1
|
Xiang Z, Guan H, Xie Q, Hu X, Liu W, Zhang S, Chen Q, Lei J, Shen Q, Liu W, Li M, Wang C. Exploring the tissue distribution propensity of active alkaloids in normal and stomach heat syndrome rats following oral administration of Zuojin Pill based on pharmacokinetics and mass spectrometry imaging. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119627. [PMID: 40089197 DOI: 10.1016/j.jep.2025.119627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuojin Pill (ZJP) is a traditional Chinese medicine (TCM) formula composed of Coptidis Rhizoma and Euodiae Fructus in a ratio of 6:1 (w/w), which has been widely used for treating gastrointestinal disorders, especially stomach heat syndrome (SHS). However, the active alkaloids in ZJP showed low plasma exposure in rats following oral administration, which failed to explain their potent pharmacological effects, thereby limiting further mechanism studies. AIM OF THE STUDY This study aimed to investigate the in vivo exposure and tissue distribution propensities of the active alkaloids in normal and SHS rats following oral administration of ZJP. MATERIAL AND METHODS A rat model of SHS was induced by oral administration of chili pepper decoction and anhydrous ethanol. Then, the plasma and tissue pharmacokinetics of active alkaloids, including four protoberberine alkaloids (PBAs) and three indole alkaloids (IDAs), were investigated following oral administration of ZJP. Furthermore, desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was employed to characterize the spatial distribution of active alkaloids in the stomach and liver. Western blot and immunofluorescence were used to evaluate the gastric mucosal barrier integrity. RESULTS Based on the tissue-to-plasma partition coefficient (Kp) values, the in vivo exposure levels of berberine (BBR), palmatine (PAL), coptisine (COP), and dehydroevodiamine (DHE) were found to be higher in tissues than in plasma, indicating a distinct tissue distribution propensity. Each alkaloid displayed the highest exposure in the gastrointestinal tissues, due to local penetration facilitated by its direct contact with the mucosal lining. Pathological states reduced the overall exposure of PBAs in the gastric mucosa. In non-gastrointestinal tissues, most alkaloids, especially BBR and COP, exhibited a potent liver distribution propensity with minimal impact from pathological states. According to DESI-MSI results, PBAs showed high exposure in the damaged regions of gastric mucosa, which was attributed to mucosal barrier damage and enhanced permeability. In the liver, PBAs were primarily localized in the parenchyma surrounding the central vein and portal area. CONCLUSION This study demonstrated the stomach and liver distribution propensity of the active alkaloids in ZJP, providing a scientific basis for these alkaloids as the pharmacodynamic material basis of ZJP against SHS from the perspective of drug exposure.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Xianrun Hu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Wenkang Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Sitong Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Qianping Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Jinchun Lei
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China
| | - Qin Shen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institude of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, PR China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institude of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, PR China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, PR China.
| |
Collapse
|
2
|
Shu X, Cao Y, Wu Y, Chen M, Zhao W, Ji G, Zhang L. Gegen-Qinlian decoction alleviates metabolic dysfunction-associated steatohepatitis by modulating the microbiota-bile acid axis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119719. [PMID: 40187626 DOI: 10.1016/j.jep.2025.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of metabolic dysfunction-associated steatotic liver disease (MASLD), and is currently the most prevalent chronic liver disease worldwide. Gegen-Qinlian decoction (GQD), a classical Traditional Chinese Medicine (TCM) formula from Treatise on Febrile Diseases, has been historically used to treat heat-dampness syndromes. Recent studies revealed that GQD is effective in treating MASH, but the underlying mechanisms remain unknown. AIM OF THE STUDY This study aims to evaluate the therapeutic effect of GQD on MASH and explore the potential mechanisms targeting the gut microbiota-bile acid (BA) axis. MATERIALS AND METHODS Phytochemical profiling of GQD was performed using UPLC-Q-TOF-MS. MASH was induced in mice via a fructose-, palmitate-, and cholesterol-enriched (FPC) diet, followed by treatment with low-, medium-, or high-dose GQD. H&E and oil red O staining were utilized to examine the histological change, and serum lipids and enzymes were biochemically analyzed. 16SrDNA sequencing was applied to analyze the alteration of the gut microbiota, and the gas chromatography-mass spectrometry technique was introduced to investigate the fecal bile acid (BA) profile. Serum lipopolysaccharide (LPS) concentrations were analyzed by enzyme-linked immunosorbent assay. Intestinal tight junction proteins (ZO1, Occludin) and BA receptors (FXR, TGR5, and VDR) were detected by Western blot and immunofluorescence staining. RESULTS The quality of GQD was confirmed, and GQD treatment improved hepatic steatosis, reduced the content of liver triglyceride (20-40 % reduction, p < 0.01) and cholesterol (20-25 % reduction, p < 0.01) in FPC-induced MASH mice. High-dose GQD further decreased serum TC (3.97 ± 1.00 vs 5.51 ± 1.11, p < 0.05), LDL-c (0.53 ± 0.18 vs 1.07 ± 0.28, p < 0.01), ALT (31.90 ± 6.20 vs 47.90 ± 12.78, p < 0.05) and ALP (90.83 ± 13.46 vs 132.90 ± 23.67, p < 0.05) levels, suggesting the effects of GQD in counteracting metabolic inflammation. GQD treatment restored gut microbiota diversity and reversed gut dysbiosis by decreasing the abundance of pathogenic bacteria, resulting in reduced serum LPS while enhancing intestinal tight junction proteins (ZO1, Occludin). Concurrently, GQD treatment reshaped fecal BA profiles, increased intestinal TGR5/VDR expression, with BA shifts strongly correlating to microbiota changes. CONCLUSION GQD alleviated hepatic and metabolic disorders in MASH mice, possibly through reversing gut dysbiosis and modulating BA profile. Targeting the microbiota-BA axis represents a promising pattern for TCM prescriptions in treating MASH.
Collapse
Affiliation(s)
- Xiangbing Shu
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Geratology, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Cao
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yan Wu
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Milian Chen
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenxia Zhao
- The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Guang Ji
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, China.
| | - Li Zhang
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, China.
| |
Collapse
|
3
|
Liu A, Zhong M, Han Z, Yan Y, Zhang D, Wang X, Wang M, Zou Y, Zhang J. Characterization of Active Compounds in Sanhuang Shu'ai Decoction for the Management of Ulcerative Colitis: A UHPLC-MS Study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e9976. [PMID: 39740112 DOI: 10.1002/rcm.9976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVE The effectiveness of Sanhuang Shu'ai decoction (SSD), a traditional Chinese medicine used to treat diarrhea and colitis, especially ulcerative colitis (UC), is not well understood regarding how its chemical components work. METHODS This research used ultra-high-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS), network pharmacology, and molecular docking to understand the active substances and potential mechanisms of SSD in treating UC. RESULTS UHPLC and MS analyses identified 710 active components in SSD extracts (ZYTQY) and 387 in SSD-containing serum (HYXQ), with 35 active compounds found in both ZYTQY and HYXQ and 67 active compounds from SSDD (SSD compound obtained directly from the database), along with 6 metabolites that may be key components in its function. Subsequently, we used PubChem, DrugBank, and TTD to identify 108 potential targets from SSDD, and 27 hub genes were found by constructing the PPI network. GO and KEGG pathway analyses confirmed that SSDD may be effective in treating UC through the PI3K/AKT and HIF-1 signaling pathways. The pathway analysis of 4 metabolites in SSD highlights the continued importance of the PI3K/AKT pathway. Molecular docking and simulations indicate that baicalein, oroxylin A, quercetin, and wogonin may aid in treating UC by regulating the MAPK3 and NFKB1 genes. Baicalein interacts with several specific targets, including EGFR, MAPK1, MAPK3, NFKB1, PTGS2, and TP53. CONCLUSIONS SSD treats UC through various compounds and pathways targeting multiple areas, whereas baicalein specifically promotes intestinal repair in UC by modulating EGFR-PI3K/AKT/NFκB, EGFR/PI3K/AKT-/TP53, and EGFR/PI3K/A KT/MAPK signaling pathways.
Collapse
Affiliation(s)
- Amei Liu
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Nanchong Key Laboratory of Metabolic Drugs and Biological Products, Nanchong, Sichuan, China
| | - Muxiao Zhong
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Gungdong, China
| | - Zhenglan Han
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Nanchong Key Laboratory of Metabolic Drugs and Biological Products, Nanchong, Sichuan, China
| | - Yuxiang Yan
- School of Integrated Traditional Chinese and Western Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Dengke Zhang
- Institute of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoying Wang
- Institute of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Mingjun Wang
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yidan Zou
- Institute of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jingping Zhang
- Institute of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Nanchong Key Laboratory of Metabolic Drugs and Biological Products, Nanchong, Sichuan, China
| |
Collapse
|
4
|
Lu X, Xv Y, Hu W, Sun B, Hu H. Targeting CD4+ T cells through gut microbiota: therapeutic potential of traditional Chinese medicine in inflammatory bowel disease. Front Cell Infect Microbiol 2025; 15:1557331. [PMID: 40099014 PMCID: PMC11911530 DOI: 10.3389/fcimb.2025.1557331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune disease characterized by chronic relapsing inflammation of the intestinal tract. Gut microbiota (GM) and CD4+T cells are important in the development of IBD. A lot of studies have shown that GM and their metabolites like short-chain fatty acids, bile acids and tryptophan can be involved in the differentiation of CD4+T cells through various mechanisms, which in turn regulate the immune homeostasis of the IBD patients. Therefore, regulating CD4+T cells through GM may be a potential therapeutic direction for the treatment of IBD. Many studies have shown that Traditional Chinese Medicine (TCM) formulas and some herbal extracts can affect CD4+T cell differentiation by regulating GM and its metabolites. In this review, we mainly focus on the role of GM and their metabolites in regulating the differentiation of CD4+T cells and their correlation with IBD. We also summarize the current research progress on the regulation of this process by TCM.
Collapse
Affiliation(s)
- Xingyao Lu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichuan Xv
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boyun Sun
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
6
|
Zhang M, Jin Y, Wu T, Zhao Q, Li H, Zhang H, Lu Y, Chen S, Liu T, Gong Z, Wang D, Liu W. Metabolomics combined with network pharmacology revealed a paradigm for determining the mechanism underlying the metabolic action of Gegen Qinlian Decoction amelioration of ulcerative colitis in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1250:124352. [PMID: 39571215 DOI: 10.1016/j.jchromb.2024.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/10/2024] [Accepted: 10/26/2024] [Indexed: 12/09/2024]
Abstract
Ulcerative colitis (UC) is a common disease of the digestive system that is challenging to treat. Gegen Qinlian Decoction (GQD), which is an ancient classic formula in Chinese medicine, is effective at alleviating the symptoms of UC, but comprehensive research on its mechanism of action has not been performed. Here, we explored the material basis and potential molecular mechanism underlying GQD-mediated protection against UC by integrated metabolomics and network pharmacology. First, differentially expressed metabolites were screened and identified via a metabolomics approach, and the metabolic pathway was analyzed via MetaboAnalyst. Second, a protein-protein interaction (PPI) network was constructed to identify hub genes that encode metabolic enzymes. Third, the differentially expressed metabolites were used to construct a compound-reaction-enzyme-gene network. Finally, the metabolites were compared with relevant active components for molecular docking, molecular dynamics (MD) simulation, and verification experiment. GQD intervention alleviated UC in mice and significantly inhibited metabolic dysfunction in mice with UC; specifically, GQD reversed the abnormal changes in metabolites in the colon and serum, and regulated the arachidonic acid metabolism, tryptophan metabolism, glycerophospholipid metabolism, and purine metabolism pathways. Further literature review and molecular docking analysis with targeted MD simulation and Poisson-Boltzmann surface area (MM-PBSA) analysis were performed, revealing that GQD may inhibit the disruption of arachidonic acid metabolism and tryptophan metabolism by suppressing PTGS2 and CYP450 protein expression; these results were verified by qRT-PCR, WB, and surface plasmon resonance (SPR) assays. Our experiments indicated that GQD alleviated UC in mice by systematically regulating arachidonic acid metabolism and tryptophan metabolism, supporting further research and the development of GQD as a novel drug for ameliorating UC.
Collapse
Affiliation(s)
- Ming Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yang Jin
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Tiantai Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Qing Zhao
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Herong Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Huan Zhang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Shuaishuai Chen
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Zipeng Gong
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Daoping Wang
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Wen Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
7
|
Ji W, Huo Y, Zhang Y, Qian X, Ren Y, Hu C, Zhang J. Palmatine inhibits expression fat mass and obesity associated protein (FTO) and exhibits a curative effect in dextran sulfate sodium (DSS)-induced experimental colitis. Int Immunopharmacol 2024; 132:111968. [PMID: 38579565 DOI: 10.1016/j.intimp.2024.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory disease whose pathogenesis and mechanisms have not been fully described. The m6A methylation modification is a general mRNA modification in mammalian cells and is closely associated with the onset and progression of inflammatory bowel disease (IBD). Palmatine (PAL) is a biologically active alkaloid with anti-inflammatory and protective effects in animal models of colitis. Accordingly, we examined the role of PAL on colitis by regulating N6-methyladenosine (m6A) methylation. METHODS A rat experimental colitis model was established by 5 % dextran sulfate sodium (DSS) in drinking water for seven days, then PAL treatment was administered for seven days. The colonic tissue pathology was assessed using hematoxylin-eosin (HE) and disease activity index (DAI). In in vitro studies, a human, spontaneously immortalized non-cancerous colon mucosal epithelial cell line (NCM460) was exposed to 2 % DSS and treated with PAL and cell viability was assayed using Cell Counting Kit-8 (CCK-8). The levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA) kits. The level of Zonula occludens-1 (ZO-1) was dectected by immunofluorescence. Transepithelial electrical resistance (TEER) of cells was also assessed. The methyltransferase-like 3 (METTL3), METTL14, AlkB homologate 5 (ALKBH5), and fat mass and obesity-associated protein (FTO) expression levels were assessed by western blotting. The localized expression of m6A was measured by immunofluorescence. RESULTS PAL significantly prevented bodyweight loss and shortening of the colon in experimental colitis rats, as well as decreasing the DAI and histological damage scores. Furthermore, PAL inhibited the levels of inflammatory factors (TNF-α, IL-6, IL-8, and IL-1β) in both DSS treated rats and NCM460 cells. In addition, PAL enhanced the expression level of ZO-1, and increased the transepithelial electrical resistance to repaire intestinal barrier dysfunction. Colitis occurred due to decreased m6A levels, and the increased FTO expression led to a colitis phenotype. PAL markedly enhanced the METTL3 and METTL14 expression levels while decreasing ALKBH5 and FTO expression levels. CONCLUSIONS The findings demonstrated that PAL improved DSS-induced experimental colitis. This effect was associated with inhibiting FTO expression and regulating m6A methylation.
Collapse
Affiliation(s)
- Wanli Ji
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yan Huo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Yifan Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Xiaojing Qian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yi Ren
- Shanghai Putuo District Hospital of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Cheng Hu
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiaqi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
8
|
Dong B, Peng Y, Wang M, Peng C, Li X. The compatibility rationality of Sijunzi decoction based on integrated analysis of tissue distribution and excretion characteristics in spleen deficiency syndrome rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117376. [PMID: 37918551 DOI: 10.1016/j.jep.2023.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical prescription for treating spleen deficiency syndrome (SDS), Sijunzi decoction (SJZD) is composed of Ginseng Radix et Rhizoma (RG, Panax ginseng C.A.Mey.), Atractylodes Macrocephalae Rhizoma (AM, Atractylodes macrocephala Koidz.), Poria (Poria cocos (Schw.) Wolf) and Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle (GRP, processed from Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat. or Glycyrrhiza glabra L.). The non-polysaccharides (NPSs) are the pharmacodynamic substance basis of SJZD, whose pharmacokinetics in SDS rats were elaborated previously. Further study on their tissue distribution and excretion properties is of significance for understanding the compatibility laws of SJZD. AIM OF THE STUDY The aim was to unravel the tissue distribution and excretion characteristics of NPSs of SJZD in SDS rats, and explore the scientific connotation of SJZD compatibility. MATERIALS AND METHODS A validated ultrafast liquid chromatography tandem mass spectrometry method was developed for monitoring the accurate dynamics of sixteen components in the tissues, feces and urine of SDS rats. The four incomplete formulae of SJZD were prepared by randomly deleting one herb to uncover the herb-herb interactions. RESULTS All components of NPSs in SJZD were distributed in the tissues, except for ononin in the heart. Among them, glycyrrhetinic acid and atractylenolide III were more abundant in the liver and lung, respectively, while other components were enriched in the ileum, especially saponins. The evaluation of fecal excretion and urinary excretion revealed the low cumulative excretion of all components. The comparative analysis of incomplete formulae indicated that the tissue distribution and excretion became faster after removing Poria from SJZD, while a lack of RG led to slower tissue distribution. The tissue distribution at most time points was reduced when AM was absent. Further comprehensive visualization implied that SJZD compatibility can improve tissue distribution of the NPSs, especially ginsenosides and atractylenolide, at the specific time periods. CONCLUSION The tissue distribution and excretion characteristics of NPSs of SJZD were elucidated in current research. Meanwhile, this study proposed new insights into the mechanism of SJZD compatibility rationality.
Collapse
Affiliation(s)
- Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
9
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
10
|
Sun LF, Li MM, Chen Y, Lu WJ, Zhang Q, Wang N, Fang WY, Gao S, Chen SQ, Hu RF. pH/enzyme dual sensitive Gegenqinlian pellets coated with Bletilla striata polysaccharide membranes for the treatment of ulcerative colitis. Colloids Surf B Biointerfaces 2023; 229:113453. [PMID: 37454443 DOI: 10.1016/j.colsurfb.2023.113453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gegen Qinlian Decoction, derived from Zhang Zhongjing's Treatise on Typhoid Fever, has been widely used in the treatment of various common diseases, frequently-occurring diseases and difficult and complicated diseases, such as ulcerative colitis. In this study, Bletilla striata polysaccharide (BSP) was innovatively used as a film coating material to prepare Gegen Qinlian pellets with dual sensitivity of pH enzyme for the treatment of ulcerative colitis. BSP has the ability to repair the inflamed colon mucosa and can produce synergistic effects, while avoiding the adverse therapeutic effects caused by the early release of drugs from a single pH-sensitive pellets in the small intestine. The prepared pellets have a uniform particle size, good roundness, a particle size range from 0.8 mm to 1.0 mm, and a particle yield is 85.6 %. The results of in vitro release showed that ES-BSP pellets hardly released drugs in the pH range of 1.2-6.8. However, in the colon mimic fluid containing specific enzymes, the drug release was significantly accelerated, demonstrating the sensitivity of the pellets to pH enzymes. In vivo and ex vivo fluorescence imaging of small animals showed that Gegen Qinlian pellets with dual sensitivity of pH enzyme remained longer in the colon compared with pH-sensitive pellets. In vivo pharmacodynamics study showed that the Gegen Qinlian pellets with dual sensitivity of pH enzyme had a better therapeutic effect in the rat model of the ulcerative colon than the commercially available Gegenqinlian pellets in the control group.
Collapse
Affiliation(s)
- Ling Feng Sun
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Man Man Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Yuan Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Wen Jie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Qing Zhang
- Department of Pharmacy, School of Pharmacy, Nanjing Medical University Nanjing, Jiangsu, 210009, China
| | - Nan Wang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Wen You Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China
| | - Song Gao
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| | - Sheng Qi Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| | - Rong Feng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials,Key Laboratory of Xin'an Medicine ,the Ministry of Education Anhui Province Key Laboratory of Chinese Medicinal Formula,Anhui University of Chinese Medicine, Hefei, Anhui 230038, China.; Plant Active Peptide Function Food Innovative Manufacturing Industry Innovation Team, Hefei, Anhui 230038, China.
| |
Collapse
|
11
|
Zong L, Wang Y, Song S, Zhang H, Mu S, Liu W, Feng Y, Wang S, Tu Z, Yuan Q, Li L, Pu X. Formulation and Evaluation on Synergetic Anti-Hepatoma Effect of a Chemically Stable and Release-Controlled Nanoself-Assembly with Natural Monomers. Int J Nanomedicine 2023; 18:3407-3428. [PMID: 37377983 PMCID: PMC10292624 DOI: 10.2147/ijn.s408416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Hepatoma is the leading cause of death among liver diseases worldwide. Modern pharmacological studies suggest that some natural monomeric compounds have a significant effect on inhibiting tumor growth. However, poor stability and solubility, and side effects are the main factors limiting the clinical application of natural monomeric compounds. Methods In this paper, drug-co-loaded nanoself-assemblies were selected as a delivery system to improve the chemical stability and solubility of Tanshinone II A and Glycyrrhetinic acid, and to produce a synergetic anti-hepatoma effect. Results The study suggested that the drug co-loaded nanoself-assemblies showed high drug loading capacity, good physical and chemical stability, and controlled release. In vitro cell experiments verified that the drug-co-loaded nanoself-assemblies could increase the cellular uptake and cell inhibitory activity. In vivo studies verified that the drug co-loaded nanoself-assemblies could prolong the MRT0-∞, increase accumulation in tumor and liver tissues, and show strong synergistic anti-tumor effect and good bio-safety in H22 tumor-bearing mice. Conclusion This work indicates that natural monomeric compounds co-loaded nanoself-assemblies would be a potential strategy for the treatment of hepatoma.
Collapse
Affiliation(s)
- Lanlan Zong
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yanling Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shiyu Song
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Huiqi Zhang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shengcai Mu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Wenshang Liu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yu Feng
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shumin Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Ziwei Tu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Qi Yuan
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Luhui Li
- Medical school, Henan Technical Institute, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|