1
|
Upadhyay S, Rajan Swami, Shrivastava S, Jeengar MK. Molecular insights into anti-inflammatory activities of selected Indian herbs. J Ayurveda Integr Med 2025; 16:101081. [PMID: 40154100 PMCID: PMC11986983 DOI: 10.1016/j.jaim.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 04/01/2025] Open
Abstract
Inflammation is a universal response of mammalian tissue to harm, comprising reactions to injuries, pathogens, and foreign particles. Chronic inflammation, often present in allergies and autoimmune disorders, poses significant risks, potentially leading to conditions such as rheumatoid arthritis, Alzheimer's disease, asthma, and inflammatory bowel disease. It can also be a common precursor to cancer. However, Contemporary therapies like NSAIDs and corticosteroids often provide incomplete relief from chronic inflammation and carry significant side effects, underscoring the need for exploring traditional and plant-based medicines for new, effective treatments. As such, there is a growing demand for natural bioactive substances for health maintenance and disease risk reduction. Traditional and plant-based medicines, long-used in managing inflammation and other disorders, hold promise for the discovery of bioactive lead compounds and subsequent drug development for treating inflammatory disorders. This review encompasses an extensive study of the anti-inflammatory potential of selected traditional Indian herbal medicines and the associated pharmacological mechanisms of action. The inflammatory process often entails the activation of transcription factors, induction of various signaling cascades, gene expression, activation of inflammatory enzymes, and release of pro-inflammatory cytokines in inflammatory or immune cells. Detailed exploration of active components in traditional herbal medicines such as the Neem (Azadirachta indica), Salai guggul (Boswellia serrata), Green tea (Camellia sinensis), Saffron (Crocus sativus), Turmeric (Curcuma longa), Mangosteen (Garcinia mangostana), Indian mulberry (Morinda citrifolia), Black cumin (Nigella sativa), Ashwagandha (Withania somnifera), and Ginger (Zingiber officinale) reveals their potential anti-inflammatory properties. The in-depth study of these plants provides insight into their potential applications in managing inflammatory disorders. Further research and development are necessary to substantiate these findings and translate them into clinically effective therapeutics.
Collapse
Affiliation(s)
- Saumya Upadhyay
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, Kerala, India
| | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, 140 401, Punjab, India
| | - Shweta Shrivastava
- School of Pharmacy, School of Health & Allied Sciences, ARKA JAIN University, Gamaharia, Seraikela Kharsawan, 832108, Jharkhand, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682041, Kerala, India.
| |
Collapse
|
2
|
Almasri RS, Bedir AS, Al Raish SM. Comprehensive Ethnopharmacological Analysis of Medicinal Plants in the UAE: Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Nutrients 2025; 17:411. [PMID: 39940269 PMCID: PMC11820108 DOI: 10.3390/nu17030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
The United Arab Emirates (UAE) is home to diverse indigenous medicinal plants traditionally used for centuries. This study systematically evaluates the pharmacological and nutritional potential of key medicinal plants, including Lawsonia inermis, Nigella sativa, Ziziphus spina-christi, Allium cepa, Allium sativum, Cymbopogon schoenanthus, Matricaria aurea, Phoenix dactylifera, Portulaca oleracea, Reichardia tingitana, Salvadora persica, Solanum lycopersicum, Trigonella foenum-graecum, Withania somnifera, and Ziziphus lotus. Comprehensive literature searches were conducted using PubMed, Scopus, and Web of Science to identify studies relevant to their nutritional and pharmacological uses. The findings highlight the therapeutic roles of these plants in managing global health challenges such as gastrointestinal diseases, and antimicrobial resistance through bioactive compounds like flavonoids, polyphenols, and antioxidants. Additionally, their contributions to nutrition, including essential vitamins and minerals, are emphasized for disease prevention and health promotion. While this research focuses on the UAE, the implications are globally relevant, as many of these plants are also found in traditional medicine across Asia, Africa, and Europe. Integrating these findings into global nutritional and healthcare systems offers potential solutions for pressing public health concerns, reduces reliance on synthetic pharmaceuticals, and promotes sustainable healthcare practices. This work is a valuable reference for researchers, healthcare professionals, and policymakers, bridging traditional knowledge and modern scientific applications globally.
Collapse
Affiliation(s)
- Razan S. Almasri
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (R.S.A.); (A.S.B.)
| | - Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Sharma KB, Subramani C, Ganesh K, Sharma A, Basu B, Balyan S, Sharma G, KA S, Deb A, Srivastava M, Chugh S, Sehrawat S, Bharadwaj K, Rout A, Sahoo PK, Saurav S, Motiani RK, Singh R, Jain D, Asthana S, Wadhwa R, Vrati S. Withaferin A inhibits Chikungunya virus nsP2 protease and shows antiviral activity in the cell culture and mouse model of virus infection. PLoS Pathog 2024; 20:e1012816. [PMID: 39775571 PMCID: PMC11723598 DOI: 10.1371/journal.ppat.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/10/2025] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV. In the ERMS cells, WFA inhibited CHIKV replication early during the life cycle by binding the CHIKV non-structural protein nsP2 and inhibiting its protease activity. This inhibited the viral polyprotein processing and the minus-sense viral RNA synthesis. WFA mounted the nsP2 protease inhibitory activity through its oxidising property as the reducing agents N-acetylcysteine and Glutathione-monoethyl ester effectively reversed the WFA-mediated protease inhibition in vitro and abolished the WFA-mediated antiviral activity in cultured cells. WFA inhibited CHIKV replication in the C57BL/6 mouse model of chikungunya disease, resulting in significantly lower viremia. Importantly, CHIKV-infected mice showed significant joint swelling which was not seen in WFA-treated mice. These data demonstrate the potential of WFA as a novel CHIKV antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shouri KA
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Mitul Srivastava
- Translational Health Science and Technology Institute, Faridabad, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Archana Rout
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Suman Saurav
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepti Jain
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
4
|
Perrone L, Grant WB. The Effect of Nutrients on Neurological Disorders. Nutrients 2024; 16:4016. [PMID: 39683410 DOI: 10.3390/nu16234016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The prevalence of neurological disorders (NDs) is increasing, with great cost to public health [...].
Collapse
Affiliation(s)
- Lorena Perrone
- Department of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | - William B Grant
- Sunlight, Nutrition, and Health Research Center, 1745 Pacific Ave., Suite 504, San Francisco, CA 94109, USA
| |
Collapse
|
5
|
Verma DK, Hasan A, Rengaraju M, Devi S, Sharma G, Narayanan V, Parameswaran S, Kumar D T, Kadarkarai K, Sunil S. Evaluation of Withania somnifera based supplement for immunomodulatory and antiviral properties against viral infection. J Ayurveda Integr Med 2024; 15:100955. [PMID: 39388854 DOI: 10.1016/j.jaim.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Viral mediated diseases are continuously posing potent threat to human health. Nutraceuticals are being employed as novel therapeutics during viral outbreaks. MAM granules consist of Curcuma longa, Withania somnifera, and Piper nigrum, is one such patented Siddha nutraceutical supplement that has been proposed to be a therapeutic agent against viral diseases. OBJECTIVE We characterised MAM for their phytochemical and physicochemical properties and evaluated its cytotoxicity via in vivo acute toxicity studies using Wistar rats and by cell-based MTT assays. MATERIALS AND METHODS The antiviral properties of the aqueous extract of MAM were investigated against SARS-CoV-2 and chikungunya virus (CHIKV). Further, using ABTS radical scavenging, SOD enzymatic assays and measurement of intracellular ROS, we investigated the antioxidant potential of MAM extract and its ingredients in RAW264.7 cells. Additionally, production of inflammatory mediators was evaluated via NO release, PGE2 production and release of pro-inflammatory cytokines (IL-1β and TNFα). RESULTS The MAM granules and aqueous extracts demonstrated no significant toxicity and demonstrated potent antiviral activity during co-incubation assay with SARS-CoV-2 and CHIKV. Moreover, we observed potent antioxidant and anti-inflammatory activity of MAM extract in a dose dependent manner. Further investigations on the individual ingredients with respect to their antioxidant and anti-inflammatory activities showed that all ingredients contributed synergistically and Withania somnifera showed most potent anti-oxidant activity. CONCLUSION The overall in vitro, and in vivo analysis demonstrated that MAM granules were non-toxic and possessed potent antiviral activity. Additionally, observed significant anti-oxidant and anti-inflammatory properties of MAM suggested the modulation of innate immune response in the host validating its use as an effective nutraceutical during viral outbreaks.
Collapse
Affiliation(s)
- Dileep Kumar Verma
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Manickavasagam Rengaraju
- Siddha Clinical Research Unit, Govt. Sri Jayachamarajendra Institute of Indian Medicine Campus, Bengaluru, Karnataka, India.
| | - Shree Devi
- Siddha Central Research Institute, Chennai, India
| | - Geetika Sharma
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vimal Narayanan
- Santhigiri Research Foundation, Santhigiri Ayurveda and Siddha Hospital, Bengaluru, Karnataka, India
| | | | - Thirumal Kumar D
- Faculty of Allied Health Sciences, Meenakshi Academy of Higher Education and Research (MAHER), Chennai, India
| | | | - Sujatha Sunil
- Vector-Borne Disease Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
6
|
Georg Jensen M, Goode M, Heinrich M. Herbal medicines and botanicals for managing insomnia, stress, anxiety, and depression: A critical review of the emerging evidence focusing on the Middle East and Africa. PHARMANUTRITION 2024; 29:100399. [DOI: 10.1016/j.phanu.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Nithyasree V, Magdalene P, Praveen Kumar PK, Preethi J, Gromiha MM. Role of HSP90 in Type 2 Diabetes Mellitus and Its Association with Liver Diseases. Mol Biotechnol 2024:10.1007/s12033-024-01251-1. [PMID: 39162909 DOI: 10.1007/s12033-024-01251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Non-alcoholic fatty acid liver disease (NAFLD), non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) are the fatal liver diseases which encompass a spectrum of disease severity associated with increased risk of type 2 diabetes mellitus (T2DM), a metabolic disorder. Heat shock proteins serve as markers in early prognosis and diagnosis of early stages of liver diseases associated with metabolic disorder. This review aims to comprehensively investigate the significance of HSP90 isoforms in T2DM and liver diseases. Additionally, we explore the collective knowledge on plant-based drug compounds that regulate HSP90 isoform targets, highlighting their potential in treating T2DM-associated liver diseases. Furthermore, this review focuses on the computational systems' biology and next-generation sequencing technology approaches that are used to unravel the potential medicine for the treatment of pleiotropy of these 2 diseases and to further elucidate the mechanism.
Collapse
Affiliation(s)
- V Nithyasree
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - P Magdalene
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - P K Praveen Kumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - J Preethi
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk, Pennalur, Tamil Nadu, 602117, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| |
Collapse
|
8
|
Farasati Far B, Gouranmohit G, Naimi-Jamal MR, Neysani E, El-Nashar HAS, El-Shazly M, Khoshnevisan K. The potential role of Hypericum perforatum in wound healing: A literature review on the phytochemicals, pharmacological approaches, and mechanistic perspectives. Phytother Res 2024; 38:3271-3295. [PMID: 38600756 DOI: 10.1002/ptr.8204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
St. John's Wort, commonly known as Hypericum perforatum L., is a flowering plant in the Clusiaceae family that traditionally been employed for treating anxiety, depression, wounds, burns, sunburn, irritation, and stomach ailments. This review provides a synopsis of H. perforatum L. phytoconstituents and their biological effects, highlighting its beneficial therapeutic properties for dermatological indications, as well as its antioxidant, antimicrobial, anti-inflammatory, and anti-angiogenic activity in various applications including wound healing and skin conditions such as eczema, sun burn and minor burns also spastic paralysis, stiff neck and mood disorders as anti-depressant and nerve pains such as neuralgia. The data were collected from several databases as Web of Science PubMed, ScienceDirect, Scopus and Google Scholar using the terms: "H. perforatum L.", "H. perforatum L. /phytochemistry," and "H. perforatum extracts/wound healing" collected from 1994 to 2023. The findings suggest H. perforatum L. acts through various mechanisms and plays a role in each phase of the wound healing process, including re-epithelialization, angiogenesis, wound contraction, and connective tissue regeneration. H. perforatum L. enhances collagen deposition, decreases inflammation, inhibits fibroblast migration, and promotes epithelialization by increasing the number of fibroblasts with polygonal shape and the number of collagen fibers within fibroblasts. H. Perforatum L. extracts modulate the immune response and reduce inflammation were found to accelerate the wound healing process via inhibition of inflammatory mediators' production like interleukin-6, tumor necrosis factor-α, cyclooxygenase-2 gene expression, and inducible nitric oxide synthase. Thus, H. perforatum L. represents a potential remedy for a wide range of dermatological problems, owing to its constituents with beneficial therapeutic properties. H. perforatum L. could be utilized in the development of novel wound healing therapies.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ghazaleh Gouranmohit
- Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Erfan Neysani
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Leonard M, Dickerson B, Estes L, Gonzalez DE, Jenkins V, Johnson S, Xing D, Yoo C, Ko J, Purpura M, Jäger R, Faries M, Kephart W, Sowinski R, Rasmussen CJ, Kreider RB. Acute and Repeated Ashwagandha Supplementation Improves Markers of Cognitive Function and Mood. Nutrients 2024; 16:1813. [PMID: 38931168 PMCID: PMC11207027 DOI: 10.3390/nu16121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Ashwagandha has been reported to reduce stress and attenuate cognitive decline associated with inflammation and neurodegeneration in clinical populations. However, the effects as a potential nootropic nutrient in younger populations are unclear. This study examined the effects of liposomal ashwagandha supplementation on cognitive function, mood, and markers of health and safety in healthy young men and women. METHODS 59 men and women (22.7 ± 7 yrs., 74.9 ± 16 kg, 26.2 ± 5 BMI) fasted for 12 h, donated a fasting blood sample, and were administered the COMPASS cognitive function test battery (Word Recall, Word recognition, Choice Reaction Time Task, Picture Recognition, Digit Vigilance Task, Corsi Block test, Stroop test) and profile of mood states (POMS). In a randomized and double-blind manner, participants were administered 225 mg of a placebo (Gum Arabic) or ashwagandha (Withania somnifera) root and leaf extract coated with a liposomal covering. After 60-min, participants repeated cognitive assessments. Participants continued supplementation (225 mg/d) for 30 days and then returned to the lab to repeat the experiment. Data were analyzed using a general linear model (GLM) univariate analysis with repeated measures and pairwise comparisons of mean changes from baseline with 95% confidence intervals (CI). RESULTS Ashwagandha supplementation improved acute and/or 30-day measures of Word Recall (correct and recalled attempts), Choice Reaction Time (targets identified), Picture Recognition ("yes" correct responses, correct and overall reaction time), Digit Vigilance (correct reaction time), Stroop Color-Word (congruent words identified, reaction time), and POMS (tension and fatigue) from baseline more consistently with several differences observed between groups. CONCLUSION Results support contentions that ashwagandha supplementation (225 mg) may improve some measures of memory, attention, vigilance, attention, and executive function while decreasing perceptions of tension and fatigue in younger healthy individuals. Retrospectively registered clinical trial ISRCTN58680760.
Collapse
Affiliation(s)
- Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Landry Estes
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Martin Purpura
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ralf Jäger
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Mark Faries
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Wesley Kephart
- Department of Kinesiology, University of Wisconsin—Whitewater, Whitewater, WI 53190, USA;
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| |
Collapse
|
10
|
Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S. Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 2024; 11:1370951. [PMID: 38765810 PMCID: PMC11099240 DOI: 10.3389/fnut.2024.1370951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.
Collapse
Affiliation(s)
- Praful Saha
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dishant Maniar
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Simran Sahare
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai, India
- Viridis Biopharma Pvt. Ltd., Mumbai, India
| |
Collapse
|
11
|
Xing D, Jin Y, Jin B. A narrative review on inflammaging and late-onset hypogonadism. Front Endocrinol (Lausanne) 2024; 15:1291389. [PMID: 38298378 PMCID: PMC10827931 DOI: 10.3389/fendo.2024.1291389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
The increasing life expectancy observed in recent years has resulted in a higher prevalence of late-onset hypogonadism (LOH) in older men. LOH is characterized by the decline in testosterone levels and can have significant impacts on physical and mental health. While the underlying causes of LOH are not fully understood, there is a growing interest in exploring the role of inflammaging in its development. Inflammaging is a concept that describes the chronic, low-grade, systemic inflammation that occurs as a result of aging. This inflammatory state has been implicated in the development of various age-related diseases. Several cellular and molecular mechanisms have been identified as contributors to inflammaging, including immune senescence, cellular senescence, autophagy defects, and mitochondrial dysfunction. Despite the extensive research on inflammaging, its relationship with LOH has not yet been thoroughly reviewed in the literature. To address this gap, we aim to review the latest findings related to inflammaging and its impact on the development of LOH. Additionally, we will explore interventions that target inflammaging as potential treatments for LOH.
Collapse
Affiliation(s)
- Dong Xing
- Medical College of Southeast University, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Nenni M, Karahuseyin S. Medicinal Plants, Secondary Metabolites, and Their Antiallergic Activities. BIOTECHNOLOGY OF MEDICINAL PLANTS WITH ANTIALLERGY PROPERTIES 2024:37-126. [DOI: 10.1007/978-981-97-1467-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Alanazi HH, Elasbali AM, Alanazi MK, El Azab EF. Medicinal Herbs: Promising Immunomodulators for the Treatment of Infectious Diseases. Molecules 2023; 28:8045. [PMID: 38138535 PMCID: PMC10745476 DOI: 10.3390/molecules28248045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Humans are constantly at high risk of emerging pandemics caused by viral and bacterial infections. The emergence of new pandemics is mainly caused by evolved viruses and bacteria that are highly resistant to existing medications. The rapid evolution of infectious agents demands the urgent investigation of new therapeutic strategies to prevent and treat these infections at an early stage. One of these therapeutic strategies includes the use of medicinal herbs for their antibacterial and antiviral properties. The use of herbal medicines as remedies is very ancient and has been employed for centuries. Many studies have confirmed the antimicrobial activities of herbs against various pathogens in vitro and in vivo. The therapeutic effect of medicinal herbs is mainly attributed to the natural bioactive molecules present in these plants such as alkaloids, flavonoids, and terpenoids. Different mechanisms have been proposed for how medicinal herbs enhance the immune system and combat pathogens. Such mechanisms include the disruption of bacterial cell membranes, suppression of protein synthesis, and limitation of pathogen replication through the inhibition of nucleic acid synthesis. Medicinal herbs have been shown to treat a number of infectious diseases by modulating the immune system's components. For instance, many medicinal herbs alleviate inflammation by reducing pro-inflammatory cytokines (e.g., tumor necrosis factor-alpha (TNF-α), interleukin-1, IL-6) while promoting the production of anti-inflammatory cytokines (e.g., IL-10). Medicinal herbs also play a role in defense against viral and intracellular infections by enhancing the proliferation and functions of natural killer cells, T-helper-1 cells, and macrophages. In this review, we will explore the use of the most common herbs in preventing and treating infectious and non-infectious diseases. Using current and recently published studies, we focus on the immunomodulatory and therapeutic effects induced by medicinal herbs to enhance immune responses during diseases.
Collapse
Affiliation(s)
- Hamad H. Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Al-Qurayyat 77455, Saudi Arabia; (A.M.E.); (E.F.E.A.)
| | | | | | | |
Collapse
|