1
|
Zong D, Xu Y, Zhang X, Gan P, Wang H, Chen X, Liang H, Zhou J, Lu Y, Li P, Ma S, Yu J, Jiang T, Liao S, Ren M, Li L, Liu H, Sahu SK, Li L, Wang S, He C. A multiomics investigation into the evolution and specialized metabolisms of three Toxicodendron cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2683-2699. [PMID: 39589867 DOI: 10.1111/tpj.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Toxicodendron species are economically and medicinally important trees because of their rich sources of natural products. We present three chromosome-level genome assemblies of Toxicodendron vernicifluum 'Dali', Toxicodendron succedaneum 'Vietnam', and T. succedaneum 'Japan', which display diverse production capacities of specialized metabolites. Genome synteny and structural variation analyses revealed large genomic differences between the two species (T. vernicifluum and T. succedaneum) but fewer differences between the two cultivars within the species. Despite no occurrence of recent whole-genome duplications, Toxicodendron showed evidence of local duplications. The genomic modules with high expression of genes encoding metabolic flux regulators and chalcone synthase-like enzymes were identified via multiomics analyses, which may be responsible for the greater urushiol accumulation in T. vernicifluum 'Dali' than in other Toxicodendron species. In addition, our analyses revealed the regulatory patterns of lipid metabolism in T. succedaneum 'Japan', which differ from those of other Toxicodendron species and may contribute to its high lipid accumulation. Furthermore, we identified the key regulatory elements of lipid metabolism at each developmental stage, which could aid in molecular breeding to improve the production of urushiol and lipids in Toxicodendron species. In summary, this study provides new insights into the genomic underpinnings of the evolution and diversity of specialized metabolic pathways in three Toxicodendron cultivars through multiomics studies.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Yan Xu
- BGI Research, Wuhan, 430074, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | | | | | | | - Jintao Zhou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Yu Lu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peiling Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Jinde Yu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Tao Jiang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shengxi Liao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650216, China
| | - Meirong Ren
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Linzhou Li
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- BGI Research, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Laigeng Li
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Sibo Wang
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
2
|
Yang J, Ou W, Lin G, Wang Y, Chen D, Zeng Z, Chen Z, Lu X, Wu A, Lin C, Liang Y. PAMK Ameliorates Non-Alcoholic Steatohepatitis and Associated Anxiety/Depression-like Behaviors Through Restoring Gut Microbiota and Metabolites in Mice. Nutrients 2024; 16:3837. [PMID: 39599623 PMCID: PMC11597619 DOI: 10.3390/nu16223837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES Long-term Western diet-induced non-alcoholic steatohepatitis (NASH) can lead to liver cirrhosis and NASH-associated hepatocellular carcinoma, which are end-stage liver diseases. Meanwhile, NASH is associated with mental burden and worsens as the disease progresses. Atractylodes Macrocephala Koidz (AMK) is one of the main ingredients of Shenling Baizhu San, and the effect of Polysaccharide from AMK ameliorates (PAMK), as an important medicinal ingredient of AMK, on NASH and associated anxiety/depression-like behaviors is still unclear. METHODS This study investigated the protective effect of PAMK on NASH and associated anxiety/depression-like behaviors through a Western diet-induced NASH mice model. RESULTS showed that PAMK decreased the concentrations of liver TC, TG, and serum AST and ALT, improving glucose tolerance, and reducing liver steatosis and fibrosis. Moreover, the expression of liver IL-6, IL-1β, TNF-α, IL-18 and MCP-1 could be reduced by PAMK significantly. Additionally, PAMK decreased anxiety/depression-like behaviors and expression of IL-6, IL-1β, TNF-α, and MCP-1 in the hippocampus. 16S rRNA gene sequencing revealed that PAMK diminished the Firmicutes/Bacteroidetes ratio and abundance of Faecalibaculum_rodentium, and increased the abundance of Muribaculaceae. This might be related to gene abundance of Pentose, the glucuronate interconversions pathway and carbohydrate enzymes (GH1, GH4). Serum metabolomics suggested that PC (18:5e/2:0), PC (16:2e/2:0), Lysopc 20:4, PC (16:0/2:0), and LPC 19:0 upregulated significantly after PAMK intervention, together with the enrichment of carbon metabolism and Citrate cycle pathways specially. CONCLUSIONS PAMK as a potential prebiotic ameliorated NASH and associated anxiety/depression-like behaviors in mice, probably by regulating Faecalibaculum_rodentium, carbohydrate enzymes and lipid metabolites.
Collapse
Affiliation(s)
- Jianmei Yang
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Wanyi Ou
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Guiru Lin
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Yuanfei Wang
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Dongliang Chen
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Ze Zeng
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Zumin Chen
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Xiaomin Lu
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Aiping Wu
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
| | - Chenli Lin
- School of Medicine, Jinan University, Guangzhou 510632, China
- Health Science Center, Jinan University, Guangzhou 510632, China
| | - Yinji Liang
- School of Nursing, Jinan University, Guangzhou 510632, China; (J.Y.); (W.O.); (G.L.); (Y.W.); (D.C.); (Z.Z.); (Z.C.); (X.L.); (A.W.)
- Health Science Center, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Cheng Z, Lin S, Wu Z, Lin C, Zhang Q, Xu C, Li J, Long C. Study on medicinal food plants in the Gaoligongshan Biosphere Reserve, the richest biocultural diversity center in China. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:10. [PMID: 38225656 PMCID: PMC10790445 DOI: 10.1186/s13002-023-00638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Traditional knowledge associated with medicinal food plants (MFPs) plays a vital role in fighting hidden hunger and safeguarding the health of local people. MFPs resources are abundant in the Gaoligongshan area, a biosphere reserve with the richest biocultural diversity in China. Local people of different linguistic groups also have rich traditional botanical knowledge. However, there are still few comprehensive and systematic studies on MFPs there. METHODS Ethnobotanical investigation including market survey, semi-structured interviews, free listing and key informant interviews was conducted in the Gaoligongshan area, Western Yunnan, Southwest China. A total of 13 local farmers' markets were selected and information about medicinal food plants, including food categories, medicinal and edible parts, modes of consumption, medicinal effects, and distribution were collected. The relative occurrence frequency (RFO) and cultural food significance index (CFSI) were calculated to identify the culturally significant MFPs. RESULTS A total of 184 species of MFPs, belonging to 83 families, were collected in the Gaoligongshan area, including vegetables (77), medicinal diets (26), fruits (25), spices (18), herbal tea (13), tea substitutes (11), substitutes for staple food (8), nuts (5), oils and fats (4), and dye material (1). The most frequently used families were Fabaceae, Asteraceae and Apiaceae, with 11, 10, and 9 species, respectively. The most frequently used plant parts were the stems, followed by fruits and leaves. Based on the evaluation results of the CFSI and RFO indices, 18 species of MFPs with magnificent local cultural importance have been screened out, such as Houttuynia cordata, Eryngium foetidum, Sechium edule, Centella asiatica and Pseudocydonia sinensis. CONCLUSION These findings have guiding significance for conservation of traditional knowledge associated with MFPs and facilitation of scientific utilization of MFPs to meet local people's needs for a healthy life.
Collapse
Affiliation(s)
- Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shuyan Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ziyi Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Chen Lin
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Congli Xu
- Yunnan Gaoligongshan National Nature Reserve (Baoshan Bureau), Yunnan, 678000, China
| | - Jiahua Li
- Yunnan Gaoligongshan National Nature Reserve (Longyang Branch of Baoshan Bureau), Yunnan, 678000, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission of China, Beijing, 100081, China.
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
- Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
4
|
He Z, Guo J, Zhang H, Yu J, Zhou Y, Wang Y, Li T, Yan M, Li B, Chen Y, Chen S, Lv G, Su J. Atractylodes macrocephala Koidz polysaccharide improves glycolipid metabolism disorders through activation of aryl hydrocarbon receptor by gut flora-produced tryptophan metabolites. Int J Biol Macromol 2023; 253:126987. [PMID: 37729987 DOI: 10.1016/j.ijbiomac.2023.126987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Polysaccharides are known to confer protection against glycolipid metabolism disorders (GMD) by regulating intestinal flora. In this study, a heterogeneous acidic heteropolysaccharide with high molecular weight mainly composed of fructose was isolated from Atractylodes macrocephala Koidz (AMP). Supplementation with AMP was shown to improve diet-induced GMD in a rat model, including decreasing the levels of serum triglycerides, total cholesterol, and glucose, and improving hepatic lipidosis and islet cells morphologies. AMP-treated rats also exhibited modified intestinal flora with enrichments of intestinal Lactobacillus and Rothia species, which was accompanied by increased tryptophan metabolites such as indole-3-propionic acid, indole, tryptamine, and tryptophol. These metabolites promote the expression of intestinal aryl hydrocarbon receptor (AhR) in nuclear fractions. AhR activation increased the expression levels of IL-22 and GLP-1 proteins and mRNA. IL-22 reduced systemic LPS by upregulating the expression of tight junction proteins, antimicrobial peptides, and mucin to ameliorate intestinal barrier function, and activated the hepatic IL-22R/Stat3/Acox1 signaling pathway to improve lipid metabolism. GLP-1 activated the pancreatic GLP-1R/p-CREB signaling pathway to ameliorate β-cell injury and improve insulin resistance. Therefore, the intestinal microbial-tryptophan metabolism-AhR pathway was deduced to be a mechanism by which this polysaccharide improves GMD.
Collapse
Affiliation(s)
- Ziwen He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyan Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiwen Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqing Zhou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yajun Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqiu Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yigong Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Guiyuan Lv
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|