1
|
Espeland K, Christensen E, Aandahl A, Ulvær A, Warloe T, Kleinauskas A, Darvekar S, Juzenas P, Vasovic V, Peng Q, Jahnsen J. Extracorporeal Photopheresis with 5-Aminolevulinic Acid in Crohn's Disease-A First-in-Human Phase I/II Study. J Clin Med 2024; 13:6198. [PMID: 39458148 PMCID: PMC11508395 DOI: 10.3390/jcm13206198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: With the increasing prevalence of Crohn's disease (CD), treatment options for patients who fail conventional and advanced therapy are highly needed. Therefore, we explored the safety and efficacy of extracorporeal photopheresis (ECP) using 5-aminolevulinic acid (ALA) and blue light (405 nm). Methods: Patients with active CD who failed or were intolerant to biological therapy were eligible. Mononuclear cells (90 mL) were collected from each patient using a Spectra Optia® apheresis system and diluted with 100 mL of 0.9% sodium chloride in a collection bag. The cells were incubated with ALA at a concentration of 3 millimolar (mM) for 60 min ex vivo and illumination with an LED blue light (405 nm) source (BLUE-PIT®) before reinfusion to the patient. Recording of vital signs and adverse events were regularly performed. At week 13, we assessed the patients with colonoscopy, the Harvey Bradshaw Index (HBI), the Inflammatory Bowel disease Health Related Quality of Life Questionnaire, and the measurement of serum C-reactive protein and fecal calprotectin (FC) levels. Biopsies of the intestines were taken for immunohistochemistry. Results: Seven patients were included. Four patients completed the treatments, with a total of 24 treatments. Three of the four patients achieved a favorable response, including a lower HBI, lower FC levels, and/or endoscopic improvement. No significant adverse events were observed. The remaining three patients received only one, three, or five treatments due to technical difficulties, medical reasons, or the withdrawal of informed consent. Conclusions: ALA-based ECP appears safe and seems to give some clinical improvement for the patients with active CD who failed to respond to conventional and advanced therapies.
Collapse
Affiliation(s)
- Kristian Espeland
- Department of Gastroenterology, Akershus University Hospital, N-1478 Lorenskog, Norway;
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (E.C.); (T.W.); (A.K.); (S.D.); (P.J.); (V.V.); (Q.P.)
- Institute of Clinical of Medicine, University of Oslo, N-0372 Oslo, Norway
| | - Eidi Christensen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (E.C.); (T.W.); (A.K.); (S.D.); (P.J.); (V.V.); (Q.P.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7030 Trondheim, Norway
- Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, N-7030 Trondheim, Norway
| | - Astrid Aandahl
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, N-1478 Lorenskog, Norway; (A.A.); (A.U.)
| | - Andreas Ulvær
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, N-1478 Lorenskog, Norway; (A.A.); (A.U.)
| | - Trond Warloe
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (E.C.); (T.W.); (A.K.); (S.D.); (P.J.); (V.V.); (Q.P.)
| | - Andrius Kleinauskas
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (E.C.); (T.W.); (A.K.); (S.D.); (P.J.); (V.V.); (Q.P.)
| | - Sagar Darvekar
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (E.C.); (T.W.); (A.K.); (S.D.); (P.J.); (V.V.); (Q.P.)
| | - Petras Juzenas
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (E.C.); (T.W.); (A.K.); (S.D.); (P.J.); (V.V.); (Q.P.)
| | - Vlada Vasovic
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (E.C.); (T.W.); (A.K.); (S.D.); (P.J.); (V.V.); (Q.P.)
| | - Qian Peng
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; (E.C.); (T.W.); (A.K.); (S.D.); (P.J.); (V.V.); (Q.P.)
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, N-1478 Lorenskog, Norway;
- Institute of Clinical of Medicine, University of Oslo, N-0372 Oslo, Norway
| |
Collapse
|
2
|
Mishra A, Jajodia A, Weston E, Jayavelu ND, Garcia M, Hossack D, Hawkins RD. Identification of functional enhancer variants associated with type I diabetes in CD4+ T cells. Front Immunol 2024; 15:1387253. [PMID: 38947339 PMCID: PMC11211866 DOI: 10.3389/fimmu.2024.1387253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/09/2024] [Indexed: 07/02/2024] Open
Abstract
Type I diabetes is an autoimmune disease mediated by T-cell destruction of β cells in pancreatic islets. Currently, there is no known cure, and treatment consists of daily insulin injections. Genome-wide association studies and twin studies have indicated a strong genetic heritability for type I diabetes and implicated several genes. As most strongly associated variants are noncoding, there is still a lack of identification of functional and, therefore, likely causal variants. Given that many of these genetic variants reside in enhancer elements, we have tested 121 CD4+ T-cell enhancer variants associated with T1D. We found four to be functional through massively parallel reporter assays. Three of the enhancer variants weaken activity, while the fourth strengthens activity. We link these to their cognate genes using 3D genome architecture or eQTL data and validate them using CRISPR editing. Validated target genes include CLEC16A and SOCS1. While these genes have been previously implicated in type 1 diabetes and other autoimmune diseases, we show that enhancers controlling their expression harbor functional variants. These variants, therefore, may act as causal type 1 diabetic variants.
Collapse
Affiliation(s)
- Arpit Mishra
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Ajay Jajodia
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Eryn Weston
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Mariana Garcia
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Daniel Hossack
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - R. David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, United States
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
3
|
Zhuo J, Wang C, Kai Y, Xu Y, Cheng K. The role of autophagy regulated by the PI3K/AKT/mTOR pathway and innate lymphoid cells in eosinophilic chronic sinusitis with nasal polyps. Immun Inflamm Dis 2024; 12:e1310. [PMID: 38888464 PMCID: PMC11184929 DOI: 10.1002/iid3.1310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The PI3K/Akt/mTOR pathway and autophagy are important physiological processes. But their roles in eCRSwNP remains controversial. METHODS In this study, we used the eCRSwNP mouse model, PI3K/Akt/mTOR pathway inhibitors, and autophagy inhibitors and activators to investigate the regulatory effects of the PI3K/Akt/mTOR pathway on autophagy, and their effects on eosinophilic inflammation, and tissue remodeling. The role of ILC2s in eCRSwNP was also studied, and the relationship between ILC2s and autophagy was preliminarily determined. RESULTS Our results show that eosinophilic inflammation in eCRSwNP mice could be inhibited by promoting the autophagy; otherwise, eosinophilic inflammation could be promoted. Meanwhile, inhibition of the PI3K/Akt/mTOR pathway can further promote autophagy and inhibit eosinophilic inflammation. Meanwhile, inhibiting the PI3K/Akt/mTOR pathway and promoting autophagy can reduce the number of ILC2s and the severity of tissue remodeling in the nasal polyps of eCRSwNP mice. CONCLUSIONS We conclude that the PI3K/Akt/mTOR pathway plays roles in eosinophilic inflammation and tissue remodeling of eCRSwNP, in part by regulating the level of autophagy. The downregulation of autophagy is a pathogenesis of eCRSwNP; therefore, the recovery of normal autophagy levels might be a new target for eCRSwNP therapy. Furthermore, autophagy might inhibit eosinophilic inflammation and tissue remodeling, in part by reducing the number of ILC2s.
Collapse
Affiliation(s)
- Jin‐Jing Zhuo
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Chen Wang
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yi‐Long Kai
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Ying‐Ying Xu
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Ke‐Jia Cheng
- Department of Otolaryngology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Ge P, Tao C, Wang W, He Q, Liu C, Zheng Z, Mou S, Zhang B, Liu X, Zhang Q, Wang R, Li H, Zhang D, Zhao J. Circulating immune cell landscape and T-cell abnormalities in patients with moyamoya disease. Clin Transl Med 2024; 14:e1647. [PMID: 38566524 PMCID: PMC10988118 DOI: 10.1002/ctm2.1647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Moyamoya disease (MMD) stands as a prominent cause of stroke among children and adolescents in East Asian populations. Although a growing body of evidence suggests that dysregulated inflammation and autoimmune responses might contribute to the development of MMD, a comprehensive and detailed understanding of the alterations in circulating immune cells associated with MMD remains elusive. METHODS In this study, we employed a combination of single-cell RNA sequencing (scRNA-seq), mass cytometry and RNA-sequencing techniques to compare immune cell profiles in peripheral blood samples obtained from patients with MMD and age-matched healthy controls. RESULTS Our investigation unveiled immune dysfunction in MMD patients, primarily characterized by perturbations in T-cell (TC) subpopulations, including a reduction in effector TCs and an increase in regulatory TCs (Tregs). Additionally, we observed diminished natural killer cells and dendritic cells alongside heightened B cells and monocytes in MMD patients. Notably, within the MMD group, there was an augmented proportion of fragile Tregs, whereas the stable Treg fraction decreased. MMD was also linked to heightened immune activation, as evidenced by elevated expression levels of HLA-DR and p-STAT3. CONCLUSIONS Our findings offer a comprehensive view of the circulating immune cell landscape in MMD patients. Immune dysregulation in patients with MMD was characterized by alterations in T-cell populations, including a decrease in effector T-cells and an increase in regulatory T-cells (Tregs), suggest a potential role for disrupted circulating immunity in the aetiology of MMD.
Collapse
|
5
|
Qu J, Wu L, Zhang M, Kan M, Chen H, Shi Y, Wang S, Wang X, Chen F. Serum autophagy-related gene 5 level in stroke patients: correlation with CD4+ T cells and cognition impairment during a 3-year follow-up. Braz J Med Biol Res 2024; 57:e13019. [PMID: 38511768 PMCID: PMC10946239 DOI: 10.1590/1414-431x2024e13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
Autophagy-related gene (ATG) 5 regulates blood lipids, chronic inflammation, CD4+ T-cell differentiation, and neuronal death and is involved in post-stroke cognitive impairment. This study aimed to explore the correlation of serum ATG5 with CD4+ T cells and cognition impairment in stroke patients. Peripheral blood was collected from 180 stroke patients for serum ATG5 and T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cell detection via enzyme-linked immunosorbent assays and flow cytometry. The Mini-Mental State Examination (MMSE) scale was completed at enrollment, year (Y)1, Y2, and Y3 in stroke patients. Serum ATG5 was also measured in 50 healthy controls (HCs). Serum ATG5 was elevated in stroke patients compared to HCs (P<0.001) and was positively correlated to Th2 cells (P=0.022), Th17 cells (P<0.001), and Th17/Treg ratio (P<0.001) in stroke patients but not correlated with Th1 cells, Th1/Th2 ratio, or Treg cells (all P>0.050). Serum ATG5 (P=0.037), Th1 cells (P=0.022), Th17 cells (P=0.002), and Th17/Treg ratio (P=0.018) were elevated in stroke patients with MMSE score-identified cognition impairment vs those without cognition impairment, whereas Th2 cells, Th1/Th2 ratio, and Treg cells were not different between them (all P>0.050). Importantly, serum ATG5 was negatively linked with MMSE score at enrollment (P=0.004), Y1 (P=0.002), Y2 (P=0.014), and Y3 (P=0.001); moreover, it was positively related to 2-year (P=0.024) and 3-year (P=0.012) MMSE score decline in stroke patients. Serum ATG5 was positively correlated with Th2 and Th17 cells and estimated cognitive function decline in stroke patients.
Collapse
Affiliation(s)
- Juanjuan Qu
- Department of Emergency, Handan Central Hospital, Handan, China
| | - Linxia Wu
- Department of Emergency, Handan Central Hospital, Handan, China
| | - Meng Zhang
- Department of Emergency, Handan Central Hospital, Handan, China
| | - Minchen Kan
- Department of Emergency, Handan Central Hospital, Handan, China
| | - Huimin Chen
- Department of Emergency, Handan Central Hospital, Handan, China
| | - Yanqing Shi
- Department of Emergency, Handan Central Hospital, Handan, China
| | - Shuangyu Wang
- Department of Nephrology, Handan Central Hospital, Handan, China
| | - Xiaohua Wang
- Department of Neonatal Ward, Handan Central Hospital, Handan, China
| | - Fan Chen
- Department of Emergency, Handan Central Hospital, Handan, China
| |
Collapse
|
6
|
Huang Y, Luo W, Yang Z, Lan T, Wei X, Wu H. Machine learning and experimental validation identified autophagy signature in hepatic fibrosis. Front Immunol 2024; 15:1337105. [PMID: 38481992 PMCID: PMC10933073 DOI: 10.3389/fimmu.2024.1337105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024] Open
Abstract
Background The molecular mechanisms of hepatic fibrosis (HF), closely related to autophagy, remain unclear. This study aimed to investigate autophagy characteristics in HF. Methods Gene expression profiles (GSE6764, GSE49541 and GSE84044) were downloaded, normalized, and merged. Autophagy-related differentially expressed genes (ARDEGs) were determined using the limma R package and the Wilcoxon rank sum test and then analyzed by GO, KEGG, GSEA and GSVA. The infiltration of immune cells, molecular subtypes and immune types of healthy control (HC) and HF were analyzed. Machine learning was carried out with two methods, by which, core genes were obtained. Models of liver fibrosis in vivo and in vitro were constructed to verify the expression of core genes and corresponding immune cells. Results A total of 69 ARDEGs were identified. Series functional cluster analysis showed that ARDEGs were significantly enriched in autophagy and immunity. Activated CD4 T cells, CD56bright natural killer cells, CD56dim natural killer cells, eosinophils, macrophages, mast cells, neutrophils, and type 17 T helper (Th17) cells showed significant differences in infiltration between HC and HF groups. Among ARDEGs, three core genes were identified, that were ATG5, RB1CC1, and PARK2. Considerable changes in the infiltration of immune cells were observed at different expression levels of the three core genes, among which the expression of RB1CC1 was significantly associated with the infiltration of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. In the mouse liver fibrosis experiment, ATG5, RB1CC1, and PARK2 were at higher levels in HF group than those in HC group. Compared with HC group, HF group showed low positive area in F4/80, IL-17 and CD56, indicating decreased expression of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. Meanwhile, knocking down RB1CC1 was found to inhibit the activation of hepatic stellate cells and alleviate liver fibrosis. Conclusion ATG5, RB1CC1, and PARK2 are promising autophagy-related therapeutic biomarkers for HF. This is the first study to identify RB1CC1 in HF, which may promote the progression of liver fibrosis by regulating macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell.
Collapse
Affiliation(s)
- Yushen Huang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Wen Luo
- Department of Gastrointestinal Surgery, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Zhijie Yang
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Tian Lan
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Xiaomou Wei
- Department of Scientific Research, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| | - Hongwen Wu
- Department of Pharmacy, Liuzhou Workers Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
7
|
Lei HT, Wang JH, Yang HJ, Wu HJ, Nian FH, Jin FM, Yang J, Tian XM, Wang HD. LncRNA-mediated cell autophagy: An emerging field in bone destruction in rheumatoid arthritis. Biomed Pharmacother 2023; 168:115716. [PMID: 37866000 DOI: 10.1016/j.biopha.2023.115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
In recent years, research on the mechanism of bone destruction in rheumatoid arthritis (RA) has remained in the initial stages, and the mechanism has not been fully elucidated to date. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in RA bone destruction via autophagy, but the specific regulatory mechanism of lncRNA-mediated autophagy is unclear. Therefore, in this article, we review the mechanisms of lncRNA-mediated autophagy in fibroblast-like synoviocytes and chondrocytes in RA bone destruction. We explain that lncRNAs mediate autophagy and participate in many specific pathological processes of RA bone destruction by regulating signalling pathways and the expression of target genes. Specific lncRNAs can be used as markers for molecular diagnosis, mechanistic regulation, treatment and prognosis of RA.
Collapse
Affiliation(s)
- Hai-Tao Lei
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Jin-Hai Wang
- Traditional Chinese Medicine Department, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Hui-Jun Yang
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Hai-Juan Wu
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Fang-Hong Nian
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Fang-Mei Jin
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China
| | - Jing Yang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xue-Mei Tian
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China.
| | - Hai-Dong Wang
- The Department of Rheumatology and Orthopedics Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu, China.
| |
Collapse
|
8
|
Alula KM, Theiss AL. Autophagy in Crohn's Disease: Converging on Dysfunctional Innate Immunity. Cells 2023; 12:1779. [PMID: 37443813 PMCID: PMC10341259 DOI: 10.3390/cells12131779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease marked by relapsing, transmural intestinal inflammation driven by innate and adaptive immune responses. Autophagy is a multi-step process that plays a critical role in maintaining cellular homeostasis by degrading intracellular components, such as damaged organelles and invading bacteria. Dysregulation of autophagy in CD is revealed by the identification of several susceptibility genes, including ATG16L1, IRGM, NOD2, LRRK2, ULK1, ATG4, and TCF4, that are involved in autophagy. In this review, the role of altered autophagy in the mucosal innate immune response in the context of CD is discussed, with a specific focus on dendritic cells, macrophages, Paneth cells, and goblet cells. Selective autophagy, such as xenophagy, ERphagy, and mitophagy, that play crucial roles in maintaining intestinal homeostasis in these innate immune cells, are discussed. As our understanding of autophagy in CD pathogenesis evolves, the development of autophagy-targeted therapeutics may benefit subsets of patients harboring impaired autophagy.
Collapse
Affiliation(s)
| | - Arianne L. Theiss
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Sengun E, Wolfs TGAM, van Bruggen VLE, van Cranenbroek B, Simonetti ER, Ophelders D, de Jonge MI, Joosten I, van der Molen RG. Umbilical cord-mesenchymal stem cells induce a memory phenotype in CD4 + T cells. Front Immunol 2023; 14:1128359. [PMID: 37409122 PMCID: PMC10318901 DOI: 10.3389/fimmu.2023.1128359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Inflammation is a physiological state where immune cells evoke a response against detrimental insults. Finding a safe and effective treatment for inflammation associated diseases has been a challenge. In this regard, human mesenchymal stem cells (hMSC), exert immunomodulatory effects and have regenerative capacity making it a promising therapeutic option for resolution of acute and chronic inflammation. T cells play a critical role in inflammation and depending on their phenotype, they can stimulate or suppress inflammatory responses. However, the regulatory effects of hMSC on T cells and the underlying mechanisms are not fully elucidated. Most studies focused on activation, proliferation, and differentiation of T cells. Here, we further investigated memory formation and responsiveness of CD4+ T cells and their dynamics by immune-profiling and cytokine secretion analysis. Umbilical cord mesenchymal stem cells (UC-MSC) were co-cultured with either αCD3/CD28 beads, activated peripheral blood mononuclear cells (PBMC) or magnetically sorted CD4+ T cells. The mechanism of immune modulation of UC-MSC were investigated by comparing different modes of action; transwell, direct cell-cell contact, addition of UC-MSC conditioned medium or blockade of paracrine factor production by UC-MSC. We observed a differential effect of UC-MSC on CD4+ T cell activation and proliferation using PBMC or purified CD4+ T cell co-cultures. UC-MSC skewed the effector memory T cells into a central memory phenotype in both co-culture conditions. This effect on central memory formation was reversible, since UC-MSC primed central memory cells were still responsive after a second encounter with the same stimuli. The presence of both cell-cell contact and paracrine factors were necessary for the most pronounced immunomodulatory effect of UC-MSC on T cells. We found suggestive evidence for a partial role of IL-6 and TGFβ in the UC-MSC derived immunomodulatory function. Collectively, our data show that UC-MSCs clearly affect T cell activation, proliferation and maturation, depending on co-culture conditions for which both cell-cell contact and paracrine factors are needed.
Collapse
Affiliation(s)
- Ezgi Sengun
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Tim G. A. M. Wolfs
- Department of Pediatrics and GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Valéry L. E. van Bruggen
- Department of Pediatrics and GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Elles R. Simonetti
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Daan Ophelders
- Department of Pediatrics and GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marien I. de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Renate G. van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| |
Collapse
|
10
|
Velotti F, Bernini R. Hydroxytyrosol Interference with Inflammaging via Modulation of Inflammation and Autophagy. Nutrients 2023; 15:nu15071774. [PMID: 37049611 PMCID: PMC10096543 DOI: 10.3390/nu15071774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Inflammaging refers to a chronic, systemic, low-grade inflammation, driven by immune (mainly macrophages) and non-immune cells stimulated by endogenous/self, misplaced or altered molecules, belonging to physiological aging. This age-related inflammatory status is characterized by increased inflammation and decreased macroautophagy/autophagy (a degradation process that removes unnecessary or dysfunctional cell components). Inflammaging predisposes to age-related diseases, including obesity, type-2 diabetes, cancer, cardiovascular and neurodegenerative disorders, as well as vulnerability to infectious diseases and vaccine failure, representing thus a major target for anti-aging strategies. Phenolic compounds-found in extra-virgin olive oil (EVOO)-are well known for their beneficial effect on longevity. Among them, hydroxytyrosol (HTyr) appears to greatly contribute to healthy aging by its documented potent antioxidant activity. In addition, HTyr can modulate inflammation and autophagy, thus possibly counteracting and reducing inflammaging. In this review, we reference the literature on pure HTyr as a modulatory agent of inflammation and autophagy, in order to highlight its possible interference with inflammaging. This HTyr-mediated activity might contribute to healthy aging and delay the development or progression of diseases related to aging.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
11
|
Autophagy of naïve CD4 + T cells in aging - the role of body adiposity and physical fitness. Expert Rev Mol Med 2023; 25:e9. [PMID: 36655333 DOI: 10.1017/erm.2023.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Life expectancy has increased exponentially in the last century accompanied by disability, poor quality of life, and all-cause mortality in older age due to the high prevalence of obesity and physical inactivity in older people. Biologically, the aging process reduces the cell's metabolic and functional efficiency, and disrupts the cell's anabolic and catabolic homeostasis, predisposing older people to many dysfunctional conditions such as cardiovascular disease, neurodegenerative disorders, cancer, and diabetes. In the immune system, aging also alters cells' metabolic and functional efficiency, a process known as 'immunosenescence', where cells become more broadly inflammatory and their functionality is altered. Notably, autophagy, the conserved and important cellular process that maintains the cell's efficiency and functional homeostasis may protect the immune system from age-associated dysfunctional changes by regulating cell death in activated CD4+ T cells. This regulatory process increases the delivery of the dysfunctional cytoplasmic material to lysosomal degradation while increasing cytokine production, proliferation, and differentiation of CD4+ T cell-mediated immune responses. Poor proliferation and diminished responsiveness to cytokines appear to be ubiquitous features of aged T cells and may explain the delayed peak in T cell expansion and cytotoxic activity commonly observed in the 'immunosenescence' phenotype in the elderly. On the other hand, physical exercise stimulates the expression of crucial nutrient sensors and inhibits the mechanistic target of the rapamycin (mTOR) signaling cascade which increases autophagic activity in cells. Therefore, in this perspective review, we will first contextualize the overall view of the autophagy process and then, we will discuss how body adiposity and physical fitness may counteract autophagy in naïve CD4+ T cells in aging.
Collapse
|
12
|
Autophagy Protects against Eosinophil Cytolysis and Release of DNA. Cells 2022; 11:cells11111821. [PMID: 35681515 PMCID: PMC9180302 DOI: 10.3390/cells11111821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023] Open
Abstract
The presence of eosinophils in the airway is associated with asthma severity and risk of exacerbations. Eosinophils deposit their damaging products in airway tissue, likely by degranulation and cytolysis. We previously showed that priming blood eosinophils with IL3 strongly increased their cytolysis on aggregated IgG. Conversely, IL5 priming did not result in significant eosinophil cytolysis in the same condition. Therefore, to identify critical events protecting eosinophils from cell cytolysis, we examined the differential intracellular events between IL5- and IL3-primed eosinophils interacting with IgG. We showed that both IL3 and IL5 priming increased the eosinophil adhesion to IgG, phosphorylation of p38, and production of reactive oxygen species (ROS), and decreased the phosphorylation of cofilin. However, autophagic flux as measured by the quantification of SQSTM1-p62 and lipidated-MAP1L3CB over time on IgG, with or without bafilomycin-A1, was higher in IL5-primed compared to IL3-primed eosinophils. In addition, treatment with bafilomycin-A1, an inhibitor of granule acidification and autophagolysosome formation, enhanced eosinophil cytolysis and DNA trap formation in IL5-primed eosinophils. Therefore, this study suggests that increased autophagy in eosinophils protects from cytolysis and the release of DNA, and thus limits the discharge of damaging intracellular eosinophilic contents.
Collapse
|