1
|
Alkandahri MY, Sadino A, Abriyani E, Hermanto F, Oktoba Z, Sayoeti MFW, Sangging PRA, Wardani D, Hasan N, Sari SW, Safitri NA, Ikhtianingsih W, Safitri S. Evaluation of hepatoprotective and nephroprotective activities of Castanopsis costata extract in rats. Biomed Rep 2025; 22:24. [PMID: 39720299 PMCID: PMC11668127 DOI: 10.3892/br.2024.1902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
The liver and kidneys are important organs for body homeostasis but susceptible to damage or injury caused by different factors. A number of medicinal plants, such as Castanopsis costata have been proven effective in protecting the liver and kidneys from damage. Therefore, the present study aimed to examine the effect of C. costata extract (CcE) on paracetamol-induced hepatotoxicity and gentamicin-induced nephrotoxicity in rat model. Each treatment group was given CcE at doses of 100, 200 and 400 mg/kg for 21 and 8 days for hepatoprotective tests and nephroprotective tests, respectively. To induce liver and kidney damage, rats were given paracetamol 1,000 mg/kg orally for 7 (15-21) and gentamicin 80 mg/kg intraperitoneally for 5 (4-8) days. To assess liver function, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin (TB), total cholesterol (TC), total albumin (TA) and total protein (TP) were measured, as well as liver antioxidant enzymes. Meanwhile, to assess kidney function, the levels of serum creatinine (SCr), serum urea (SU) and uric acid (UA) were measured. TNF-α and IFN-γ were also measured with histopathology testing to assess the effects of liver and kidney organ damage in each experiment. The results showed that CcE reduced the levels of AST, ALT, ALP, TB and TC, increased TA, TP and liver antioxidant enzymes, as well as reducing SCr, SU and UA when compared with the pathological group. Additionally, CcE reduced the levels of TNF-α and IFN-γ, as well as improving the structure of liver and kidney tissue as confirmed by histopathology. CcE had hepatoprotective and nephroprotective effects on paracetamol-induced and gentamicin-induced rats, respectively.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Asman Sadino
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Garut, Garut, West Java 44151, Indonesia
| | - Ermi Abriyani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Faizal Hermanto
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, West Java 40525, Indonesia
| | - Zulpakor Oktoba
- Department of Pharmacy, Faculty of Medicine, Universitas Lampung, Bandar Lampung 35141, Indonesia
| | | | | | - Diah Wardani
- Diploma Program of Pharmacy, Karsa Husada Garut College of Health Sciences, Garut, West Java 44151, Indonesia
| | - Nahrul Hasan
- Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
| | - Suci Wulan Sari
- Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
| | - Nurul Aeni Safitri
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Windi Ikhtianingsih
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Safitri Safitri
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| |
Collapse
|
2
|
Xu X, Lu W, Zhang H, Wang X, Huang C, Huang Q, Xu W, Xu W. Hepatoma-Targeting and ROS-Responsive Polymeric Micelle-Based Chemotherapy Combined with Photodynamic Therapy for Hepatoma Treatment. Int J Nanomedicine 2024; 19:9613-9635. [PMID: 39309184 PMCID: PMC11414760 DOI: 10.2147/ijn.s475531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background The combination of nanoplatform-based chemotherapy and photodynamic therapy (PDT) is a promising way to treat cancer. Celastrol (Cela) exhibits highly effective anti-hepatoma activity with low water solubility, poor bioavailability, non-tumor targeting, and toxic side effects. The combination of Cela-based chemotherapy and PDT via hepatoma-targeting and reactive oxygen species (ROS)-responsive polymeric micelles (PMs) could solve the application problem of Cela and further enhance antitumor efficacy. Methods In this study, Cela and photosensitizer chlorin e6 (Ce6) co-loaded glycyrrhetinic acid-modified carboxymethyl chitosan-thioketal-rhein (GCTR) PMs (Cela/Ce6/GCTR PMs) were prepared and characterized. The safety, ROS-sensitive drug release, and intracellular ROS production were evaluated. Furthermore, the in vitro anti-hepatoma effect and cellular uptaken in HepG2 and BEL-7402 cells, and in vivo pharmacokinetic, tissue distribution, and antitumor efficacy of Cela/Ce6/GCTR PMs in H22 tumor-bearing mice were then investigated. Results Cela/Ce6/GCTR PMs were successfully prepared with nanometer-scale particle size, favorable drug loading capacity, and encapsulation efficiency. Cela/Ce6/GCTR PMs exhibited a strong safety profile and better hemocompatibility, exhibiting less damage to normal tissues. Compared with Cela-loaded GCTR PMs, the ROS-responsiveness of Cela/Ce6/GCTR PMs was increased, and the release of Cela was accelerated after combination with PDT. Cela/Ce6/GCTR PMs can efficiently target liver tumor cells by uptake and have a high cell-killing effect in response to ROS. The combination of GCTR PM-based chemotherapy and PDT resulted in increased bioavailability of Cela and Ce6, improved liver tumor targeting, and better anti-hepatoma effects in vivo. Conclusion Hepatoma-targeting and ROS-responsive GCTR PMs co-loaded with Cela and Ce6 combined with PDT exhibited improved primary hepatic carcinoma therapeutic effects with lower toxicity to normal tissues, overcoming the limitations of monotherapy and providing new strategies for tumor treatment.
Collapse
Affiliation(s)
- Xueya Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Weili Lu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Hua Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Xiaoying Wang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Caixia Huang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Qiuping Huang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Wen Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Wei Xu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
3
|
Zhao X, Huang B, Zhang J, Xiang W, Zhu N. Celastrol attenuates streptozotocin-induced diabetic cardiomyopathy in mice by inhibiting the ACE / Ang II / AGTR1 signaling pathway. Diabetol Metab Syndr 2023; 15:186. [PMID: 37700366 PMCID: PMC10496318 DOI: 10.1186/s13098-023-01159-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Heart failure is closely correlated with diabetic cardiomyopathy (DCM) and can lead to mortality. Celastrol has long been utilized for the treatment of immune and inflammatory disorders. However, whether celastrol would exert protective effects on DCM has not been determined. This work aimed to explore the protective actions of celastrol on DCM and unravel the underlying mechanisms involved. METHODS A DCM model was constructed in mice by intraperitoneal administration of streptozotocin. ELISA and echocardiography were performed to examine myocardial injury markers and cardiac function, respectively. Morphological changes and fibrosis were assessed using H&E staining and Masson's staining. Inflammatory cytokines and fibrotic markers were detected by ELISA and RT-PCR. Endothelial nitric oxide synthase, apoptosis, and reactive oxygen species were detected by microscopic staining. Network pharmacology approaches, molecular docking analysis, ELISA, and Western blot were used for mechanism studies. RESULTS Celastrol alleviated diabetes-induced cardiac injury and remodeling. Celastrol also suppressed diabetes-induced production of inflammatory cytokines and reactive oxygen species, as well as cardiomyocyte apoptosis. The cardioprotective effects of celastrol were associated with its inhibition on the angiotensin-converting enzyme / angiotensin II / angiotensin II receptor type 1 signaling pathway. CONCLUSION Celastrol exhibits significant potential as an effective cardioprotective drug for DCM treatment. The underlying mechanisms can be attributed to the blockage of celastrol on the angiotensin-converting enzyme signaling pathway.
Collapse
Affiliation(s)
- Xuyong Zhao
- Department of Cardiology, The Wenzhou Third Clinical Institute, The Third Affiliated Hospital of Shanghai University, Wenzhou Medical University, Wenzhou People's Hospital, No. 299 Guan Road, Wenzhou, Zhejiang Province, People's Republic of China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Zhang
- Department of Cardiology, The Wenzhou Third Clinical Institute, The Third Affiliated Hospital of Shanghai University, Wenzhou Medical University, Wenzhou People's Hospital, No. 299 Guan Road, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wenjun Xiang
- Department of Pathology, The Wenzhou Third Clinical Institute, The Third Affiliated Hospital of Shanghai University, Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ning Zhu
- Department of Cardiology, The Wenzhou Third Clinical Institute, The Third Affiliated Hospital of Shanghai University, Wenzhou Medical University, Wenzhou People's Hospital, No. 299 Guan Road, Wenzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
4
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
5
|
Li D, Chen J, Lin B, Guo Y, Pan J, Yu C, Wan X. Celastrol pretreatment attenuates concanavalin A-induced hepatitis in mice by suppressing interleukin-6/STAT3-interleukin-17 signaling. J Gastroenterol Hepatol 2023; 38:821-829. [PMID: 36967570 DOI: 10.1111/jgh.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIM Celastrol is extracted from Tripterygium wilfordii Hook F. It has been reported to have protective effects against various liver diseases and immune regulation of autoimmune diseases. However, little is known about whether celastrol protects against immune-mediated hepatitis. This study aimed to investigate the effect of celastrol on liver injury induced by concanavalin A (ConA) and the potential mechanisms. METHODS Intravenous administration of ConA was applied to induce acute liver injury in mice with or without pretreatment of celastrol. The effects of celastrol on ConA-induced liver injury were further demonstrated by biochemical and histopathological assessments, immunoblotting, and flow cytometry analysis. RESULTS Both biochemical and histopathological observations showed that pretreatment of celastrol significantly ameliorated liver injury induced by ConA. Moreover, the hepatocyte apoptosis and inflammatory responses induced by ConA were also improved in celastrol-pretreated mice. Further studies revealed that these improvements were characterized as the celastrol-mediated suppression of total interleukin (IL)-17 from liver mononuclear cells in ConA-treated mice. Flow cytometry analysis suggested that celastrol specifically decreased IL-17 production by CD4+ T cells but not by CD8+ T cells. Fundamentally, pretreatment with celastrol inhibited both the IL-6 produced by F4/80+ macrophages and the IL-6 receptor on Th17 cells in the liver, which further led to the downregulated activation of STAT3, thus accounting for blocked Th17 signaling. CONCLUSIONS Celastrol may exhibit immune regulatory effects by regulating IL-6/STAT3-IL-17 signaling in ConA-induced hepatitis, which suggested new potentials for celastrol to be applied in treating immune-mediated liver diseases.
Collapse
Affiliation(s)
- Dingwu Li
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bingru Lin
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yanjun Guo
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Pan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
6
|
Hepatoprotective Effect of Kaempferol: A Review of the Dietary Sources, Bioavailability, Mechanisms of Action, and Safety. Adv Pharmacol Pharm Sci 2023; 2023:1387665. [PMID: 36891541 PMCID: PMC9988374 DOI: 10.1155/2023/1387665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
The liver is the body's most critical organ that performs vital functions. Hepatic disorders can affect the physiological and biochemical functions of the body. Hepatic disorder is a condition that describes the damage to cells, tissues, structures, and functions of the liver, which can cause fibrosis and ultimately result in cirrhosis. These diseases include hepatitis, ALD, NAFLD, liver fibrosis, liver cirrhosis, hepatic failure, and HCC. Hepatic diseases are caused by cell membrane rupture, immune response, altered drug metabolism, accumulation of reactive oxygen species, lipid peroxidation, and cell death. Despite the breakthrough in modern medicine, there is no drug that is effective in stimulating the liver function, offering complete protection, and aiding liver cell regeneration. Furthermore, some drugs can create adverse side effects, and natural medicines are carefully selected as new therapeutic strategies for managing liver disease. Kaempferol is a polyphenol contained in many vegetables, fruits, and herbal remedies. We use it to manage various diseases such as diabetes, cardiovascular disorders, and cancers. Kaempferol is a potent antioxidant and has anti-inflammatory effects, which therefore possesses hepatoprotective properties. The previous research has studied the hepatoprotective effect of kaempferol in various hepatotoxicity protocols, including acetaminophen (APAP)-induced hepatotoxicity, ALD, NAFLD, CCl4, HCC, and lipopolysaccharide (LPS)-induced acute liver injury. Therefore, this report aims to provide a recent brief overview of the literature concerning the hepatoprotective effect of kaempferol and its possible molecular mechanism of action. It also provides the most recent literature on kaempferol's chemical structure, natural source, bioavailability, and safety.
Collapse
|
7
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|