptional induction and protein stabilization of T-cadherin. Sci Rep 2024; 14:3620. [PMID: 38351156 PMCID: PMC10864391 DOI: 10.1038/s41598-024-51935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Pharmacological activation of hypoxia-inducible factor 1 (HIF-1), a hypoxia-responsive transcription factor, has attracted increasing attention due to its efficacy not only in renal anemia but also in various disease models. Our study demonstrated that a HIF-1 activator enhanced extracellular vesicle (EV) production from cultured endothelial cells synergistically with adiponectin, an adipocyte-derived factor, through both transcriptional induction and posttranscriptional stabilization of an adiponectin binding partner, T-cadherin. Increased EV levels were observed in wild-type mice but not in T-cadherin null mice after consecutive administration of roxadustat. Adiponectin- and T-cadherin-dependent increased EV production may be involved in the pleiotropic effects of HIF-1 activators.
Collapse
Affiliation(s)
- Kohei Fujii
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Adipose Management, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Keitaro Kawada
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Keita Fukuoka
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Taka-Aki Sakaue
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tomonori Okita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Emi Kawada-Horitani
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Nagao
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shiro Fukuda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Endocrinology, Metabolism and Diabetes, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Hitoshi Nishizawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
- Department of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Tang H, Lv F, Zhang P, Liu J, Mao J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1254459. [PMID: 37850091 PMCID: PMC10577417 DOI: 10.3389/fendo.2023.1254459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by episodic sleep state-dependent collapse of the upper airway, with consequent hypoxia, hypercapnia, and arousal from sleep. OSA contributes to multisystem damage; in severe cases, sudden cardiac death might occur. In addition to causing respiratory, cardiovascular and endocrine metabolic diseases, OSA is also closely associated with nonalcoholic fatty liver disease (NAFLD). As the prevalence of OSA and NAFLD increases rapidly, they significantly exert adverse effects on the health of human beings. The authors retrieved relevant documents on OSA and NAFLD from PubMed and Medline. This narrative review elaborates on the current knowledge of OSA and NAFLD, demonstrates the impact of OSA on NAFLD, and clarifies the underlying mechanisms of OSA in the progression of NAFLD. Although there is a lack of sufficient high-quality clinical studies to prove the causal or concomitant relationship between OSA and NAFLD, existing evidence has confirmed the effect of OSA on NAFLD. Elucidating the underlying mechanisms through which OSA impacts NAFLD would hold considerable importance in terms of both prevention and the identification of potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Furong Lv
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Zhang
- Department of Medical Information Engineering, Zhongshan College of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Huang Q, You M, Huang W, Chen J, Zeng Q, Jiang L, Du X, Liu X, Hong M, Wang J. Comparative effectiveness and acceptability of HIF prolyl-hydroxylase inhibitors versus for anemia patients with chronic kidney disease undergoing dialysis: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1050412. [PMID: 37521459 PMCID: PMC10374033 DOI: 10.3389/fphar.2023.1050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Background: The comparative benefits and acceptability of HIF-PHIs for treating anemia have not been well researched to date. We sought to compare the effectiveness of 6 HIF-PHIs and 3 ESAs for the treatment of renal anemia patients undergoing dialysis. Data sources: Cochrane Central Register of Controlled Trials, PubMed, Embase, Cochrane Library, MEDLINE, Web of Science, and clinicaltrials.gov databases. Results: Twenty-five RCTs (involving 17,204 participants) were included, all of which were designed to achieve target Hb levels by adjusting thee dose of HIF-PHIs. Regarding the efficacy in achieving target Hb levels, no significant differences were found between HIF-PHIs and ESAs in Hb response at the dose-adjusted designed RCTs selected for comparison. Intervention with roxadustat showed a significantly lower risk of RBC transfusion than rhEPO, with an OR and 95% CI of 0.76 (0.56-0.93). Roxadustat and vadadustat had higher risks of increasing the discontinuation rate than ESAs; the former had ORs and 95% CIs of 1.58 (95% CI: 1.21-2.06) for rhEPO, 1.66 (1.16-2.38) for DPO (darbepoetin alfa), and 1.76 (1.70-4.49) for MPG-EPO, and the latter had ORs and 95% CIs of 1.71 (1.09-2.67) for rhEPO, 1.79 (1.29-2.49) for DPO, and 2.97 (1.62-5.46) for MPG-EPO. No differences were observed in the AEs and SAEs among patients who received the studied drugs. Results of a meta-analysis of gastrointestinal disorders among AEs revealed that vadadustat was less effect on causing diarrea than DPO, with an OR of 0.97 (95% CI, 0.9-0.99). Included HIF-PHIs, were proven to be more effective than ESAs in reducing hepcidin levels and increasing TIBC and serum iron level with OR of -0.17 (95% CI, -0.21 to -0.12), OR of 0.79 (95% CI, 0.63-0.95), and OR of 0.39 (95% CI, 0.33-0.45), respectively. Conclusion: HIF-PHIs and ESAs have their characteristics and advantages in treating anemia undergoing dialysis. With the selected dose-adjusted mode, some HIF-PHIs appeared to be a potential treatment for DD-CKD patients when ompared with rhEPO, due to its effectiveness in decreasing the risk of RBC transfusion rate or regulating iron or lipid metabolism while achieving target Hb levels. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=306511; Identifier: CRD42022306511.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
- Guangzhou University of Chinese Traditional Medicine, Guangzhou, China
| | - Minling You
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Weijuan Huang
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jian Chen
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Qinming Zeng
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Longfeng Jiang
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiuben Du
- LuoHu Center for Chronic Disease Control, Shenzhen, China
| | - Xusheng Liu
- Guangzhou University of Chinese Traditional Medicine, Guangzhou, China
| | - Ming Hong
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan City People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Jing Wang
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
9
|
Zohar Y, Mabjeesh NJ. Targeting HIF-1 for prostate cancer: a synthesis of preclinical evidence. Expert Opin Ther Targets 2023; 27:715-731. [PMID: 37596912 DOI: 10.1080/14728222.2023.2248381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
INTRODUCTION Hypoxia-inducible factor (HIF) mediates multiple intracellular processes that drive cellular metabolism and induce proliferation. Dysregulated HIF expression is associated with oncogenic cellular transformation. Moreover, high HIF levels correlate with tumor aggressiveness and chemoresistance, indicating the vital effect of HIF-1α on tumorigenicity. Currently, widespread in-vitro and in-vivo research is focusing on targeting HIF with drugs that have already been approved for use by the FDA, such as belzutifan, in renal cell carcinoma. HIF inhibition is mostly associated with tumor size reduction; however, drug toxicity remains a challenge. AREA COVERED In this review, we focus on the potential of targeting HIF in prostate cancer (PC) and summarize the scientific background of HIF activity in PC. This finding emphasizes the rationale for using HIF as a therapeutic target in this malignancy. We have listed known HIF inhibitors that are being investigated in preclinical studies and their potential as anticancer drugs for PC. EXPERT OPINION Although HIF-targeting agents have been investigated for over a decade, their use in therapy-resistant cancers remains relevant and should be explored further. In addition, the use of naturally occurring HIF inhibitors should be considered as an add-on therapy for the currently used regimens.
Collapse
Affiliation(s)
- Yarden Zohar
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Nicola J Mabjeesh
- Department of Urology, Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| |
Collapse
|
10
|
Buliga-Finis ON, Ouatu A, Tanase DM, Gosav EM, Seritean Isac PN, Richter P, Rezus C. Managing Anemia: Point of Convergence for Heart Failure and Chronic Kidney Disease? Life (Basel) 2023; 13:1311. [PMID: 37374094 DOI: 10.3390/life13061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The pathologic triangle formed by chronic heart failure (HF), chronic kidney disease (CKD), and anemia carries high morbidity and mortality rates and decreases quality of life. Anemia represents a common condition in patients with advanced HF and CKD, with a total prevalence in cardiorenal syndrome (CRS) ranging from 5% to 55%. Searching for a pragmatic approach for these patients with guided and disease-specific recommendations beyond just targeted hemoglobin therapeutic behavior represents the core of research for ongoing clinical trials. It is well known that the prevalence of anemia increases with the advancement of CKD and HF. The physiopathological mechanisms of anemia, such as the reduction of endogenous erythropoietin and the decrease in oxygen transport, are leading to tissue hypoxia, peripheral vasodilation, stimulating neurohormonal activity, and maintenance of the progressive renal and cardiac dysfunction. Given the challenges with the treatment options for patients with cardiorenal anemia syndrome (CRSA), new therapeutic agents such as hypoxia-inducible factor-prolyl hydroxylase domain inhibitors (HIF-PH) or hepcidin antagonists are emerging in the light of recent research. This review summarizes the potential therapeutic tools for anemia therapy in the cardiorenal population.
Collapse
Affiliation(s)
- Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology and Physiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "Sf. Spiridon" County Clinical Emergency Hospital, 700111 Iasi, Romania
| |
Collapse
|
11
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Sani A, Zununi Vahed S, Ardalan M. Ischemic tubular injury: Oxygen-sensitive signals and metabolic reprogramming. Inflammopharmacology 2023:10.1007/s10787-023-01232-x. [PMID: 37131045 DOI: 10.1007/s10787-023-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
The kidneys are the most vulnerable organs to severe ischemic insult that results in cellular hypoxia under pathophysiological conditions. Large amounts of oxygen are consumed by the kidneys, mainly to produce energy for tubular reabsorption. Beyond high oxygen demand and the low oxygen supply, different other factors make kidneys vulnerable to ischemia which is deemed to be a major cause of acute kidney injury (AKI). On the other hand, kidneys are capable of sensing and responding to oxygen alternations to evade harms resulting from inadequate oxygen. The hypoxia-inducible factor (HIF) is the main conserved oxygen-sensing mechanism that maintains homeostasis under hypoxia through direct/indirect regulation of several genes that contribute to metabolic adaptation, angiogenesis, energy conservation, erythropoiesis, and so on. In response to oxygen availability, prolyl-hydroxylases (PHDs) control the HIF stability. This review focuses on the oxygen-sensing mechanisms in kidneys, particularly in proximal tubular cells (PTCs) and discusses the molecules involved in ischemic response and metabolic reprogramming. Moreover, the possible roles of non-coding RNAs (microRNAs and long non-coding RNAs) in the development of ischemic AKI are put forward.
Collapse
Affiliation(s)
| | | | - Anis Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
12
|
Kontoghiorghes GJ. Deferiprone and Iron-Maltol: Forty Years since Their Discovery and Insights into Their Drug Design, Development, Clinical Use and Future Prospects. Int J Mol Sci 2023; 24:ijms24054970. [PMID: 36902402 PMCID: PMC10002863 DOI: 10.3390/ijms24054970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The historical insights and background of the discovery, development and clinical use of deferiprone (L1) and the maltol-iron complex, which were discovered over 40 years ago, highlight the difficulties, complexities and efforts in general orphan drug development programs originating from academic centers. Deferiprone is widely used for the removal of excess iron in the treatment of iron overload diseases, but also in many other diseases associated with iron toxicity, as well as the modulation of iron metabolism pathways. The maltol-iron complex is a recently approved drug used for increasing iron intake in the treatment of iron deficiency anemia, a condition affecting one-third to one-quarter of the world's population. Detailed insights into different aspects of drug development associated with L1 and the maltol-iron complex are revealed, including theoretical concepts of invention; drug discovery; new chemical synthesis; in vitro, in vivo and clinical screening; toxicology; pharmacology; and the optimization of dose protocols. The prospects of the application of these two drugs in many other diseases are discussed under the light of competing drugs from other academic and commercial centers and also different regulatory authorities. The underlying scientific and other strategies, as well as the many limitations in the present global scene of pharmaceuticals, are also highlighted, with an emphasis on the priorities for orphan drug and emergency medicine development, including the roles of the academic scientific community, pharmaceutical companies and patient organizations.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
13
|
Guo Q, Li X, Li W, Wang R, Zhao A, Wang Z. A Pharmacodynamic Evaluation of the Protective Effects of Roxadustat Against Hypoxic Injury at High Altitude. Drug Des Devel Ther 2023; 17:75-85. [PMID: 36686057 PMCID: PMC9851060 DOI: 10.2147/dddt.s390975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose To investigate roxadustat's preventive effects on hypoxia damage in the quick ascent to high altitude. Methods The roxadustat (7.8 mg/kg, 15.6 mg/kg, and 31.2 mg/kg) and control groups of BALB/C mice were distributed at random. To evaluate roxadustat's anti-hypoxic effectiveness at the recommended dose, an atmospheric pressure closed hypoxic experiment was used. Wistar rats were randomly assigned to groups that received normal oxygen, hypoxic, acetazolamide, or roxadustat in order to evaluate the protective effects against hypoxic damage. Animal blood was obtained for arterial blood-gas analysis, inflammatory factors, and the identification of oxidative stress indicators. Animal tissues were removed for pathological investigation. Results In each group, the mice's survival time was noticeably extended compared to the normal oxygen group. The medium dose had the best time extension rate at 19.05%. Blood SatO2 and PaO2 were significantly higher in the roxadustat group compared to the hypoxic group. Erythrocyte content, hemoglobin content, and hematocrit were also significantly higher. Plasma levels of IL-6, TNF-α, and IFN-γ were also significantly lower in the roxadustat group. Roxadustat can also improve the level of oxidative stress in the tissues of hypoxic rats. According to the results of HE staining, roxadustat could greatly lessen the harm done to rat heart, brain, lung, liver, and kidney tissue as a result of hypoxia. Conclusion Roxadustat can greatly reduce inflammation, oxidative stress, and tissue damage brought on by hypoxia, showing that it can significantly enhance the body's ability to adapt to high altitude exposure.
Collapse
Affiliation(s)
- Qianwen Guo
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China,School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, People’s Republic of China
| | - Xue Li
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China
| | - Wenbin Li
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China,Correspondence: Wenbin Li, Key Laboratory of the Plateau of the Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, 730050, People’s Republic of China, Tel +86-931 8994654, Fax +86-931 2662722, Email ;
| | - Rong Wang
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China
| | - Anpeng Zhao
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China
| | - Zihan Wang
- Pharmacy of the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou, People’s Republic of China,School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
14
|
New Iron Metabolic Pathways and Chelation Targeting Strategies Affecting the Treatment of All Types and Stages of Cancer. Int J Mol Sci 2022; 23:ijms232213990. [PMID: 36430469 PMCID: PMC9696688 DOI: 10.3390/ijms232213990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
There is new and increasing evidence from in vitro, in vivo and clinical studies implicating the pivotal role of iron and associated metabolic pathways in the initiation, progression and development of cancer and in cancer metastasis. New metabolic and toxicity mechanisms and pathways, as well as genomic, transcription and other factors, have been linked to cancer and many are related to iron. Accordingly, a number of new targets for iron chelators have been identified and characterized in new anticancer strategies, in addition to the classical restriction of/reduction in iron supply, the inhibition of transferrin iron delivery, the inhibition of ribonucleotide reductase in DNA synthesis and high antioxidant potential. The new targets include the removal of excess iron from iron-laden macrophages, which affects anticancer activity; the modulation of ferroptosis; ferritin iron removal and the control of hyperferritinemia; the inhibition of hypoxia related to the role of hypoxia-inducible factor (HIF); modulation of the function of new molecular species such as STEAP4 metalloreductase and the metastasis suppressor N-MYC downstream-regulated gene-1 (NDRG1); modulation of the metabolic pathways of oxidative stress damage affecting mitochondrial function, etc. Many of these new, but also previously known associated iron metabolic pathways appear to affect all stages of cancer, as well as metastasis and drug resistance. Iron-chelating drugs and especially deferiprone (L1), has been shown in many recent studies to fulfill the role of multi-target anticancer drug linked to the above and also other iron targets, and has been proposed for phase II trials in cancer patients. In contrast, lipophilic chelators and their iron complexes are proposed for the induction of ferroptosis in some refractory or recurring tumors in drug resistance and metastasis where effective treatments are absent. There is a need to readdress cancer therapy and include therapeutic strategies targeting multifactorial processes, including the application of multi-targeting drugs involving iron chelators and iron-chelator complexes. New therapeutic protocols including drug combinations with L1 and other chelating drugs could increase anticancer activity, decrease drug resistance and metastasis, improve treatments, reduce toxicity and increase overall survival in cancer patients.
Collapse
|
15
|
Chong S, Xie Q, Ma T, Xiang Q, Zhou Y, Cui Y. Risk of infection in roxadustat treatment for anemia in patients with chronic kidney disease: A systematic review with meta-analysis and trial sequential analysis. Front Pharmacol 2022; 13:967532. [PMID: 36188528 PMCID: PMC9523222 DOI: 10.3389/fphar.2022.967532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Many studies demonstrated that roxadustat (FG-4592) could increase hemoglobin (Hb) levels effectively in anemia patients with chronic kidney disease (CKD). However, its safety remains controversial. This study aims to explore the risk of infection for CKD patients treated with roxadustat, especially focused on sepsis. Methods: We thoroughly searched for the randomized controlled trials (RCTs) comparing treatment with roxadustat versus erythropoiesis stimulating agents (ESAs) or placebo in PubMed, Embase, Cochrane Library, ClinicalTrials.gov, European Union Clinical Trials Register. Both on and not on dialysis anemia patients with CKD were included. Primary outcomes contained the incidence rates of sepsis. Secondary outcomes included infection-related consequences (septic shock and other infection events), general safety outcomes [all-cause mortality, treatment-emergent adverse events (TEAEs) and treatment-emergent serious adverse events (TESAEs)] and iron parameters. Moreover, a trial sequential analysis (TSA) was conducted to assess if the results were supposed to be a robust conclusion. Results: Eighteen RCTs (n = 11,305) were included. Overall, the incidence of sepsis (RR: 2.42, 95% CI [1.50, 3.89], p = 0.0003) and cellulitis (RR: 2.07, 95% CI [1.24, 3.44], p = 0.005) were increased in the roxadustat group compared with placebo group. In non-dialysis-dependent (NDD) CKD patients, the incidence of cellulitis (RR 2.01, 95% CI [1.23, 3.28], p = 0.005) was significantly higher in roxadustat group than that in the ESAs or placebo group. Both groups showed similar results in the incidence of septic shock (RR 1.29, 95% CI [0.86, 1.94], p = 0.22). A significant increased risk of all-cause mortality [risk ratios (RR): 1.15, 95% confidence interval (CI) [1.05, 1.26], p = 0.002] was found in roxadustat treatment, and TSA confirmed the result. Compared with ESAs or placebo, both the incident rates of TEAEs (RR:1.03, 95% CI [1.01, 1.04], p = 0.008) and TESAEs (RR: 1.06, 95% CI [1.02, 1.11], p = 0.002) were significantly increased in roxadustat group. As for iron parameters, changes from baseline (Δ) of hepcidin (MD: -26.46, 95% CI [-39.83, -13.09], p = 0.0001), Δ ferritin and Δ TSAT were remarkably lower in the roxadustat group, while Δ Hb, Δ iron and Δ TIBC increased significantly versus those in ESAs or placebo group. Conclusion: We found evidence that incidence rates of sepsis and cellulitis are higher in roxadustat group compared with placebo. This may be the result of improved iron homeostasis. The risk of all-cause mortality, TEAEs and TESAEs in CKD patients also increased in patients treated with roxadustat. We need more clinical and mechanistic studies to confirm whether roxadustat really causes infection.
Collapse
Affiliation(s)
- Shan Chong
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- *Correspondence: Qiufen Xie,
| | - Tiantian Ma
- Department of Nephrology, Peking University First Hospital, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| |
Collapse
|
16
|
Prolyl Hydroxylase Inhibition Mitigates Allograft Injury During Liver Transplantation. Transplantation 2022; 106:e430-e440. [PMID: 35849574 DOI: 10.1097/tp.0000000000004258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemia and reperfusion injury (IRI) determines primary allograft function after liver transplantation (LT). Primary graft dysfunction (PGD) is associated with increased morbidity and impaired graft survival and can eventually progress to graft failure requiring retransplantation. Hypoxia-inducible transcription factor-prolyl hydroxylase containing enzymes (PHD1, PHD2, and PHD3) are molecular oxygen sensors, which control the adaptive hypoxia response through the hypoxia-inducible factor (HIF). In this study, we have investigated pharmacological activation of the HIF pathway through inhibition of PHDs as a strategy to reduce PGD after LT. METHODS Primary rat hepatocytes were isolated and the impact of the pan-PHD small-molecule inhibitor ethyl-3,4-dihydroxybenzoate (EDHB) on HIF-1 and its downstream target gene expression assessed. Subsequently, various rodent models of segmental warm liver ischemia and reperfusion and orthotopic LT were applied to study the impact of EDHB on normothermic or combined cold and warm liver IRI. Liver enzyme levels and histology were analyzed to quantify hepatic IRI. RESULTS In vitro, EDHB induced HIF-1 signaling and significantly upregulated its downstream target heme-oxygenase 1 in primary rat hepatocytes. In vivo, after establishment of the optimal EDHB pretreatment conditions in a murine IRI model, EDHB pretreatment significantly mitigated hepatic IRI after warm segmental liver ischemia and reperfusion and allograft injury after orthotopic LT in rats. Mechanistically, EDHB stabilized HIF-1 in the liver and subsequently increased hepatoprotective heme-oxygenase 1 levels, which correlated with reduced hepatic IRI in these models. CONCLUSIONS This proof-of-concept study establishes a strong therapeutic rationale for targeting PHDs with small-molecule inhibitors to mitigate PGD after LT.
Collapse
|
17
|
Kontoghiorghes GJ. Deferiprone: A Forty-Year-Old Multi-Targeting Drug with Possible Activity against COVID-19 and Diseases of Similar Symptomatology. Int J Mol Sci 2022; 23:ijms23126735. [PMID: 35743183 PMCID: PMC9223898 DOI: 10.3390/ijms23126735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
The need for preparing new strategies for the design of emergency drug therapies against COVID-19 and similar diseases in the future is rather urgent, considering the high rate of morbidity and especially mortality associated with COVID-19, which so far has exceeded 18 million lives. Such strategies could be conceived by targeting the causes and also the serious toxic side effects of the diseases, as well as associated biochemical and physiological pathways. Deferiprone (L1) is an EMA- and FDA-approved drug used worldwide for the treatment of iron overload and also other conditions where there are no effective treatments. The multi-potent effects and high safety record of L1 in iron loaded and non-iron loaded categories of patients suggests that L1 could be developed as a “magic bullet” drug against COVID-19 and diseases of similar symptomatology. The mode of action of L1 includes antiviral, antimicrobial, antioxidant, anti-hypoxic and anti-ferroptotic effects, iron buffering interactions with transferrin, iron mobilizing effects from ferritin, macrophages and other cells involved in the immune response and hyperinflammation, as well as many other therapeutic interventions. Similarly, several pharmacological and other characteristics of L1, including extensive tissue distribution and low cost of production, increase the prospect of worldwide availability, as well as many other therapeutic approach strategies involving drug combinations, adjuvant therapies and disease prevention.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|