1
|
Baquero C, Iniesta‐González M, Palao N, Fernández‐Infante C, Cueto‐Remacha M, Mancebo J, de la Cámara‐Fuentes S, Rodrigo‐Faus M, Valdecantos MP, Valverde AM, Sequera C, Manzano S, Cuesta ÁM, Gutierrez‐Uzquiza A, Bragado P, Guerrero C, Porras A. Platelet C3G protects from liver fibrosis, while enhancing tumor growth through regulation of the immune response. J Pathol 2025; 265:502-517. [PMID: 39989399 PMCID: PMC11880977 DOI: 10.1002/path.6403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025]
Abstract
Primary liver cancer usually occurs in the context of chronic liver disease (CLD), in association with fibrosis. Platelets have emerged as important regulators of CLD and liver cancer, although their precise function and mechanism of action need to be clarified. C3G (RapGEF1) regulates platelet activation, adhesion, and secretion. Here we evaluate the role of platelet C3G in chemically induced fibrosis and liver cancer associated with fibrosis using genetically modified mouse models. We found that while overexpression of full-length C3G in platelets decreased liver fibrosis induced by chronic treatment with CCl4, overexpressed C3G lacking the catalytic domain did not, although in both cases platelet recruitment to the liver was similar. In addition, C3G deletion in platelets (PF4-C3GKO mouse model) increased CCl4-induced liver damage and hepatic fibrosis, reducing liver platelets and macrophages. Moreover, early liver immune response to CCl4 was altered in PF4-C3GKO mice, with a remarkable lower activation of macrophages and increased monocyte-derived macrophages compared to WT mice. On the other hand, in response to DEN+CCl4, PF4-C3G WT mice exhibited more and larger liver tumors than PF4-C3GKO mice, accompanied by the presence of more platelets, despite having less fibrosis in previous steps. Liver immune cell populations were also differentially regulated in PF4-C3GKO mice, highlighting the higher number of macrophages, likely with a pro-inflammatory phenotype, present in the liver in response to chronic DEN+CCl4 treatment. Proteins upregulated or downregulated in platelet-rich plasma from PF4-C3GKO compared to WT mice might regulate the immune response and tumor development. In this regard, enrichment analyses using proteomic data showed changes in several proteins involved in platelet activation and immune response pathways. Additionally, the higher secretion of CD40L by PF4-C3GKO platelets could contribute to their antitumor effect. Therefore, platelet C3G presents antifibrotic and protumor effects in the liver, likely mediated by changes in the immune response. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cristina Baquero
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Minerva Iniesta‐González
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Cristina Fernández‐Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC)Universidad de Salamanca‐CSICSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)SalamancaSpain
| | - Mateo Cueto‐Remacha
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Jaime Mancebo
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | | | - María Rodrigo‐Faus
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas (IIBM) Alberto Sols‐Morreale (CSIC‐UAM)MadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem)Instituto de Salud Carlos IIIMadridSpain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas (IIBM) Alberto Sols‐Morreale (CSIC‐UAM)MadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem)Instituto de Salud Carlos IIIMadridSpain
| | - Celia Sequera
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Aix Marseille Univ, CNRS, InsermInstitut Paoli‐Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM)MarseilleFrance
| | - Sara Manzano
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
| | - Ángel M Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Alvaro Gutierrez‐Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC)Universidad de Salamanca‐CSICSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)SalamancaSpain
- Departamento de MedicinaUniversidad de SalamancaSalamancaSpain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| |
Collapse
|
2
|
Pang J, Huang J, Yu J, Li B, Wei S, Cen W, Xuan Y, Yang J, Yu Y, Mo J, Lu J, Zheng X, Zhang J. Immune dysregulation in COVID-19 induced ARDS in kidney transplant recipients revealed by single-cell RNA sequencing. Sci Rep 2025; 15:6895. [PMID: 40011702 DOI: 10.1038/s41598-025-91439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Since the emergence of COVID-19 at the end of 2019, the disease has led to widespread acute respiratory distress syndrome (ARDS), particularly among kidney transplant recipients (KTRs), who are at increased risk due to long-term immunosuppressive therapy. This study aims to explore the differences in immune responses between kidney transplant recipients and non-kidney transplant recipients in COVID-19-induced ARDS to identify potential therapeutic targets for improving outcomes. Single-cell RNA sequencing was performed on 108,320 cells derived from peripheral blood samples to construct a global single-cell map of COVID-19 induced ARDS in kidney transplant recipients(ARDSKT), COVID-19 induced ARDS in non transplant recipients(ARDSNKT), and healthy controls. Subsequently, using cellular clustering analysis, we obtained single-cell maps of different cell types. We employed enrichment analysis to determine the pathways involved in different subpopulations and focused on the role of key immune cells such as monocytes, megakaryocytes, B cells, and CD8+ T cells in the pathogenesis of ARDS. Significant immune differences were observed between ARDSKT and ARDSNKT. In ARDSKT, the S100A9+ MK subpopulation, which activates the NF-κB signaling pathway, was elevated, promoting inflammation. In contrast, the S100A12+ monocyte subpopulation that activates the chemokine signaling pathway was more abundant in ARDSNKT, reflecting a stronger inflammatory response, while its abundance was reduced in ARDSKT due to immunosuppression. The CXCR4+ B subpopulation, crucial for adaptive immunity, was significantly reduced in ARDSKT. Additionally, the XAF1+ Teff subpopulation, associated with apoptosis, was more abundant in ARDSKT, potentially impairing immune recovery. This study highlights the immune differences between ARDSKT and ARDSNKT, revealing the impact of immunosuppression on immune dysregulation. These findings suggest that targeting specific immune pathways can improve therapeutic strategies for ARDSKT.
Collapse
Affiliation(s)
- Jielong Pang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China
| | - Jingyu Huang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jianing Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Binbin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Shanshan Wei
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Weiluan Cen
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yixuan Xuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junzhi Yang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yongbing Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jingjia Mo
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junyu Lu
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| | - Xiaowen Zheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
3
|
Wang X, Sun L, An Z, Li C, Zhao J. CXCL7 enhances RANKL-induced osteoclastogenesis via the activation of ERK/NFATc1 signaling pathway in inflammatory arthritis. Arthritis Res Ther 2025; 27:34. [PMID: 39955597 PMCID: PMC11829549 DOI: 10.1186/s13075-025-03502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/08/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) with anti-citrullinated protein/peptide antibodies (ACPA + RA) demonstrates more significant radiographic damage compared to ACPA-negative RA (ACPA- RA). Chemokine-activated signaling pathways contribute to the regulation of the bone formation and resorption. The potential role of C-X-C motif chemokine ligand 7 (CXCL7) in bone erosion and its viability as a therapeutic target for RA merit further investigation. METHODS Plasma CXCL7 concentration was quantified using enzyme-linked immunosorbent assay (ELISA). The effect of CXCL7 on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogeneis was assessed through tartrate-resistant acid phosphates (TRAP) staining and F-actin ring immunofluorescence. Western blotting analysis was used to identify the signaling pathways activated by CXCL7. To investigate the potential therapeutic effect by targeting Cxcl7, Cxcl7 neutralizing antibodies were administrated intraperitoneally to mice with collagen-induced arthritis (CIA). Histopathology and micro-computed tomography (micro-CT) scanning were utilized to assess joint inflammation and bone destruction in CIA mice. RESULTS The plasma CXCL7 concentration was significantly higher in ACPA + RA compared with ACPA- RA and healthy controls. The level of CXCL7 was positively correlated with disease activity and bone erosion in RA patients. It was discovered that CXCL7 promoted RANKL-induced osteoclastogenesis in CD14 + monocytes derived from RA patients. Mechanistically, the addition of Cxcl7 significantly enhanced RANKL-induced phosphorylation of ERK1/2 and NFATc1 expresssion. Cxcl7 neutralizing antibody alleviated arthritis severity in CIA by reducing the inflammatory response, osteoclasts numbers, and bone destruction in CIA mice joints. CONCLUSION CXCL7 contributes to the bone erosion in RA by enhancing RANKL-induced osteoclastogenesis via the activation of ERK/NFATc1 signaling pathways. CXCL7 could potentially be targeted for therapeutic interventions in RA.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
- Department of General Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lin Sun
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Zhuo An
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
4
|
Gunasekaran H, Ranganathan UD, Bethunaickan R. The importance of inflammatory biomarkers in detecting and managing latent tuberculosis infection. Front Immunol 2025; 16:1538127. [PMID: 39981231 PMCID: PMC11839662 DOI: 10.3389/fimmu.2025.1538127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) triggers an autoimmune-like response in the host leading to further complications. One of the major concerns in eliminating Tuberculosis (TB) is identifying individuals with Latent Tuberculosis Infection (LTBI) who serve as major reservoirs of Mtb making them the important target group for TB eradication. Since no gold standard tests are available for detecting LTBI, the global burden of LTBI cannot be precisely determined. Since LTBI poses several challenges to worldwide healthcare, managing LTBI must be the key priority to achieve a TB-free status. The inflammatory mediators play a major role in determining the outcome of the Mtb infection and also their levels seem to change according to the disease severity. Identification of inflammatory mediators and utilizing them as diagnostic biomarkers for detecting the various stages of TB disease might help identify the reservoirs of Mtb infection even before they become symptomatic so that preventative treatment can be started early. In summary, this review primarily focuses on exploring different inflammatory markers along the course of the Mtb infection. Identifying LTBI-specific biomarkers helps to identify individuals who are at higher risk of developing TB and preparing them to adhere to preventive therapy thus minimizing the global burden of TB.
Collapse
Affiliation(s)
- Harinisri Gunasekaran
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramalingam Bethunaickan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
- University of Madras, Chennai, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Toya S, Struyf S, Huerta L, Morris P, Gavioli E, Minnella EM, Cesta MC, Allegretti M, Proost P. A narrative review of chemokine receptors CXCR1 and CXCR2 and their role in acute respiratory distress syndrome. Eur Respir Rev 2024; 33:230172. [PMID: 39048127 PMCID: PMC11267298 DOI: 10.1183/16000617.0172-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 07/27/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of acute respiratory failure characterised by extensive inflammatory injury to the alveolocapillary barrier leading to alveolar oedema, impaired gas exchange and, ultimately, hypoxaemia necessitating the use of supplemental oxygen combined with some degree of positive airway pressure. Although much heterogeneity exists regarding the aetiology, localisation and endotypic characterisation of ARDS, what remains largely undisputed is the role of the innate immune system, and in particular of neutrophils, in precipitating and propagating lung injury. Activated neutrophils, recruited to the lung through chemokine gradients, promote injury by releasing oxidants, proteases and neutrophil extracellular traps, which ultimately cause platelet aggregation, microvascular thrombosis and cellular death. Among various neutrophilic chemoattractants, interleukin-8/C-X-C motif ligand 8 and related chemokines, collectively called ELR+ chemokines, acting on neutrophils through the G protein-coupled receptors CXCR1 and CXCR2, are pivotal in orchestrating the neutrophil activation status and chemotaxis in the inflamed lung. This allows efficient elimination of infectious agents while at the same time minimising collateral damage to host tissue. Therefore, understanding how CXCR1 and CXCR2 receptors are regulated is important if we hope to effectively target them for therapeutic use in ARDS. In the following narrative review, we provide an overview of the role of ELR+ chemokines in acute lung injury (ALI) and ARDS, we summarise the relevant regulatory pathways of their cognisant receptors CXCR1/2 and highlight current preclinical and clinical evidence on the therapeutic role of CXCR1 and CXCR2 inhibition in animal models of ALI, as well as in ARDS patients.
Collapse
Affiliation(s)
| | - Sofie Struyf
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Luis Huerta
- Keck School of Medicine of USC, Department of Medicine, Pulmonary and Critical Care Medicine, Los Angeles, CA, USA
| | - Peter Morris
- The University of Alabama at Birmingham, Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, Birmingham, AL, USA
| | | | | | | | | | - Paul Proost
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| |
Collapse
|
6
|
Zhao J, Luo X, Yang C, Yang X, Deng M, Sun B, Zhu J, Dong Z, Wang Y, Li J, Yang X, Li B, Wang X, Zheng J. Chemokine receptor 7 contributes to T- and B-cell filtering in ageing bladder, cystitis and bladder cancer. Immun Ageing 2024; 21:33. [PMID: 38762550 PMCID: PMC11102276 DOI: 10.1186/s12979-024-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Research has suggested significant correlations among ageing, immune microenvironment, inflammation and tumours. However, the relationships among ageing, immune microenvironment, cystitis and bladder urothelial carcinoma (BLCA) in the bladder have rarely been reported. METHODS Bladder single-cell and transcriptomic data from young and old mice were used for immune landscape analysis. Transcriptome, single-cell and The Cancer Genome Atlas Program datasets of BLCA and interstitial cystitis/bladder pain syndrome (IC/BPS) were used to analyse immune cell infiltration and molecular expression. Bladder tissues from mice, IC/BPS and BLCA were collected to validate the results. RESULTS Eight types of immune cells (macrophages, B-cells, dendritic cells, T-cells, monocytes, natural killer cells, γδ T-cells and ILC2) were identified in the bladder of mice. Aged mice bladder tissues had a significantly higher number of T-cells, γδ T-cells, ILC2 and B-cells than those in the young group (P < 0.05). Three types of T-cells (NK T-cells, γδ T-cells and naïve T-cells) and three types of B-cells (follicular B-cells, plasma and memory B-cells) were identified in aged mice bladder. Chemokine receptor 7 (CCR7) is highly expressed in aged bladder, IC/BPS and BLCA (P < 0.05). CCR7 is likely to be involved in T- and B-cell infiltration in aged bladder, IC/BPS and BLCA. Interestingly, the high CCR7 expression on BLCA cell membranes was a prognostic protective factor. CONCLUSIONS In this study, we characterised the expression profiles of immune cells in bladder tissues of aged and young mice and demonstrated that CCR7-mediated T- and B-cell filtration contributes to the development of bladder ageing, IC/BPS and BLCA.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Xing Luo
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chengfei Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xiao Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400037, China
| | - Min Deng
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Bishao Sun
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jingzhen Zhu
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zongming Dong
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yangcai Wang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jia Li
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xingliang Yang
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Xiangwei Wang
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, PR China.
| | - Ji Zheng
- Department of Urology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Kraft T, Grützmann K, Meinhardt M, Meier F, Westphal D, Seifert M. Personalized identification and characterization of genome-wide gene expression differences between patient-matched intracranial and extracranial melanoma metastasis pairs. Acta Neuropathol Commun 2024; 12:67. [PMID: 38671536 PMCID: PMC11055243 DOI: 10.1186/s40478-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most serious type of skin cancer that frequently spreads to other organs of the human body. Especially melanoma metastases to the brain (intracranial metastases) are hard to treat and a major cause of death of melanoma patients. Little is known about molecular alterations and altered mechanisms that distinguish intra- from extracranial melanoma metastases. So far, almost all existing studies compared intracranial metastases from one set of patients to extracranial metastases of an another set of melanoma patients. This neglects the important facts that each melanoma is highly individual and that intra- and extracranial melanoma metastases from the same patient are more similar to each other than to melanoma metastases from other patients in the same organ. To overcome this, we compared the gene expression profiles of 16 intracranial metastases to their corresponding 21 patient-matched extracranial metastases in a personalized way using a three-state Hidden Markov Model (HMM) to identify altered genes for each individual metastasis pair. This enabled three major findings by considering the predicted gene expression alterations across all patients: (i) most frequently altered pathways include cytokine-receptor interaction, calcium signaling, ECM-receptor interaction, cAMP signaling, Jak-STAT and PI3K/Akt signaling, (ii) immune-relevant signaling pathway genes were downregulated in intracranial metastases, and (iii) intracranial metastases were associated with a brain-like phenotype gene expression program. Further, the integration of all differentially expressed genes across the patient-matched melanoma metastasis pairs led to a set of 103 genes that were consistently down- or up-regulated in at least 11 of the 16 of the patients. This set of genes contained many genes involved in the regulation of immune responses, cell growth, cellular signaling and transport processes. An analysis of these genes in the TCGA melanoma cohort showed that the expression behavior of 11 genes was significantly associated with survival. Moreover, a comparison of the 103 genes to three closely related melanoma metastasis studies revealed a core set of eight genes that were consistently down- or upregulated in intra- compared to extracranial metastases in at least two of the three related studies (down: CILP, DPT, FGF7, LAMP3, MEOX2, TMEM119; up: GLDN, PMP2) including FGF7 that was also significantly associated with survival. Our findings contribute to a better characterization of genes and pathways that distinguish intra- from extracranial melanoma metastasis and provide important hints for future experimental studies to identify potential targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Theresa Kraft
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Konrad Grützmann
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Center (UCC) Dresden and the National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Patel MA, Fraser DD, Daley M, Cepinskas G, Veraldi N, Grazioli S. The plasma proteome differentiates the multisystem inflammatory syndrome in children (MIS-C) from children with SARS-CoV-2 negative sepsis. Mol Med 2024; 30:51. [PMID: 38632526 PMCID: PMC11022403 DOI: 10.1186/s10020-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition. METHODS A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural Language Processing (NLP). RESULTS The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all organ systems; the highest levels of expression were found in the digestive system. The cell types most involved included leukocytes not yet determined, lymphocytes, macrophages, and platelets. CONCLUSIONS The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, and mortality risks.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada.
- Children's Health Research Institute, N6C 4V3, London, ON, Canada.
- Pediatrics, Western University, N6A 3K7, London, ON, Canada.
- Clinical Neurological Sciences, Western University, N6A 3K7, London, ON, Canada.
- Physiology & Pharmacology, Western University, N6A 3K7, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, N6A 5W9, London, ON, Canada.
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
- Computer Science, Western University, N6A 3K7, London, ON, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada
- Medical Biophysics, Western University, N6A 3K7, London, ON, Canada
| | - Noemi Veraldi
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Grazioli
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Neonatal and Pediatric Intensive Care, Department of Child, Woman, and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Andersson LI, Sjöström DJ, Quach HQ, Hägerström K, Hurler L, Kajdácsi E, Cervenak L, Prohászka Z, Toonen EJM, Mohlin C, Mollnes TE, Sandgren P, Tjernberg I, Nilsson PH. Storage of Transfusion Platelet Concentrates Is Associated with Complement Activation and Reduced Ability of Platelets to Respond to Protease-Activated Receptor-1 and Thromboxane A2 Receptor. Int J Mol Sci 2024; 25:1091. [PMID: 38256162 PMCID: PMC10816124 DOI: 10.3390/ijms25021091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Platelet activation and the complement system are mutually dependent. Here, we investigated the effects of storage time on complement activation and platelet function in routinely produced platelet concentrates. The platelet concentrates (n = 10) were stored at 22 °C for seven days and assessed daily for complement and platelet activation markers. Additionally, platelet function was analyzed in terms of their responsiveness to protease-activated receptor-1 (PAR-1) and thromboxane A2 receptor (TXA2R) activation and their capacity to adhere to collagen. Complement activation increased over the storage period for all analyzed markers, including the C1rs/C1-INH complex (fold change (FC) = 1.9; p < 0.001), MASP-1/C1-INH complex (FC = 2.0; p < 0.001), C4c (FC = 1.8, p < 0.001), C3bc (FC = 4.0; p < 0.01), and soluble C5b-9 (FC = 1.7, p < 0.001). Furthermore, the levels of soluble platelet activation markers increased in the concentrates over the seven-day period, including neutrophil-activating peptide-2 (FC = 2.5; p < 0.0001), transforming growth factor beta 1 (FC = 1.9; p < 0.001) and platelet factor 4 (FC = 2.1; p < 0.0001). The ability of platelets to respond to activation, as measured by surface expression of CD62P and CD63, decreased by 19% and 24% (p < 0.05) for PAR-1 and 69-72% (p < 0.05) for TXA2R activation, respectively, on Day 7 compared to Day 1. The extent of platelet binding to collagen was not significantly impaired during storage. In conclusion, we demonstrated that complement activation increased during the storage of platelets, and this correlated with increased platelet activation and a reduced ability of the platelets to respond to, primarily, TXA2R activation.
Collapse
Affiliation(s)
- Linnea I. Andersson
- Department of Chemistry and Biomedicine, Linnaeus University, 391 82 Kalmar, Sweden; (L.I.A.); (D.J.S.); (C.M.)
| | - Dick J. Sjöström
- Department of Chemistry and Biomedicine, Linnaeus University, 391 82 Kalmar, Sweden; (L.I.A.); (D.J.S.); (C.M.)
| | - Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kim Hägerström
- Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, 391 85 Kalmar, Sweden; (K.H.); (I.T.)
| | - Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary; (L.H.); (E.K.); (L.C.); (Z.P.)
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary; (L.H.); (E.K.); (L.C.); (Z.P.)
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary; (L.H.); (E.K.); (L.C.); (Z.P.)
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, 1088 Budapest, Hungary; (L.H.); (E.K.); (L.C.); (Z.P.)
| | | | - Camilla Mohlin
- Department of Chemistry and Biomedicine, Linnaeus University, 391 82 Kalmar, Sweden; (L.I.A.); (D.J.S.); (C.M.)
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, 0372 Oslo, Norway;
- Research Laboratory, Nordland Hospital, 8005 Bodo, Norway
| | - Per Sandgren
- Center for Hematology and Regenerative Medicine (HERM), Karolinska Institutet, 171 77 Huddinge, Sweden;
| | - Ivar Tjernberg
- Department of Clinical Chemistry and Transfusion Medicine, Region Kalmar County, 391 85 Kalmar, Sweden; (K.H.); (I.T.)
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, 581 83 Linköping, Sweden
| | - Per H. Nilsson
- Department of Chemistry and Biomedicine, Linnaeus University, 391 82 Kalmar, Sweden; (L.I.A.); (D.J.S.); (C.M.)
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
10
|
Lee SH, Lee H, Park R. Systemic Immune Modulation Induced by Ephedrine in Obese-Diabetes ( db/ db) Mice. Curr Issues Mol Biol 2023; 45:10097-10108. [PMID: 38132476 PMCID: PMC10742494 DOI: 10.3390/cimb45120630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Immune-modulatory effects in obese-diabetes (db/db) mice were observed to understand the possible mechanism(s) of ephedrine-induced unfavorable responses. The ephedrine doses were selected based on the FDA report (NTP Tech Rep Ser NO 307; CAS# 134-72-5), which showed the non-toxic dose for B6C3F1 mice. In db/db mice, higher doses (6 and 12 mg/mouse) of ephedrine significantly harmed the liver and lung morphology, including fatty liver with multiple blood vessel engorgement, alveolar wall thickening, and inflammatory response in the lung. The immune micro-environment of db/db mice was an inflammatory state with suppressed adaptive cellular immunity. After the administration of ephedrine, significant deterioration of NK activity was observed with lowered gene transcription of klrk1 encoding NKG2D, and of ccl8, a NK cell targeting chemokine. Suppressed cellular immunity in db/db mice was lowered ever further by single ephedrine treatment, as was evidenced by mitogen-induced T or B cell proliferations. These observations demonstrate that at the non-toxic doses in normal B6C3F1 mice, ephedrine clearly suppressed systemic immunity of db/db mice. The data suggest that the immune micro-environment of obese individuals is fragile and susceptible to ephedrine-related pathologic response, and this may be a prelude to the induction of obesity-related secondary immunological disorders.
Collapse
Affiliation(s)
- Seung-hoon Lee
- Department of Life Science, Yongin University, 470 Samga Dong, Cheo-In Gu, Yong-In Si 17092, Republic of Korea;
| | - Hyunah Lee
- Immunecell Therapy Research Center, Seoul Song Do Colorectal Hospital, 78 Dasan-ro, Jung-gu, Seoul 04597, Republic of Korea
| | - Rackhyun Park
- Department of Life Science, Yongin University, 470 Samga Dong, Cheo-In Gu, Yong-In Si 17092, Republic of Korea;
| |
Collapse
|
11
|
Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov 2023; 9:212. [PMID: 37393391 DOI: 10.1038/s41420-023-01524-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Chemokines are a large family mediating a lot of biological behaviors including chemotaxis, tumor growth, angiogenesis and so on. As one member of this family, CXC subfamily possesses the same ability. CXC chemokines can recruit and migrate different categories of immune cells, regulate tumor's pathological behaviors like proliferation, invasion and metastasis, activate angiogenesis, etc. Due to these characteristics, CXCL subfamily is extensively and closely associated with tumors and inflammatory diseases. As studies are becoming more and more intensive, CXCLs' concrete roles are better described, and CXCLs' therapeutic applications including biomarkers and targets are also deeply explained. In this review, the role of CXCL family members in various diseases is summarized.
Collapse
Affiliation(s)
- Chenjia Zhou
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| |
Collapse
|
12
|
Huang RYJ, Huang KJ, Chen KC, Hsiao SM, Tan TZ, Wu CJ, Hsu C, Chang WC, Pan CY, Sheu BC, Wei LH. Immune-Hot tumor features associated with recurrence in early-stage ovarian clear cell carcinoma. Int J Cancer 2023; 152:2174-2185. [PMID: 36629283 DOI: 10.1002/ijc.34428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Ovarian clear cell carcinoma (OCCC) is a distinct histotype of ovarian cancer, which usually presages a worse prognosis upon recurrence. Identifying patients at risk for relapse is an unmet need to improve outcomes. A retrospective cohort analysis of 195 early-stage OCCC patients diagnosed between January 2011 and December 2019 at National Taiwan University Hospital was conducted to identify prognostic factors for recurrence, progression-free survival (PFS) and overall survival (OS). Molecular profiling of tumors was performed in a case-controlled cohort matched for adjuvant therapy for biomarker discovery. Multivariate Cox proportional hazard model revealed that paclitaxel-based chemotherapy was associated with better PFS than nonpaclitaxel chemotherapy (HR = 0.19, P = .006). The addition of bevacizumab was associated with better PFS, compared to no bevacizumab (HR = 0.09, P = .02). Neither showed significant improvement in OS. Recurrence is associated with an Immune-Hot tumor feature (P = .03), the CTLA-4-high subtype (P = .01) and increased infiltration of immune cells in general. The Immune-Hot feature (HR = 3.39, P = .005) and the CTLA-4-high subtype (HR = 2.13, P = .059) were associated with worse PFS. Immune-Hot tumor features could prognosticate recurrence in early-stage OCCC.
Collapse
Affiliation(s)
- Ruby Yun-Ju Huang
- School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Ju Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei, Taiwan.,National Taiwan University Hospital Yunlin Branch, Douliu City, Taiwan
| | - Ko-Chen Chen
- School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sheng-Mou Hsiao
- Department of Obstetrics and Gynecology, Far Eastern Memorial Hospital, New Taipei, Taiwan.,Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore
| | - Chin-Jui Wu
- National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Ching Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chun Chang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Yu Pan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bor-Ching Sheu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lin-Hung Wei
- Department of Obstetrics and Gynecology, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
13
|
Zhao T, Wu X, Zhao X, Yao K, Li X, Ni J. Identification and validation of chemokine system-related genes in idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1159856. [PMID: 37122736 PMCID: PMC10140527 DOI: 10.3389/fimmu.2023.1159856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with limited therapeutic options. Recent studies have demonstrated that chemokines play a vital role in IPF pathogenesis. In the present study, we explored whether the gene signature associated with chemokines could be used as a reliable biological marker for patients with IPF. Methods Chemokine-related differentially expressed genes (CR-DEGs) in IPF and control lung tissue samples were identified using data from the Gene Expression Omnibus database. A chemokine-related signature of the diagnostic model was established using the LASSO-Cox regression. In addition, unsupervised cluster analysis was conducted using consensus-clustering algorithms. The CIBERSORT algorithm was used to calculate immune cell infiltration across patient subgroups. Finally, we established a mouse model of bleomycin-induced pulmonary fibrosis and a model of fibroblasts treated with TGFβ1. Expression levels of chemokine-related signature genes were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Results We established a chemokine-related eleven-gene signature of a diagnostic model consisting of CXCL2, CCRL2, ARRB1, XCL1, GRK5, PPBP, CCL19, CCL13, CCL11, CXCL6, and CXCL13, which could easily distinguish between IPF patients and controls. Additionally, we identified two subtypes of IPF samples based on chemokine-related gene expression. Pulmonary function parameters and stromal scores were significantly higher in subtype 1 than in subtype 2. Several immune cell types, especially plasma cells and macrophages, differ significantly between the two subtypes. RT-qPCR results showed that the expression levels of Cxcl2 and Ccl2 increased considerably in bleomycin-induced mice. Meanwhile, Arrb1, Ccrl2, Grk5, and Ppbp expression was significantly reduced. Furthermore, multiple chemokine-related genes were altered in TGFβ1 or TNFα-induced fibroblast cells. Conclusions A novel chemokine-related eleven-signature of diagnostic model was developed. These genes are potential biomarkers of IPF and may play essential roles in its pathogenesis.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xuelei Zhao
- Department of Gastroenterology, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Kecheng Yao
- Department of Geriatrics, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xiaojuan Li
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Jixiang Ni
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
- *Correspondence: Jixiang Ni,
| |
Collapse
|