1
|
Sawan S, Kumari A, Majie A, Ghosh A, Karmakar V, Kumari N, Ghosh S, Gorain B. siRNA-based nanotherapeutic approaches for targeted delivery in rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 168:214120. [PMID: 39577366 DOI: 10.1016/j.bioadv.2024.214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Rheumatoid arthritis (RA), characterized as a systemic autoimmune ailment, predominantly results in substantial joint and tissue damage, affecting millions of individuals globally. Modern treatment modalities are being explored as the traditional RA therapy with non-specific immunosuppressive drugs showcased potential side effects and variable responses. Research potential with small interfering RNA (siRNA) depicted potential in the treatment of RA. These siRNA-based therapies could include genes encoding pro-inflammatory cytokines like TNF-α, IL-1, and IL-6, as well as other molecular targets such as RANK, p38 MAPK, TGF-β, Wnt/Fz complex, and HIF. By downregulating the expression of these genes, siRNA-based nanoformulations can attenuate inflammation, inhibit immune system dysregulation, and prevent tissue damage associated with RA. Strategies of delivering siRNA molecules through nanocarriers could be targeted to treat RA effectively, where specific genes associated with this autoimmune disease pathology can be selectively silenced. Additionally, simultaneous targeting of multiple molecular pathways may offer synergistic therapeutic benefits, potentially leading to more effective and safer therapeutic strategies for RA patients. This review critically highlights the in-depth pathology of RA, RNA interference-mediated molecular targets, and nanocarrier-based siRNA delivery strategies, along with the challenges and opportunities to harbor future solutions.
Collapse
Affiliation(s)
- Sweta Sawan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankita Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
2
|
Iqbal S, Chen X, Sohail M, Wu F, Fang S, Ma J, Wang H, Zhao Z, Shu G, Chen M, Du YZ, Ji J. Self-targeted smart polyester nanoparticles for simultaneous Delivery of photothermal and chemotherapeutic agents for efficient treatment of HCC. Biomater Sci 2024. [PMID: 39494574 DOI: 10.1039/d4bm01120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Advances in nanotechnology offer promising strategies to overcome the limitations of single-drug therapies in hepatocellular carcinoma (HCC) and other cancers such as multidrug resistance and variable drug tolerances. This study proposes a targeted nanoparticle system based on a poly(β-aminoester) (PβAE) core and a hyaluronic acid (HA) shell, designed for the codelivery of doxorubicin (DOX) and indocyanine green (ICG) to effectively treat HCC. These nanoparticles demonstrated remarkable physicochemical and colloidal stability, pH- and temperature-responsive release, enhanced cellular uptake, and drug retention within tumors. Upon near-infrared (NIR) irradiation, the photothermal conversion of ICG elevated local tumor temperatures up to 53.6 °C, enhancing apoptotic cell death significantly compared to chemotherapy alone (p < 0.05). Furthermore, the dual delivery system significantly enhanced therapeutic efficacy, as evidenced by a marked decrease in tumor growth in vivo compared to controls (p < 0.01). These findings illustrate that the HA/PβAE/DOX/ICG nanoparticles are not only able to precisely target tumor cells but also overcome the limitations associated with traditional chemotherapies and photothermal treatments, suggesting a promising avenue for clinical translation of cancer therapy.
Collapse
Affiliation(s)
- Sajid Iqbal
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoxiao Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Muhammad Sohail
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Ji Ma
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Haiyong Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Gaofeng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiansong Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
| |
Collapse
|
3
|
Gawel AM, Betkowska A, Gajda E, Godlewska M, Gawel D. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines 2024; 12:1822. [PMID: 39200286 PMCID: PMC11351974 DOI: 10.3390/biomedicines12081822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood-brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors.
Collapse
Affiliation(s)
- Agata M. Gawel
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Anna Betkowska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Ewa Gajda
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| | - Damian Gawel
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (A.B.); (E.G.); (M.G.)
| |
Collapse
|
4
|
Hashem MS, Fahim AM, Helaly FM. Designing a green poly(β-amino ester) for the delivery of nicotinamide drugs with biological activities and conducting a DFT investigation. RSC Adv 2024; 14:5499-5513. [PMID: 38352682 PMCID: PMC10862102 DOI: 10.1039/d3ra08585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The environmentally friendly polymerization process was carried out using microwave irradiation without additional solvents or catalysts to produce poly(β-amino ester) (PβAE) which served as a drug delivery system. PβAE was synthesized through Michael addition polymerization of 1,4-butane diol diacrylate and piperazine. Swelling and biodegradation studies were conducted in various solvents and phosphate-buffered saline (PBS, pH 7.4) at 37 °C to evaluate the properties of the polymeric gel. The PβAE matrix demonstrated solubility enhancement for hydrophobic antimicrobial and antitumor-active nicotinamide derivatives (TEINH, APTAT, and MOAPM), controlling their release over 10 days in (PBS). The successful formation of free and loaded PβAE with nicotinamide active materials was confirmed by spectroscopic analysis including Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Optimization and physical descriptor determination via the DFT/B3LYP-631(G) basis set were performed to aid in the biological evaluation of these compounds with elucidation of their physical and chemical interaction between poly(β-amino ester) and nicotinamide drugs.
Collapse
Affiliation(s)
- M S Hashem
- Polymers and Pigments Department, National Research Centre Dokki, P.O. Box. 12622 Giza Egypt
| | - Asmaa M Fahim
- Department of Green Chemistry, National Research Centre Dokki, P.O. Box. 12622 Giza Egypt
| | - F M Helaly
- Polymers and Pigments Department, National Research Centre Dokki, P.O. Box. 12622 Giza Egypt
| |
Collapse
|
5
|
Ding J, Zhang H, Dai T, Gao X, Yin Z, Wang Q, Long M, Tan S. TPGS-b-PBAE Copolymer-Based Polyplex Nanoparticles for Gene Delivery and Transfection In Vivo and In Vitro. Pharmaceutics 2024; 16:213. [PMID: 38399267 PMCID: PMC10891721 DOI: 10.3390/pharmaceutics16020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA. TPGS-b-PBAE (TBP) copolymers with varying feeding molar ratios were synthesised to obtain products of different molecular weights. Their gene transfection efficiency was subsequently evaluated in HEK 293T cells using green fluorescent protein plasmid (GFP) as the model because free GFP is unable to easily pass through the cell membrane and then express as a protein. The particle size, ζ-potential, and morphology of the TBP2-GFP polyplex NPs were characterised, and plasmid incorporation was confirmed through gel retardation assays. The TBP2-GFP polyplex NPs effectively transfected multiple cells with low cytotoxicity, including HEK 293T, HeLa, Me180, SiHa, SCC-7 and C666-1 cells. We constructed a MUC2 (Mucin2)-targeting CRISPR/cas9 gene editing system in HEK 293T cells, with gene disruption supported by oligodeoxynucleotide (ODN) insertion in vitro. Additionally, we developed an LMP1 (latent membrane protein 1)-targeting CRISPR/cas9 gene editing system in LMP1-overexpressing SCC7 cells, which was designed to cleave fragments expressing the LMP1 protein (related to Epstein-Barr virus infection) and thus to inhibit the growth of the cells in vivo. As evidenced by in vitro and in vivo experiments, this system has great potential for gene therapy applications.
Collapse
Affiliation(s)
- Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Handan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Tianli Dai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (Q.W.)
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (Q.W.)
| | - Mengqi Long
- Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-sen University, Meihua 52nd Road, Xiangzhou District, Zhuhai 510009, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| |
Collapse
|
6
|
Singh D. Macromolecular Polymer Based Complexes: A Diverse Strategy for the Delivery of Nucleotides. Protein Pept Lett 2024; 31:586-601. [PMID: 39177133 DOI: 10.2174/0109298665310091240809103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
This review explores the burgeoning field of macromolecular polymer-based complexes, highlighting their revolutionary potential for the delivery of nucleotides for therapeutic applications. These complexes, ingeniously crafted from a variety of polymers, offer a unique solution to the challenges of nucleotide delivery, including protection from degradation, targeted delivery, and controlled release. The focus of this report is primarily on the design principles, encapsulation strategies, and biological interactions of these complexes, with an emphasis on their biocompatibility, biodegradability, and ability to form diverse structures, such as nanoparticles and micelles. Significant attention is paid to the latest advancements in polymer science that enable the precise tailoring of these complexes for specific nucleotides, such as DNA, RNA, and siRNA. The review discusses the critical role of surface modifications and the incorporation of targeting ligands in enhancing cellular uptake and ensuring delivery to specific tissues or cells, thereby reducing off-target effects and improving therapeutic efficacy. Clinical applications of these polymer-based delivery systems are thoroughly examined with a focus on their use in treating genetic disorders, cancer, and infectious diseases. The review also addresses the challenges and limitations currently faced in this field, such as scalability, manufacturing complexities, and regulatory hurdles. Overall, this review provides a comprehensive overview of the current state and future prospects of macromolecular polymer-based complexes in nucleotide delivery. It underscores the significance of these systems in advancing the field of targeted therapeutics and their potential to reshape the landscape of medical treatment for a wide range of diseases.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| |
Collapse
|
7
|
Zhang J, Cai X, Dou R, Guo C, Tang J, Hu Y, Chen H, Chen J. Poly(β-amino ester)s-based nanovehicles: Structural regulation and gene delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:568-581. [PMID: 37200860 PMCID: PMC10185705 DOI: 10.1016/j.omtn.2023.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The first poly(β-amino) esters (PβAEs) were synthesized more than 40 years ago. Since 2000, PβAEs have been found to have excellent biocompatibility and the capability of ferrying gene molecules. Moreover, the synthesis process of PβAEs is simple, the monomers are readily available, and the polymer structure can be tailored to meet different gene delivery needs by adjusting the monomer type, monomer ratio, reaction time, etc. Therefore, PβAEs are a promising class of non-viral gene vector materials. This review paper presents a comprehensive overview of the synthesis and correlated properties of PβAEs and summarizes the progress of each type of PβAE for gene delivery. The review focuses in particular on the rational design of PβAE structures, thoroughly discusses the correlations between intrinsic structure and effect, and then finishes with the applications and perspectives of PβAEs.
Collapse
Affiliation(s)
- Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Chen Guo
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Jiaruo Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, P. R. China
| | - Hanqing Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
- Corresponding author: Hanqing Chen, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- Corresponding author: Jun Chen, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China.
| |
Collapse
|