1
|
Yang Y, Yuan W, He K, Lin C, Du S, Kou Y, Nie B. Inhibition of ACOX1 enhances the therapeutic efficacy of obeticholic acid in treating non-alcoholic fatty liver disease and mitigates its lipotoxicity. Front Pharmacol 2024; 15:1366479. [PMID: 38595921 PMCID: PMC11003388 DOI: 10.3389/fphar.2024.1366479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Background and aims High-dose Obeticholic acid exhibits promise for non-alcoholic fatty liver disease (NAFLD) treatment but can induce lipotoxicity. Our study sought to understand this mechanism and propose a solution. Approach and Results In a non-alcoholic fatty liver disease (NAFLD) model induced by a high-fat diet in FXR-/- mice, we pinpointed that FXR regulated the expression of ACOX1 through RNA-Seq analysis. In the livers of FXR-/- mice, both ACOX1 mRNA and protein expression notably decreased. In both HL-7702 and HEP-G2 cells, the silencing of FXR through shRNA plasmids decreased ACOX1 expression, while FXR activation with GW4064 increased it. These effects were reversible with the ACOX1-specific inhibitor, 10,12-Tricosadiynoic acid. In the NAFLD model of FXR-/- mice, The activation of ACOX1 is correlated with elevated serum LDL, triglycerides, and aggravated hepatic steatosis. However, the combination of 10,12-Tricosadiynoic acid with low-dose obeticholic acid effectively treated hepatic steatosis, reducing LDL levels in the NAFLD model of wild-type mice. This combination therapy demonstrated efficacy comparable to high-dose obeticholic acid alone. Notably, the combined drug regimen treats hepatic steatosis by inhibiting the IL-1β and α-SMA pathways in NAFLD. Conclusion Combining ACOX1-specific inhibitors with low-dose obeticholic acid effectively treats high-fat diet-induced hepatic steatosis and reduces serum LDL. This approach enhances the therapeutic effects of obeticholic acid and mitigates its lipotoxicity by inhibiting the IL-1β and α-SMA pathways.
Collapse
Affiliation(s)
- Yuping Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Weinan Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Kun He
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Chuangzhen Lin
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
- Department of Gastroenterology, Inflammatory Bowel Diseases Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shenshen Du
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Yanqi Kou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| | - Biao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Eeda V, Patil NY, Joshi AD, Awasthi V. Advancements in metabolic-associated steatotic liver disease research: Diagnostics, small molecule developments, and future directions. Hepatol Res 2024; 54:222-234. [PMID: 38149861 PMCID: PMC10923026 DOI: 10.1111/hepr.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
Metabolic (dysfunction)-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, is a growing global health concern with no approved pharmacological treatments. At the same time, there are no standard methods to definitively screen for the presence of MASLD because of its progressive nature and symptomatic commonality with other disorders. Recent advances in molecular understanding of MASLD pathophysiology have intensified research on development of new drug molecules, repurposing of existing drugs approved for other indications, and an educated use of dietary supplements for its treatment and prophylaxis. This review focused on depicting the latest advancements in MASLD research related to small molecule development for prophylaxis or treatment and diagnosis, with emphasis on mechanistic basis at the molecular level.
Collapse
Affiliation(s)
- Venkateswararao Eeda
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Nikhil Yuvaraj Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Aditya Dilip Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
3
|
Yang F, Lv XT, Lin XL, Wang RH, Wang SM, Wang GE. Restraint stress promotes nonalcoholic steatohepatitis by regulating the farnesoid X receptor/NLRP3 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1961-1971. [PMID: 37997375 PMCID: PMC10753372 DOI: 10.3724/abbs.2023240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 11/25/2023] Open
Abstract
Psychological stress promotes nonalcoholic steatohepatitis (NASH) development. However, the pathogenesis of psychological stress-induced NASH remains unclear. This study aims to explore the underlying mechanism of restraint stress-induced NASH, which mimics psychological stress, and to discover potential NASH candidates. Methionine choline deficient diet- and high fat diet-induced hepatosteatotic mice are subjected to restraint stress to induce NASH. The mice are administrated with Xiaoyaosan granules, NOD-like receptor family pyrin domain containing 3 (NLRP3) inhibitors, farnesoid X receptor (FXR) agonists, or macrophage scavengers. Pathological changes and NLRP3 signaling in the liver are determined. These results demonstrate that restraint stress promotes hepatic inflammation and fibrosis in hepatosteatotic mice. Restraint stress increases the expressions of NLRP3, Caspase-1, Gasdermin D, interleukin-1β, cholesterol 7α-hydroxylase, and sterol 12α-hydroxylase and decreases the expression of FXR in NASH mice. Xiaoyaosan granules reverse hepatic inflammation and fibrosis and target FXR and NLRP3 signals. In addition, inhibition of NLRP3 reduces the NLRP3 inflammasome and liver damage in mice with restraint stress-induced NASH. Elimination of macrophages and activation of FXR also attenuate inflammation and fibrosis by inhibiting NLRP3 signaling. However, NLRP3 inhibitors or macrophage scavengers fail to affect the expression of FXR. In conclusion, restraint stress promotes NASH-related inflammation and fibrosis by regulating the FXR/NLRP3 signaling pathway. Xiaoyaosan granules, NLRP3 inhibitors, FXR agonists, and macrophage scavengers are potential candidates for the treatment of psychological stress-related NASH.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Xi-Ting Lv
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Xiao-Li Lin
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Ruo-Hong Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Shu-Mei Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese MedicineNational Administration of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhou510006China
- Guangdong Provincial Traditional Chinese Medicine Quality Engineering and Technology Research CenterGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Guo-En Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese MedicineNational Administration of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhou510006China
- Guangdong Provincial Traditional Chinese Medicine Quality Engineering and Technology Research CenterGuangdong Pharmaceutical UniversityGuangzhou510006China
| |
Collapse
|
4
|
Rausch M, Samodelov SL, Visentin M, Kullak-Ublick GA. The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity. Int J Mol Sci 2022; 23:ijms232213967. [PMID: 36430444 PMCID: PMC9695947 DOI: 10.3390/ijms232213967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear receptor farnesoid X receptor (FXR, NR1H4) is a bile acid (BA) sensor that links the enterohepatic circuit that regulates BA metabolism and elimination to systemic lipid homeostasis. Furthermore, FXR represents a real guardian of the hepatic function, preserving, in a multifactorial fashion, the integrity and function of hepatocytes from chronic and acute insults. This review summarizes how FXR modulates the expression of pathway-specific as well as polyspecific transporters and enzymes, thereby acting at the interface of BA, lipid and drug metabolism, and influencing the onset and progression of hepatotoxicity of varying etiopathogeneses. Furthermore, this review article provides an overview of the advances and the clinical development of FXR agonists in the treatment of liver diseases.
Collapse
|