1
|
Xu Lou I, Yu X, Chen Q. Exploratory review on the effect of Astragalus mongholicus on signaling pathways. Front Pharmacol 2024; 15:1510307. [PMID: 39726784 PMCID: PMC11670317 DOI: 10.3389/fphar.2024.1510307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Astragalus mongholicus Bunge [Fabaceae; Astragali radix] (AM), a traditional Chinese medicinal (TCM) botanical drug, has been used for centuries and is gaining growing recognition in medical research for its therapeutic potential. The currently accepted scientific name is Astragalus mongholicus Bunge, with Astragalus membranaceus Fisch. ex Bunge recognized as a taxonomic synonym. This review explores the most relevant scientific studies on AM, focusing on its chemical composition, mechanisms of action, and associated health benefits. Main body AM is commonly used in clinical practice to treat diabetes mellitus, cardiovascular diseases, oncological processes, lipid metabolism disorders, and ulcerative colitis. Recent research has investigated its potential as a product for anti-aging purposes. These therapeutic effects are attributed to the interactions of bioactive metabolites such as Astragaloside IV, Formononetin, and polysaccharides, with various signaling pathways, leading to the activation or inhibition of gene expression. This review aims to map the signaling pathways affected by these metabolites and their effects on different pathologies. Studies suggest that these metabolites act on signaling pathways such as TLR4/MyD88/NF-κB, PI3K/AKT, RNA expression, and tumor receptors. However, further research is necessary to validate the findings in human trials with better methodological quality. Conclusion AM is rich in bioactive metabolites that interact with various signaling pathways, modulating diseases such as diabetes mellitus type 2, cardiovascular diseases, cancer, lipid metabolism disorders, and ulcerative colitis. Although promising, the majority of the studies are conducted in vitro and animal models, and more rigorous human trials are needed to determine the therapeutic potential of AM.
Collapse
Affiliation(s)
| | | | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ma G, Pang X, Ran Y, Chen W, Zhou Y, Li X, Liu B, Li F, Hu S. In silico and in vivo verification of the mechanism of formononetin in treating hepatocellular carcinoma. Ann Med 2024; 56:2404550. [PMID: 39301883 PMCID: PMC11418045 DOI: 10.1080/07853890.2024.2404550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a significant global medical challenge. Formononetin, an isoflavone derived from Astragalus membranaceus, has been shown to have various regulatory effects on HCC. However, the exact molecular mechanism by which formononetin acts against HCC is still unclear. PURPOSE To elucidate the molecular mechanism of formononetin in treating HCC. METHODS The potential targets of formononetin were retrieved from Swisstargets and SEA databases, while targets associated with HCC were sourced from GeneCards, NCBI and DisGeNET databases. The overlapping targets were visualized using protein-protein interaction (PPI) network analysis via String database, and subsequently subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking was employed to confirm the interaction between formononetin and key targets. Ultimately, the effectiveness of formononetin on HCC and the signalling pathway with the highest enrichment were confirmed in the HCC tumour-bearing mice. Histopathological changes in tumour tissues were observed using haematoxylin and eosin (HE) staining, while apoptosis of tumour cells in mice was assessed through TdT-mediated dUTP nick end labelling (TUNEL) and immunofluorescence staining. The most enriched signalling pathway was verified using Western blotting and immunohistochemical (IHC) staining. RESULTS One hundred and ninety-three potential targets related to formononetin, 6980 targets associated with HCC and 156 overlapping targets were obtained from the online public databases. Molecular docking studies demonstrated formononetin's robust interaction with core targets. KEGG enrichment analysis identified 111 signalling pathways, including PI3K/AKT and apoptosis signalling pathways. In vivo experiments demonstrated that formononetin significantly promoted apoptosis of tumour cell in mice, as confirmed by HE, TUNEL and immunofluorescence staining (p < .05). Formononetin was found to decrease the phosphorylation levels of PI3K and AKT, reduce the expression of Bcl-2, and increase the expression of cleaved-Caspase-3 and Bax (p < .05). CONCLUSIONS Formononetin demonstrates dose-dependent regulatory effects on multiple targets, biological processes and signalling pathways in HCC. The compound can mitigate HCC by enhancing PI3K/AKT-mediated apoptosis of tumour cells.
Collapse
Affiliation(s)
- Guiping Ma
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Xu Pang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yun Ran
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Wenlin Chen
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Yichi Zhou
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| | - Xiaobin Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Bowen Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Feng Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Shiping Hu
- Beijing University of Chinese Medicine Affiliated Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Li K, Lin C, Hu YH, Wang J, Jin Z, Zeng ZL, Tang YZ. Design, Synthesis, Biological Evaluation, and Molecular Docking Studies of Pleuromutilin Derivatives Containing Thiazole. ACS Infect Dis 2024; 10:1980-1989. [PMID: 38703116 DOI: 10.1021/acsinfecdis.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
In this study, we designed and synthesized a series of pleuromutilin derivatives containing thiazole. The in vitro antimicrobial efficacy of these synthesized compounds was examined by using four strains. Compared with tiamulin (MIC = 0.25 μg/mL), compound 14 exhibited potency in inhibiting MRSA growth (MIC = 0.0625 μg/mL) in these derivatives. Meanwhile, the time-killing kinetics further demonstrated that compound 14 could efficiently inhibit the MRSA growth. After exposure at 4 × MIC, the postantibiotic effect (PAE) of compound 14 was 1.29 h. Additionally, in thigh-infected mice, compound 14 exhibited a more potent antibacterial efficacy (-1.78 ± 0.28 log10 CFU/g) in reducing MRSA load compared to tiamulin (-1.21 ± 0.23 log10 CFU/g). Moreover, the MTT assay on RAW 264.7 cells demonstrated that compound 14 (8 μg/mL) had no significant cytotoxicity. Docking studies indicated the strong affinity of compound 14 toward the 50S ribosomal subunit, with a binding free energy of -9.63 kcal/mol. Taken together, it could be deduced that compound 14 was a promising candidate for treating MRSA infections.
Collapse
Affiliation(s)
- Ke Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chao Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Han Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
4
|
Ma S, Guo X, Han R, Meng Q, Zhang Y, Quan W, Miao S, Yang Z, Shi X, Wang S. Elucidation of the mechanism of action of ailanthone in the treatment of colorectal cancer: integration of network pharmacology, bioinformatics analysis and experimental validation. Front Pharmacol 2024; 15:1355644. [PMID: 38384287 PMCID: PMC10880095 DOI: 10.3389/fphar.2024.1355644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Background: Ailanthone, a small compound derived from the bark of Ailanthus altissima (Mill.) Swingle, has several anti-tumour properties. However, the activity and mechanism of ailanthone in colorectal cancer (CRC) remain to be investigated. This study aims to comprehensively investigate the mechanism of ailanthone in the treatment of CRC by employing a combination of network pharmacology, bioinformatics analysis, and molecular biological technique. Methods: The druggability of ailanthone was examined, and its targets were identified using relevant databases. The RNA sequencing data of individuals with CRC obtained from the Cancer Genome Atlas (TCGA) database were analyzed. Utilizing the R programming language, an in-depth investigation of differentially expressed genes was carried out, and the potential target of ailanthone for anti-CRC was found. Through the integration of protein-protein interaction (PPI) network analysis, GO and KEGG enrichment studies to search for the key pathway of the action of Ailanthone. Then, by employing molecular docking verification, flow cytometry, Transwell assays, and Immunofluorescence to corroborate these discoveries. Results: Data regarding pharmacokinetic parameters and 137 target genes for ailanthone were obtained. Leveraging The Cancer Genome Atlas database, information regarding 2,551 differentially expressed genes was extracted. Subsequent analyses, encompassing protein-protein interaction network analysis, survival analysis, functional enrichment analysis, and molecular docking verification, revealed the PI3K/AKT signaling pathway as pivotal mediators of ailanthone against CRC. Additionally, the in vitro experiments indicated that ailanthone substantially affects the cell cycle, induces apoptosis in CRC cells (HCT116 and SW620 cells), and impedes the migration and invasion capabilities of these cells. Immunofluorescence staining showed that ailanthone significantly inhibited the phosphorylation of AKT protein and suppressed the activation of the PI3K/AKT signaling pathway, thereby inhibiting the proliferation and metastasis of CRC cells. Conclusion: Therefore, our findings indicate that Ailanthone exerts anti-CRC effects primarily by inhibiting the activation of the PI3K/AKT pathway. Additionally, we propose that Ailanthone holds potential as a therapeutic agent for the treatment of human CRC.
Collapse
Affiliation(s)
- Shanbo Ma
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xiaodi Guo
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Ruisi Han
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Qian Meng
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Yan Zhang
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Wei Quan
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Zhao Yang
- Department of Military Medical Psychology, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Siwang Wang
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Han Q, Li Z, Fu Y, Liu H, Guo H, Guan X, Niu M, Zhang C. Analyzing the research landscape: Mapping frontiers and hot spots in anti-cancer research using bibliometric analysis and research network pharmacology. Front Pharmacol 2023; 14:1256188. [PMID: 37745055 PMCID: PMC10512719 DOI: 10.3389/fphar.2023.1256188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Network pharmacology has emerged as a forefront and hotspot in anti-cancer. Traditional anti-cancer drugs are limited by the paradigm of "one cancer, one target, one drug," making it difficult to address the challenges of recurrence and drug resistance. However, the main advantage of network pharmacology lies in its approach from the perspective of molecular network relationships, employing a "one arrow, multiple targets" strategy, which provides a novel pathway for developing anti-cancer drugs. This study employed a bibliometric analysis method to examine network pharmacology's application and research progress in cancer treatment from January 2008 to May 2023. This research will contribute to revealing its forefront and hotspots, offering new insights and methodologies for future investigations. Methods: We conducted a literature search on network pharmacology research in anti-cancer (NPART) from January 2008 to May 2023, utilizing scientific databases such as Web of Science Core Collection (WoSCC) and PubMed to retrieve relevant research articles and reviews. Additionally, we employed visualization tools such as Citespace, SCImago Graphica, and VOSviewer to perform bibliometric analysis. Results: This study encompassed 3,018 articles, with 2,210 articles from WoSCC and 808 from PubMed. Firstly, an analysis of the annual national publication trends and citation counts indicated that China and the United States are the primary contributing countries in this field. Secondly, the recent keyword analysis revealed emerging research hotspots in "tumor microenvironment," "anti-cancer drugs," and "traditional Chinese medicine (TCM). " Furthermore, the literature clustering analysis demonstrated that "calycosin," "molecular mechanism," "molecular docking," and "anti-cancer agents" were widely recognized research hotspots and forefront areas in 2023, garnering significant attention and citations in this field. Ultimately, we analyzed the application of NPART and the challenges. Conclusion: This study represents the first comprehensive analysis paper based on bibliometric methods, aiming to investigate the forefront hotspots of network pharmacology in anti-cancer research. The findings of this study will facilitate researchers in swiftly comprehending the current research trends and forefront hotspots in the domain of network pharmacology in cancer research.
Collapse
Affiliation(s)
- Qi Han
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhongxun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yang Fu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Cell Biology and Genetics, The Basic Medical School of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoya Guan
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Wang P, Wang Z, Zhang Z, Cao H, Kong L, Ma W, Ren W. A review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of the Astragalus memeranaceus. Front Pharmacol 2023; 14:1242318. [PMID: 37680711 PMCID: PMC10482111 DOI: 10.3389/fphar.2023.1242318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Astragali Radix (Huangqi) is mainly distributed in the Northern Hemisphere, South America, and Africa and rarely in North America and Oceania. It has long been used as an ethnomedicine in the Russian Federation, Mongolia, Korea, Kazakhstan, and China. It was first recorded in the Shennong Ben Cao Jing and includes the effects of reinforcing healthy qi, dispelling pathogenic factors, promoting diuresis, reducing swelling, activating blood circulation, and dredging collaterals. This review systematically summarizes the botanical characteristics, phytochemistry, traditional uses, pharmacology, and toxicology of Astragalus to explore the potential of Huangqi and expand its applications. Data were obtained from databases such as PubMed, CNKI, Wan Fang Data, Baidu Scholar, and Google Scholar. The collected material also includes classic works of Chinese herbal medicine, Chinese Pharmacopoeia, Chinese Medicine Dictionary, and PhD and Master's theses. The pharmacological effects of the isoflavone fraction in Huangqi have been studied extensively; The pharmacological effects of Huangqi isoflavone are mainly reflected in its anti-inflammatory, anti-tumor, anti-oxidant, anti-allergic, and anti-diabetic properties and its ability to treat several related diseases. Additionally, the medicinal uses, chemical composition, pharmacological activity, toxicology, and quality control of Huangqi require further elucidation. Here, we provide a comprehensive review of the botany, phytochemistry, traditional uses, pharmacology, toxicology, and quality control of Astragalus to assist future innovative research and to identify and develop new drugs involving Huangqi.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Han NR, Park HJ, Ko SG, Moon PD. The Mixture of Natural Products SH003 Exerts Anti-Melanoma Effects through the Modulation of PD-L1 in B16F10 Cells. Nutrients 2023; 15:2790. [PMID: 37375695 DOI: 10.3390/nu15122790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma is the most invasive and lethal skin cancer. Recently, PD-1/PD-L1 pathway modulation has been applied to cancer therapy due to its remarkable clinical efficacy. SH003, a mixture of natural products derived from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii, and formononetin (FMN), an active constituent of SH003, exhibit anti-cancer and anti-oxidant properties. However, few studies have reported on the anti-melanoma activities of SH003 and FMN. This work aimed to elucidate the anti-melanoma effects of SH003 and FMN through the PD-1/PD-L1 pathway, using B16F10 cells and CTLL-2 cells. Results showed that SH003 and FMN reduced melanin content and tyrosinase activity induced by α-MSH. Moreover, SH003 and FMN suppressed B16F10 growth and arrested cells at the G2/M phase. SH003 and FMN also led to cell apoptosis with increases in PARP and caspase-3 activation. The pro-apoptotic effects were further enhanced when combined with cisplatin. In addition, SH003 and FMN reversed the increased PD-L1 and STAT1 phosphorylation levels induced by cisplatin in the presence of IFN-γ. SH003 and FMN also enhanced the cytotoxicity of CTLL-2 cells against B16F10 cells. Therefore, the mixture of natural products SH003 demonstrates therapeutic potential in cancer treatment by exerting anti-melanoma effects through the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|