1
|
Attree E, Griffiths B, Panchal K, Xia D, Werling D, Banos G, Oikonomou G, Psifidi A. Identification of DNA methylation markers for age and Bovine Respiratory Disease in dairy cattle: A pilot study based on Reduced Representation Bisulfite Sequencing. Commun Biol 2024; 7:1251. [PMID: 39363014 PMCID: PMC11450024 DOI: 10.1038/s42003-024-06925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Methylation profiles of animals are known to differ by age and disease status. Bovine respiratory disease (BRD), a complex infectious disease, primarily affects calves and has significant impact on animal welfare and the cattle industry, due to production losses, increased veterinary costs as well as animal losses. BRD susceptibility is multifactorial, influenced by both environmental and genetic factors. We have performed a pilot study to investigate the epigenetic profile of BRD susceptibility in six calves (three healthy versus three diagnosed with BRD) and age-related methylation differences between healthy calves and adult dairy cows (three calves versus four adult cows) using Reduced Representation Bisulfite Sequencing (RRBS). We identified 2537 genes within differentially methylated regions between calves and adults. Functional analysis revealed enrichment of developmental pathways including cell fate commitment and tissue morphogenesis. Between healthy and BRD affected calves, 964 genes were identified within differentially methylated regions. Immune and vasculature regulatory pathways were enriched and key candidates in BRD susceptibility involved in complement cascade regulation, vasoconstriction and respiratory cilia structure and function were identified. Further studies with a greater sample size are needed to validate these findings and formulate integration into breeding programmes aiming to increase animal longevity and disease resistance.
Collapse
Affiliation(s)
- E Attree
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, UK.
| | - B Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - K Panchal
- Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - D Xia
- Department of Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, UK
| | - D Werling
- Department of Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, UK
| | - G Banos
- Scotland's Rural College (SRUC), Easter Bush, Midlothian, Scotland, UK
| | - G Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
| | - A Psifidi
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield, UK.
- Department of Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, UK.
| |
Collapse
|
2
|
Popoola DO, Cao Z, Men Y, Li X, Viapiano M, Wilkens S, Luo J, Teng Y, Meng Q, Li Y. Lung-Specific mRNA Delivery Enabled by Sulfonium Lipid Nanoparticles. NANO LETTERS 2024; 24:8080-8088. [PMID: 38888232 DOI: 10.1021/acs.nanolett.4c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Among various mRNA carrier systems, lipid nanoparticles (LNPs) stand out as the most clinically advanced. While current clinical trials of mRNA/LNP therapeutics mainly address liver diseases, the potential of mRNA therapy extends far beyond─yet to be unraveled. To fully unlock the promises of mRNA therapy, there is an urgent need to develop safe and effective LNP systems that can target extrahepatic organs. Here, we report on the development of sulfonium lipid nanoparticles (sLNPs) for systemic mRNA delivery to the lungs. sLNP effectively and specifically delivered mRNA to the lungs following intravenous administration in mice. No evidence of lung and systemic inflammation or toxicity in major organs was induced by sLNP. Our findings demonstrated that the newly developed lung-specific sLNP platform is both safe and efficacious. It holds great promise for advancing the development of new mRNA-based therapies for the treatment of lung-associated diseases and conditions.
Collapse
Affiliation(s)
- David O Popoola
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Zhi Cao
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Yuqin Men
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Xinyuan Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Mariano Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Juntao Luo
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Qinghe Meng
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Yamin Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
3
|
Le ND, Nguyen BL, Patil BR, Chun H, Kim S, Nguyen TOO, Mishra S, Tandukar S, Chang JH, Kim DY, Jin SG, Choi HG, Ku SK, Kim J, Kim JO. Antiangiogenic Therapeutic mRNA Delivery Using Lung-Selective Polymeric Nanomedicine for Lung Cancer Treatment. ACS NANO 2024; 18:8392-8410. [PMID: 38450656 DOI: 10.1021/acsnano.3c13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Therapeutic antibodies that block vascular endothelial growth factor (VEGF) show clinical benefits in treating nonsmall cell lung cancers (NSCLCs) by inhibiting tumor angiogenesis. Nonetheless, the therapeutic effects of systemically administered anti-VEGF antibodies are often hindered in NSCLCs because of their limited distribution in the lungs and their adverse effects on normal tissues. These challenges can be overcome by delivering therapeutic antibodies in their mRNA form to lung endothelial cells, a primary target of VEGF-mediated pulmonary angiogenesis, to suppress the NSCLCs. In this study, we synthesized derivatives of poly(β-amino esters) (PBAEs) and prepared nanoparticles to encapsulate the synthetic mRNA encoding bevacizumab, an anti-VEGF antibody used in the clinic. Optimization of nanoparticle formulations resulted in a selective lung transfection after intravenous administration. Notably, the optimized PBAE nanoparticles were distributed in lung endothelial cells, resulting in the secretion of bevacizumab. We analyzed the protein corona on the lung- and spleen-targeting nanoparticles using proteomics and found distinctive features potentially contributing to their organ-selectivity. Lastly, bevacizumab mRNA delivered by the lung-targeting PBAE nanoparticles more significantly inhibited tumor proliferation and angiogenesis than recombinant bevacizumab protein in orthotopic NSCLC mouse models, supporting the therapeutic potential of bevacizumab mRNA therapy and its selective delivery through lung-targeting nanoparticles. Our proof-of-principle results highlight the clinical benefits of nanoparticle-mediated mRNA therapy in anticancer antibody treatment in preclinical models.
Collapse
Affiliation(s)
- Ngoc Duy Le
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Bao Loc Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - HeeSang Chun
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - SiYoon Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sudarshan Tandukar
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jeonghwan Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
4
|
Osorio-Valencia S, Zhou B. Roles of Macrophages and Endothelial Cells and Their Crosstalk in Acute Lung Injury. Biomedicines 2024; 12:632. [PMID: 38540245 PMCID: PMC10968255 DOI: 10.3390/biomedicines12030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 11/11/2024] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), present life-threatening conditions characterized by inflammation and endothelial injury, leading to increased vascular permeability and lung edema. Key players in the pathogenesis and resolution of ALI are macrophages (Mφs) and endothelial cells (ECs). The crosstalk between these two cell types has emerged as a significant focus for potential therapeutic interventions in ALI. This review provides a brief overview of the roles of Mφs and ECs and their interplay in ALI/ARDS. Moreover, it highlights the significance of investigating perivascular macrophages (PVMs) and immunomodulatory endothelial cells (IMECs) as crucial participants in the Mφ-EC crosstalk. This sheds light on the pathogenesis of ALI and paves the way for innovative treatment approaches.
Collapse
Affiliation(s)
| | - Bisheng Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
5
|
Jin H, Zhao Y, Yao Y, Zhao J, Luo R, Fan S, Wei Y, Ouyang S, Peng W, Zhang Y, Pi J, Huang G. Therapeutic effects of tea polyphenol-loaded nanoparticles coated with platelet membranes on LPS-induced lung injury. Biomater Sci 2023; 11:6223-6235. [PMID: 37529873 DOI: 10.1039/d3bm00802a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Patients with ALI (acute lung injury)/ARDS (acute respiratory distress syndrome) are often septic and with poor prognosis, which leads to a high mortality rate of 25-40%. Despite the advances in medicine, there are no effective pharmacological therapies for ALI/ARDS due to the short systemic circulation and poor specificity in the lungs. To address this problem, we prepared TP-loaded nanoparticles (TP-NPs) through the emulsification-and-evaporation method, and then the platelet membrane vesicles were extracted and coated onto the surface of the NPs to constitute the biomimetic PM@TP-NPs. In a LPS-induced ALI mouse model, PM@TP-NPs showed good biocompatibility and biosafety, which was evidenced by no significant toxic effect on cell viability and no hemolysis of red blood cells. In ALI mice, the PM@TP-NPs showed favorable anti-inflammation and enhanced therapeutic activity of TPs compared to the free drug. Administration of PM@TP-NPs effectively inhibited lung vascular injury, evidenced by the decreased lung vascular permeability, reduced pro-inflammatory cytokine burden, evidenced by decreased inflammatory cell (macrophages, neutrophils, etc.) infiltration in the bronchoalveolar lavage fluid (BALF) and lung tissues, and inhibited the secretion of pro-inflammatory cytokines and NLRP3 inflammasome activation. ALI/ARDS is defined by damage to the alveolar epithelium and endothelium; thus, effective intervention targeting pulmonary vascular endothelial cells (VECs) is crucial for the treatment of respiratory diseases. For further determination of the targeting of PM cloaked NPs, healthy mice were also administered with the same NPs. Interestingly, the PM cloaked NPs only showed highly efficient targeting to the inflamed lungs and VECs, but no accumulation in healthy lungs and VECs. The data demonstrated that this biomimetic nanoplatform could be used as a potential strategy for personalized therapies in the treatment of inflammatory diseases, such as ALI/ARDS, and even COVID-19-associated pneumonia.
Collapse
Affiliation(s)
- Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yue Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yinlian Yao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jin Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Renxing Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shilong Fan
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yanlan Wei
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| | - Wanqing Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yumin Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jiang Pi
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
6
|
Tsikis ST, Hirsch TI, Fligor SC, Quigley M, Puder M. Targeting the lung endothelial niche to promote angiogenesis and regeneration: A review of applications. Front Mol Biosci 2022; 9:1093369. [PMID: 36601582 PMCID: PMC9807216 DOI: 10.3389/fmolb.2022.1093369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung endothelial cells comprise the pulmonary vascular bed and account for the majority of cells in the lungs. Beyond their role in gas exchange, lung ECs form a specialized microenvironment, or niche, with important roles in health and disease. In early development, progenitor ECs direct alveolar development through angiogenesis. Following birth, lung ECs are thought to maintain their regenerative capacity despite the aging process. As such, harnessing the power of the EC niche, specifically to promote angiogenesis and alveolar regeneration has potential clinical applications. Here, we focus on translational research with applications related to developmental lung diseases including pulmonary hypoplasia and bronchopulmonary dysplasia. An overview of studies examining the role of ECs in lung regeneration following acute lung injury is also provided. These diseases are all characterized by significant morbidity and mortality with limited existing therapeutics, affecting both young children and adults.
Collapse
Affiliation(s)
- Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mikayla Quigley
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|