1
|
Yuan X, Zhang Y, Wang S, Du Z. Protective effects of insulin on dry eye syndrome via TLR4/NF-κB pathway: based on network pharmacology and in vitro experiments validation. Front Pharmacol 2024; 15:1449985. [PMID: 39263577 PMCID: PMC11387165 DOI: 10.3389/fphar.2024.1449985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Dry eye syndrome (DES) is a multifactorial ocular surface disease and represents one of the most prevalent ophthalmic disorders. Insulin is an important metabolism-regulating hormone and a potential antioxidant with critical biological roles as anti-inflammatory and anti-apoptotic. However, its mechanism of action remains unknown. In this study, we used network pharmacology techniques and conducted cell experiments to investigate the protective effect of insulin on human corneal epithelial cells (HCECs). Eighty-seven common targets of insulin and DES were identified from the database. KEGG pathway enrichment analysis suggested that insulin may be crucial in regulating the toll-like receptor (TLR) signaling pathway by targeting key targets such as IL-6 and TNF. In cell experiments, insulin promoted HCECs proliferation, improved their ability to migrate, and inhibited apoptosis. Western blot and enzyme-linked immunosorbent assay (ELISA) also confirmed the upregulation of the expression of inflammatory factors such as IL-1β, IL-6, and proteins related to the TLR4/NF-κB signaling pathway. However, the expression of these proteins was inhibited by insulin administration. Our results preliminarily verified insulin may exert a protective role on HCECs under hyperosmotic condition, which offered a novel perspective for the clinical management of this condition.
Collapse
Affiliation(s)
- Xiuxiu Yuan
- Ophthalmology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of ophthalmology, Chongqing, China
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Zhang
- Ophthalmology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyi Wang
- Ophthalmology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyu Du
- Ophthalmology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Yin Y, Zhang K, Qi Y, Li S, Sun Y, Luo M, Fan J, Zhu B, Yu Z, Yang J, Li F, Xu W, Dong L. Renal toxicity of Aconitum plants? A study based on a new mass spectrometry scanning strategy and computer virtual screening. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1399-1417. [PMID: 38837823 DOI: 10.1002/pca.3372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 04/20/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Radix Aconiti Lateralis (Fuzi), a mono-herbal preparation of Aconitum herbs in the genus Aconitum, is commonly used in traditional Chinese medicine (TCM) to treat critical illnesses. The curative effect of Fuzi is remarkable. However, the toxic effects of Fuzi are still a key clinical focus, and the substances inducing nephrotoxicity are still unclear. Therefore, this study proposes a research model combining "in vitro and in vivo component mining-virtual multi-target screening-active component prediction-literature verification" to screen potential nephrotoxic substances rapidly. METHOD The UHPLC-Q-Exactive-Orbitrap MS analysis method was used for the correlation analysis of Fuzi's in vitro-in vivo chemical substance groups. On this basis, the key targets of nephrotoxicity were screened by combining online disease databases and a protein-protein interaction (PPI) network. The computer screening technique was used to verify the binding mode and affinity of Fuzi's components with nephrotoxic targets. Finally, the potential material basis of Fuzi-induced nephrotoxicity was screened. RESULTS Eighty-one Fuzi components were identified. Among them, 35 components were absorbed into the blood. Based on the network biology method, 21 important chemical components and three potential key targets were screened. Computer virtual screening revealed that mesaconine, benzoylaconine, aconitine, deoxyaconitine, hypaconitine, benzoylhypaconine, benzoylmesaconine, and hypaconitine may be potential nephrotoxic substances of Fuzi. CONCLUSIONS Fuzi may interact with multiple components and targets in the process of inducing nephrotoxicity. In the future, experiments can be designed to explore further. This study provides a reference for screening Fuzi nephrotoxic components and has certain significance for the safe use of Fuzi.
Collapse
Affiliation(s)
- Yihui Yin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yunpeng Qi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Min Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Fan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjuan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Wu Z, Qian J, Feng C, Chen Z, Gao X, Liu Y, Gao Y. A review of Aconiti Lateralis Radix Praeparata (Fuzi) for kidney disease: phytochemistry, toxicology, herbal processing, and pharmacology. Front Pharmacol 2024; 15:1427333. [PMID: 39021829 PMCID: PMC11251978 DOI: 10.3389/fphar.2024.1427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Aconiti Lateralis Radix Praeparata, commonly known as Fuzi in. traditional Chinese medicine (TCM), is widely utilized in clinical practice despite its inherent toxicity. Since ancient times, TCM practitioners have explored various processing techniques to broaden its clinical applications and enhance its safety profile. This review aims to summarize the effects of processing on the chemical composition, toxicity, and pharmacological properties of Fuzi, as well as investigate potential underlying mechanisms. Methods Data on phytochemistry, toxicology, pharmacology, and processing methods of Fuzi were gathered from the literature of electronic databases, including Web of Science, PubMed, and CNKI. Results Fuzi contains over 100 kinds of chemical compounds, including alkaloids, flavonoids, and polysaccharides, among which alkaloids are the main active compounds. Diester-diterpenoid alkaloids are the main contributors to Fuzi's toxicity and have side effects on some organs, such as the heart, liver, kidneys, nervous system, and reproductive system. The chemical composition of aconite, particularly its alkaloid content, was changed by hydrolysis or substitution reaction during processing to enhance its efficacy and reduce its toxicity. Salted aconite could enhance the therapeutic efficacy of Fuzi in treating kidney diseases and influence its pharmacokinetics. Conclusion Processing plays an important role in increasing the efficiency and decreasing toxicity of aconite. Further studies are needed to elucidate the changes of aconite before and after processing and the underlying mechanisms of these changes, thereby providing evidence for the clinical safety of drug use.
Collapse
Affiliation(s)
- Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouqi Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
4
|
Han M, An J, Li S, Fan H, Wang L, Du Q, Du J, Yang Y, Song Y, Peng F. Isocucurbitacin B inhibits glioma growth through PI3K/AKT pathways and increases glioma sensitivity to TMZ by inhibiting hsa-mir-1286a. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:16. [PMID: 38835342 PMCID: PMC11149100 DOI: 10.20517/cdr.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 06/06/2024]
Abstract
Aim: Glioma accounts for 81% of all cancers of the nervous system cancers and presents one of the most drug-resistant malignancies, resulting in a relatively high mortality rate. Despite extensive efforts, the complete treatment options for glioma remain elusive. The effect of isocucurbitacin B (isocuB), a natural compound extracted from melon pedicels, on glioma has not been investigated. This study aims to investigate the inhibitory effect of isocuB on glioma and elucidate its underlying mechanisms, with the objective of developing it as a potential therapeutic agent for glioma. Methods: We used network pharmacology and bioinformatics analysis to predict potential targets and associated pathways of isocuB in glioma. Subsequently, the inhibitory effect of isocuB on glioma and its related mechanisms were assessed through Counting Kit-8 (CCK-8), wound healing, transwell, Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and other in vitro experiments, alongside tumor formation experiments in nude mice. Results: Based on this investigation, it suggested that isocuB might inhibit the growth of gliomas through the PI3K-AKT and MAPK pathways. Additionally, we proposed that isocuB may enhance glioma drug sensitivity to temozolomide (TMZ) via modulation of hsa-mir-1286a. The CCK-8 assay revealed that isocuB exhibited inhibitory effects on U251 and U87 proliferation and outperformed TMZ. Wound healing and transwell experiments showed that isocuB inhibited the invasion and migration of U251 cells by suppressing the activity of MMP-2/9, N-cadherin, and Vimentin. The TdT-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) assays revealed that isocuB induced cell apoptosis through inhibition of BCL-2. Subsequently, we conducted RT-qPCR and WB experiments, which revealed that PI3K/AKT and MAPK pathways might be involved in the mechanism of the inhibition isocuB on glioma. Additionally, isocuB promoted the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a. Furthermore, we constructed TMZ-resistant U251 strains and demonstrated effective inhibition by isocuB against these resistant strains. Finally, we confirmed that isocuB can inhibit tumor growth in vivo through experiments on tumors in nude mice. Conclusion: IsocuB may protect against glioma by acting on the PI3K/AKT and MAPK pathways and promote the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Junsha An
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Integrated Traditional Chinese and Western Medicine Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai 214122, China
| | - Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
- Livzon Pharmaceutical Group Inc, Zhuhai 519090, Guangdong, China
| | - Li Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qing Du
- Chongqing Western Biomedical Technology Co. Ltd., Chongqing 400039, China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuqin Song
- Integrated Traditional Chinese and Western Medicine Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
5
|
Zhang R, Asikaer A, Chen Q, Wang F, Lan J, Liu Y, Hu L, Zhao H, Duan H. Network pharmacology and in vitro experimental verification unveil glycyrrhizin from glycyrrhiza glabra alleviates acute pancreatitis via modulation of MAPK and STAT3 signaling pathways. BMC Complement Med Ther 2024; 24:58. [PMID: 38280993 PMCID: PMC10821312 DOI: 10.1186/s12906-024-04372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Acute pancreatitis (AP) is a severe gastrointestinal inflammatory disease with increasing mortality and morbidity. Glycyrrhiza glabra, commonly known as Liquorice, is a widely used plant containing bioactive compounds like Glycyrrhizin, which possesses diverse medicinal properties such as anti-inflammatory, antioxidant, antiviral, and anticancer activities. The objective of this study is to investigate the active components, relevant targets, and underlying mechanisms of the traditional Chinese medicine Glycyrrhiza glabra in the treatment of AP. Utilizing various computational biology methods, we explored the potential targets and molecular mechanisms through Glycyrrhizin supplementation. Computational results indicated that Glycyrrhizin shows promising pharmacological potential, particularly with mitogen-activated protein kinase 3 (MAPK3) protein (degree: 70), forming stable complexes with Glycyrrhizin through ionic and hydrogen bonding interactions, with a binding free energy (ΔGbind) of -33.01 ± 0.08 kcal/mol. Through in vitro experiments, we validated that Glycyrrhizin improves primary pancreatic acinar cell injury by inhibiting the MAPK/STAT3/AKT signaling pathway. Overall, MAPK3 emerges as a reliable target for Glycyrrhizin's therapeutic effects in AP treatment. This study provides novel insights into the active components and potential targets and molecular mechanisms of natural products.
Collapse
Affiliation(s)
- Rui Zhang
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR China
| | - Qi Chen
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Fang Wang
- College of Stomotology, Zunyi Medical University, Zunyi, 563000, China
| | - Junjie Lan
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yang Liu
- Department of Hepatobiliary Surgery II, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Linfang Hu
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Huaye Zhao
- Department of pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 405400, PR China.
| |
Collapse
|
6
|
Zhao P, Tian Y, Geng Y, Zeng C, Ma X, Kang J, Lu L, Zhang X, Tang B, Geng F. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem 2024; 12:1339364. [PMID: 38318112 PMCID: PMC10839071 DOI: 10.3389/fchem.2024.1339364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Yuefei Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Lin Lu
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Xin Zhang
- Sichuan Good Doctor Pharmaceutical Group, Chengdu, China
| | - Bo Tang
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Jiang C, Shen J, Wang C, Huang Y, Wang L, Yang Y, Hu W, Li P, Wu H. Mechanism of aconitine mediated neuronal apoptosis induced by mitochondrial calcium overload caused by MCU. Toxicol Lett 2023; 384:86-95. [PMID: 37506855 DOI: 10.1016/j.toxlet.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Aconitine is a crucial toxic component in Chinese herbal medicines such as Aconitum, Aconitum coreanum, and Aconitum soongaricum. The poisoning symptoms of the central nervous system and cardiovascular system caused by it are relatively common in China, and there are many studies on cardiovascular system diseases caused by aconitine. However, the specific mechanism of neurotoxicity induced by aconitine is still unclear. This study explored the effect and mechanism of mitochondrial calcium uniporter on mitochondrial energy metabolism disorder in aconitine poisoning hippocampal neurons. The results showed that after treatment with 400μmol/L aconitine, mitochondrial energy metabolism was abnormal in rat hippocampal neuron cells, the expression of MCU in mitochondria was up-regulated, calcium overload in mitochondria, ATP production decreased, and mitochondrial membrane potential Changes, increased expression of the apoptosis gene Cleaved-Caspase-3. After treatment with the MCU agonist spermine, mitochondrial energy metabolism was significantly abnormal, and cell apoptosis was increased considerably. However, pretreatment with calcium ion channel inhibitor Ruthenium Red (RR) effectively promoted the generation of ATP, thereby improving mitochondrial energy metabolism disorders and reducing cell apoptosis. These results suggest that aconitine induces mitochondrial energy metabolism dysfunction in hippocampal neurons, which may be related to the increased expression of MCU.
Collapse
Affiliation(s)
- Chen Jiang
- Kunming Medical University, Kunming, China
| | - Jun Shen
- Kunming Medical University, Kunming, China
| | - Chun Wang
- Kunming Medical University, Kunming, China
| | - Yongjie Huang
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Linbo Wang
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yiran Yang
- Kunming Medical University, Kunming, China
| | - Wen Hu
- Kunming Medical University, Kunming, China
| | - Ping Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Duan H, Zhang R, Yuan L, Liu Y, Asikaer A, Liu Y, Shen Y. Exploring the therapeutic mechanisms of Gleditsiae Spina acting on pancreatic cancer via network pharmacology, molecular docking and molecular dynamics simulation. RSC Adv 2023; 13:13971-13984. [PMID: 37181515 PMCID: PMC10167735 DOI: 10.1039/d3ra01761c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive tumors and also has a low survival rate. The dried spines of Gleditsia sinensis Lam are known as "Gleditsiae Spina" and they mostly contain flavonoids, phenolic acids, terpenoids, steroids, and other chemical components. In this study, the potential active components and molecular mechanisms of Gleditsiae Spina for treating pancreatic cancer were systematically revealed by network pharmacology, molecular docking and molecular dynamics simulations (MDs). RAC-alpha serine/threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53), tumor necrosis factor α (TNFα), interleukin-6 (IL6) and vascular endothelial growth factor A (VEGFA) were common targets of Gleditsiae Spina, human cytomegalovirus infection signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and MAPK signaling pathway were critical pathways of fisetin, eriodyctiol, kaempferol and quercetin in the treatment of pancreatic cancer. Molecular dynamics simulations (MDs) results showed that eriodyctiol and kaempferol have long-term stable hydrogen bonds and high binding free energy for TP53 (-23.64 ± 0.03 kcal mol-1 and -30.54 ± 0.02 kcal mol-1, respectively). Collectively, our findings identify active components and potential targets in Gleditsiae Spina for the treatment of pancreatic cancer, which may help to explore leading compounds and potential drugs for pancreatic cancer.
Collapse
Affiliation(s)
- Hongtao Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital 550002 Guiyang China
| | - Lu Yuan
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| | - Yiyuan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| | - Aiminuer Asikaer
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| | - Yang Liu
- Department of Hepatobiliary Surgery II, Guizhou Provincial People's Hospital 550002 Guiyang China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology Chongqing 405400 China
| |
Collapse
|
9
|
Chen F, Wu S, Li D, Dong J, Huang X. Leaf Extract of Perilla frutescens (L.) Britt Promotes Adipocyte Browning via the p38 MAPK Pathway and PI3K-AKT Pathway. Nutrients 2023; 15:nu15061487. [PMID: 36986217 PMCID: PMC10054491 DOI: 10.3390/nu15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The leaf of Perilla frutescens (L.) Britt (PF) has been reported to negatively affect adipocyte formation, inhibit body-fat formation, and lower body weight. However, its effect on adipocyte browning remains unknown. Thus, the mechanism of PF in promoting adipocyte browning was investigated. The ingredients of PF were acquired from the online database and filtered with oral bioavailability and drug-likeness criteria. The browning-related target genes were obtained from the Gene Card database. A Venn diagram was employed to obtain the overlapped genes that may play a part in PF promoting adipocyte browning, and an enrichment was analysis conducted based on these overlapped genes. A total of 17 active ingredients of PF were filtered, which may regulate intracellular receptor-signaling pathways, the activation of protein kinase activity, and other pathways through 56 targets. In vitro validation showed that PF promotes mitochondrial biogenesis and upregulates brite adipocyte-related gene expression. The browning effect of PF can be mediated by the p38 MAPK pathway as well as PI3K-AKT pathway. The study revealed that PF could promote adipocyte browning through multitargets and multipathways. An in vitro study validated that the browning effect of PF can be mediated by both the P38 MAPK pathway and the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Fancheng Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Orthopaedics & Rehabilitation, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Silin Wu
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200120, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaowei Huang
- Facutly of Medicine, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Zhu J, Yang Y, Xin LY, Wan SY, He N, Wang HT, Chen XY, Mei QX, Feng GJ, Chen QH, Yang GY. Identification and quantification of nine compounds in Fangwen Jiuwei decoction by liquid chromatography-mass spectrometry. J Sep Sci 2023; 46:e2200824. [PMID: 36871198 DOI: 10.1002/jssc.202200824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Fangwen Jiuwei Decoction is a traditional Chinese medicine preparation for the treatment of pneumonia developed by Shenzhen Bao'an Chinese Medicine Hospital, which shows remarkable clinical responses. Qualitative and quantitative analyses of the main active compounds are crucial for the quality control of traditional Chinese medicine prescription in clinical application. In this study, we identified nine active compounds essential for the pharmacological effects of Fangwen Jiuwei Decoction based on the analysis of the Network Pharmacology and relevant literature. Moreover, these compounds can interact with several crucial drug targets in pneumonia based on molecular docking. We applied high-performance liquid chromatography-tandem mass spectrometry method was established these nine active ingredients' qualitative and quantitative detections. The possible cleavage pathways of nine active components were determined based on secondary ions mass spectrometry. The results of high-performance liquid chromatography-tandem mass spectrometry were further validated, which show a satisfactory correlation coefficient (r > 0.99), recovery rate (≥93.31%), repeatability rate (≤5.62%), stability (≤7.95%), intra-day precision (≤6.68%), and inter-day precision (≤9.78%). The limit of detection was as low as 0.01 ng/ml. In this study, we established a high-performance liquid chromatography-tandem mass spectrometry method to qualitatively and quantitatively analyze the chemical components in the Fangwen Jiuwei Decoction extract.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Ling-Yi Xin
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Shi-Yu Wan
- Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Na He
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Hang-Tian Wang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Xi-Yu Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Quan-Xi Mei
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Guang-Jun Feng
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Qin-Hua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Guang-Yi Yang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| |
Collapse
|
11
|
Li X, Hou W, Lin T, Ni J, Qiu H, Fu Y, Zhao Z, Yang C, Li N, Zhou H, Zhang R, Liu Z, Fu L, Zhu L. Neoline, fuziline, songorine and 10-OH mesaconitine are potential quality markers of Fuzi: In vitro and in vivo explorations as well as pharmacokinetics, efficacy and toxicity evaluations. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115879. [PMID: 36370966 DOI: 10.1016/j.jep.2022.115879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi, the lateral roots of Aconitum carmichaelii Debx, plays an irreplaceable role in treating Yang deficiency and cold coagulation syndromes. However, Fuzi has a narrow margin of safety since its pharmacological constituents, Aconitum alkaloids, have potential cardiotoxicity and neurotoxicity. The current quality markers (Q-markers) for the control of Fuzi's efficacy and toxicity are 3 monoester-diterpenoid alkaloids, namely, benzoylaconine (BAC), benzoylhypaconine and benzoylmesaconine (BMA) and 3 diester-diterpenoid alkaloids, namely, aconitine (AC), hypaconitine and mesaconitine (MA). However, mounting evidence indicates that the current 6 Q-markers may not be efficacy- or toxicity-specific enough for Fuzi. AIM OF THE STUDY The aim of this study was to explore and evaluate efficacy- or toxicity-specific potential quality markers (PQ-markers) of Fuzi. MATERIALS AND METHODS PQ-markers were explored by analyzing 30 medicinal samples and alkaloids exposed in mouse. Pharmacokinetics of PQ-markers on C57BL/6J mice were determined. Anti-inflammatory effects of PQ-markers were evaluated by λ-carrageenan-induced paw edema model and lipopolysaccharide-induced RAW264.7 cell inflammatory model, while analgesic effects were assessed by acetic acid-induced pain model and Hargreaves test. Cardiotoxicity and neurotoxicity of PQ-markers were assessed by histological and biochemical analyses, while acute toxicity was evaluated by modified Kirschner method. RESULTS After in vitro and in vivo explorations, 7 PQ-markers, namely, neoline (NE), fuziline (FE), songorine (SE), 10-OH mesaconitine (10-OH MA), talatizamine, isotalatizidine and 16β-OH cardiopetalline, were found. In the herbal medicines, NE, FE, SE and 10-OH MA were found in greater abundance than many other alkaloids. Specifically, the amounts of NE, FE and SE in the Fuzi samples were all far higher than that of BAC, and the contents of 10-OH MA in 56.67% of the samples were higher than that of AC. In mouse plasma and tissues, NE, FE, SE, talatizamine, isotalatizidine and 16β-OH cardiopetalline had higher contents than the other alkaloids, including the 6 current Q-markers. The pharmacokinetics, efficacy and toxicity of NE, FE, SE and 10-OH MA were further evaluated. The average oral bioavailabilities of NE (63.82%), FE (18.14%) and SE (49.51%) were higher than that of BMA (3.05%). Additionally, NE, FE and SE produced dose-dependent anti-inflammatory and analgesic effects, and their actions were greater than those of BMA. Concurrently, the toxicities of NE, FE and SE were lower than those of BMA, since no cardiotoxicity or neurotoxicity was found in mice after NE, FE and SE treatment, while BMA treatment notably increased the creatine kinase activity and matrix metalloproteinase 9 level in mice. The average oral bioavailability of 10-OH MA (7.02%) was higher than that of MA (1.88%). The median lethal dose (LD50) of 10-OH MA in mice (0.11 mg/kg) after intravenous injection was close to that of MA (0.13 mg/kg). Moreover, 10-OH MA produced significant cardiotoxicity and neurotoxicity, and notable anti-inflammatory and analgesic effects that were comparable to those of MA. CONCLUSIONS Seven PQ-markers of Fuzi were found after in vitro and in vivo explorations. Among them, NE, FE and SE were found to be more efficacy-specific than BMA, and 10-OH MA was as toxicity-specific as MA.
Collapse
Affiliation(s)
- Xiaocui Li
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Weiqing Hou
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tingting Lin
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiadong Ni
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huawei Qiu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Fu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongxiang Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caihua Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Hua Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ling Fu
- Huizhou Hosptial of Guangzhou University of Chinese Medicine, Huizhou, 516000, China.
| | - Lijun Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|