1
|
Fan X, Chen M. Exploring the role of Disulfidptosis in glioma progression: insights into tumor heterogeneity and therapeutic potential through single-cell RNA sequencing. Discov Oncol 2024; 15:829. [PMID: 39714742 DOI: 10.1007/s12672-024-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Gliomas, particularly glioblastoma (GBM), are the most common and aggressive primary brain tumors in adults, characterized by high malignancy and frequent recurrence. Despite standard treatments, including surgery, radiotherapy, and chemotherapy, the prognosis for GBM remains poor, with a median survival of less than 15 months and a five-year survival rate below 10%. Tumor heterogeneity and resistance to treatment create significant challenges in controlling glioma progression. Therefore, there is an urgent need for new therapeutic targets and strategies. OBJECTIVE This study investigates the role of Disulfidptosis, a recently discovered form of programmed cell death, in gliomas. Unlike apoptosis and necrosis, Disulfidptosis is driven by the abnormal accumulation of intracellular disulfide bonds, leading to protein misfolding and cytoskeletal collapse, particularly in cancer cells with metabolic dysregulation. We aim to explore how glioma cells respond to Disulfidptosis and identify potential therapeutic targets by analyzing the heterogeneity of gliomas at the single-cell level using single-cell RNA sequencing (scRNA-seq). METHODS scRNA-seq data from glioma patients were analyzed to uncover differences in ferroptosis-related pathways, including iron metabolism and lipid peroxidation. Cellular subpopulations within gliomas were profiled to assess their sensitivity to Disulfidptosis and the underlying mechanisms. Survival analysis was conducted to evaluate the clinical relevance of Disulfidptosis-related gene expression. RESULTS Multiple cell subpopulations within gliomas exhibit varying sensitivities to Disulfidptosis, influenced by their metabolic properties. Dysregulated iron metabolism and antioxidant mechanisms were identified as key factors impacting Disulfidptosis sensitivity. Glioma microenvironment signaling pathways also play a role in regulating Disulfidptosis. These findings suggest that activating Disulfidptosis pathways may provide novel therapeutic strategies to overcome treatment resistance in gliomas. CONCLUSION This study offers new insights into the role of Disulfidptosis in glioma progression and highlights its potential as a therapeutic target. By leveraging single-cell sequencing data, the research uncovers tumor heterogeneity and identifies specific cell populations resistant to Disulfidptosis. These findings may pave the way for personalized treatment strategies to improve survival outcomes in glioma patients.
Collapse
Affiliation(s)
- Xiaorong Fan
- Department of Neurosurgery, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, China
| | - Maojun Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, China.
| |
Collapse
|
2
|
Benkő BM, Tóth G, Moldvai D, Kádár S, Szabó E, Szabó ZI, Kraszni M, Szente L, Fiser B, Sebestyén A, Zelkó R, Sebe I. Cyclodextrin encapsulation enabling the anticancer repositioning of disulfiram: Preparation, analytical and in vitro biological characterization of the inclusion complexes. Int J Pharm 2024; 657:124187. [PMID: 38697585 DOI: 10.1016/j.ijpharm.2024.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Drug repositioning is a high-priority and feasible strategy in the field of oncology research, where the unmet medical needs are continuously unbalanced. Disulfiram is a potential non-chemotherapeutic, adjuvant anticancer agent. However, the clinical translation is limited by the drug's poor bioavailability. Therefore, the molecular encapsulation of disulfiram with cyclodextrins is evaluated to enhance the solubility and stability of the drug. The present work describes for the first time the complexation of disulfiram with randomly methylated-β-cyclodextrin. A parallel analytical andin vitrobiological comparison of disulfiram inclusion complexes with hydroxypropyl-β-cyclodextrin, randomly methylated-β-cyclodextrin and sulfobutylether-β-cyclodextrin is conducted. A significant drug solubility enhancement by about 1000-folds and fast dissolution in 1 min is demonstrated. Thein vitrodissolution-permeation studies and proliferation assays demonstrate the solubility-dependent efficacy of the drug. Throughout the different cancer cell lines' characteristics and disulfiram unspecific antitumoral activity, the inhibitory efficacy of the cyclodextrin encapsulated drug on melanoma (IC50 about 100 nM) and on glioblastoma (IC50 about 7000 nM) cell lines differ by a magnitude. This pre-formulation screening experiment serves as a proof of concept of using cyclodextrin encapsulation as a platform tool for further drug delivery development in repositioning areas.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Dorottya Moldvai
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Szabina Kádár
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Zoltán-István Szabó
- Faculty of Pharmacy Department of Drugs Industry and Pharmaceutical Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Str. 38, Târgu Mureș 540142, Romania.
| | - Márta Kraszni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory Ltd., Illatos út 7, Budapest 1097, Hungary.
| | - Béla Fiser
- Institute of Chemistry, Faculty of Materials Science and Chemical Engineering, University of Miskolc, Egyetemváros, Miskolc 3515, Hungary; Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland; Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine.
| | - Anna Sebestyén
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Egis Pharmaceuticals Plc., R&D Directorate, P.O. Box 100, Budapest 1475, Hungary.
| |
Collapse
|
3
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
4
|
Abu-Serie MM, Osuka S, Heikal LA, Teleb M, Barakat A, Dudeja V. Diethyldithiocarbamate-ferrous oxide nanoparticles inhibit human and mouse glioblastoma stemness: aldehyde dehydrogenase 1A1 suppression and ferroptosis induction. Front Pharmacol 2024; 15:1363511. [PMID: 38720782 PMCID: PMC11076782 DOI: 10.3389/fphar.2024.1363511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
The development of effective therapy for eradicating glioblastoma stem cells remains a major challenge due to their aggressive growth, chemoresistance and radioresistance which are mainly conferred by aldehyde dehydrogenase (ALDH)1A1. The latter is the main stemness mediator via enhancing signaling pathways of Wnt/β-catenin, phosphatidylinositol 3-kinase/AKT, and hypoxia. Furthermore, ALDH1A1 mediates therapeutic resistance by inactivating drugs, stimulating the expression of drug efflux transporters, and detoxifying reactive radical species, thereby apoptosis arresting. Recent reports disclosed the potent and broad-spectrum anticancer activities of the unique nanocomplexes of diethyldithiocarbamate (DE, ALDH1A1 inhibitor) with ferrous oxide nanoparticles (FeO NPs) mainly conferred by inducing lipid peroxidation-dependent non-apoptotic pathways (iron accumulation-triggered ferroptosis), was reported. Accordingly, the anti-stemness activity of nanocomplexes (DE-FeO NPs) was investigated against human and mouse glioma stem cells (GSCs) and radioresistant GSCs (GSCs-RR). DE-FeO NPs exhibited the strongest growth inhibition effect on the treated human GSCs (MGG18 and JX39P), mouse GSCs (GS and PDGF-GSC) and their radioresistant cells (IC50 ≤ 70 and 161 μg/mL, respectively). DE-FeO NPs also revealed a higher inhibitory impact than standard chemotherapy (temozolomide, TMZ) on self-renewal, cancer repopulation, chemoresistance, and radioresistance potentials. Besides, DE-FeO NPs surpassed TMZ regarding the effect on relative expression of all studied stemness genes, as well as relative p-AKT/AKT ratio in the treated MGG18, GS and their radioresistant (MGG18-RR and GS-RR). This potent anti-stemness influence is primarily attributed to ALDH1A1 inhibition and ferroptosis induction, as confirmed by significant elevation of cellular reactive oxygen species and lipid peroxidation with significant depletion of glutathione and glutathione peroxidase 4. DE-FeO NPs recorded the optimal LogP value for crossing the blood brain barrier. This in vitro novel study declared the potency of DE-FeO NPs for collapsing GSCs and GSCs-RR with improving their sensitivity to chemotherapy and radiotherapy, indicating that DE-FeO NPs may be a promising remedy for GBM. Glioma animal models will be needed for in-depth studies on its safe effectiveness.
Collapse
Affiliation(s)
- Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Satoru Osuka
- Department of Neurosurgery, School of Medicine and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Lamiaa A. Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
5
|
Zhang P, Zhou C, Ren X, Jing Q, Gao Y, Yang C, Shen Y, Zhou Y, Hu W, Jin F, Xu H, Yu L, Liu Y, Tong X, Li Y, Wang Y, Du J. Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis. Redox Biol 2024; 69:103007. [PMID: 38150993 PMCID: PMC10788306 DOI: 10.1016/j.redox.2023.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the fourth leading cause of cancer-related death globally, which is characterized by complicated pathophysiology, high recurrence rate, and poor prognosis. Our previous study has demonstrated that disulfiram (DSF)/Cu could be repurposed for the treatment of HCC by inducing ferroptosis. However, the effectiveness of DSF/Cu may be compromised by compensatory mechanisms that weaken its sensitivity. The mechanisms underlying these compensatory responses are currently unknown. Herein, we found DSF/Cu induces endoplasmic reticulum stress with disrupted ER structures, increased Ca2+ level and activated expression of ATF4. Further studies verified that DSF/Cu induces both ferroptosis and cuproptosis, accompanied by the depletion of GSH, elevation of lipid peroxides, and compensatory increase of xCT. Comparing ferroptosis and cuproptosis, it is interesting to note that GSH acts at the crossing point of the regulation network and therefore, we hypothesized that compensatory elevation of xCT may be a key aspect of the therapeutic target. Mechanically, knockdown of ATF4 facilitated the DSF/Cu-induced cell death and exacerbated the generation of lipid peroxides under the challenge of DSF/Cu. However, ATF4 knockdown was unable to block the compensatory elevation of xCT and the GSH reduction. Notably, we found that DSF/Cu induced the accumulation of ubiquitinated proteins, promoted the half-life of xCT protein, and dramatically dampened the ubiquitination-proteasome mediated degradation of xCT. Moreover, both pharmacologically and genetically suppressing xCT exacerbated DSF/Cu-induced cell death. In conclusion, the current work provides an in-depth study of the mechanism of DSF/Cu-induced cell death and describes a framework for the further understanding of the crosstalk between ferroptosis and cuproptosis. Inhibiting the compensatory increase of xCT renders HCC cells more susceptible to DSF/Cu, which may provide a promising synergistic strategy to sensitize tumor therapy and overcome drug resistance, as it activates different programmed cell death.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xueying Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanye Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feifan Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Benkő BM, Lamprou DA, Sebestyén A, Zelkó R, Sebe I. Clinical, pharmacological, and formulation evaluation of disulfiram in the treatment of glioblastoma - a systematic literature review. Expert Opin Drug Deliv 2023; 20:541-557. [PMID: 36922013 DOI: 10.1080/17425247.2023.2190581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
INTRODUCTION Glioblastoma (GB) is one of the most challenging central nervous system (CNS) tumors in treatment options and response, urging the development of novel management strategies. The anti-alcoholism drug, disulfiram (DS), has a potential anticancer activity, and its complex mechanism of action is assumed to be well exploited against the heterogeneous GB. AREA COVERED Through a systematic literature review about repositioning DS to GB treatment, an evaluation of the clinical, pharmacological, and formulation strategies is provided to specify the challenges of drug delivery and thus to advance its clinical translation. From six databases, 35 articles were selected, including case report (1); clinical trials (3); original articles mainly representing in vitro and preclinical pharmacological data, and 10 dealing with technological approaches. EXPERT OPINION The repositioning of DS in GB treatment is facing drug and tumor-associated limitations due to the oral drug's low bioavailability, unwanted metabolism, and inefficient delivery to brain-tumor tissue. Development strategies using molecular encapsulation of DS and the parenteral dosage forms improve the anticancer pharmacology of the drug. The development of optimized drug delivery systems (DDS) shows promise for the clinical translation of DS into GB adjuvant therapy.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | | | - Anna Sebestyén
- Tumour Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Budapest, Hungary
| |
Collapse
|