1
|
Yan X, Niu Y, Wang Y, Wei S, Han L, Guo Z, Zhao L, Gao F. CMSP exerts anti-tumor effects on small cell lung cancer cells by inducing mitochondrial dysfunction and ferroptosis. Open Med (Wars) 2025; 20:20241100. [PMID: 39822985 PMCID: PMC11737370 DOI: 10.1515/med-2024-1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025] Open
Abstract
Purpose This study aims to investigate the role and mechanism of p-hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells. Methods The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined. Results Following CMSP treatment, a concentration-dependent increase in cell death was observed, and differentially expressed genes were found to be associated with ferroptosis. CMSP notably facilitated ferroptosis events, such as elevated levels of reactive oxygen species (ROS), Fe2+, malondialdehyde (MDA), transferrin receptor 1 (TFR1), divalent metal transporter 1 (DMT1), and decreased levels of glutathione (GSH), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4). Furthermore, CMSP promoted mitochondrial dysfunction, manifested as reduced mitochondrial volume, increased membrane density, elevated mitochondrial ROS, and decreased mitochondrial membrane potential. Consistently, the mitochondrial-targeted antioxidant Mito-TEMPO reversed CMSP-induced ferroptosis. Expression of the HMOX1 gene was markedly increased under CMSP treatment, while lower expression was observed in cancer tissue compared to adjacent tissue. Conclusion CMSP triggers mitochondrial dysfunction via HMOX1 activation, leading to ferroptosis in SCLC cells, underscoring its potential as a therapeutic agent for SCLC.
Collapse
Affiliation(s)
- Xi Yan
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yinghao Niu
- Department of Clinical Biobank, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, China
| | - Yaojie Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Sisi Wei
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Lina Han
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Zhongyu Guo
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Feng Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| |
Collapse
|
2
|
Xiaohu O, Wang J, Qiu X, Song S, Li J, Luo S, Chen Q, Hu D. Sophora alopecuroide - Taraxacum decoction (STD) inhibits non-small cell lung cancer via inducing ferroptosis and modulating tumor immune microenvironment. Heliyon 2024; 10:e39564. [PMID: 39498069 PMCID: PMC11532862 DOI: 10.1016/j.heliyon.2024.e39564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The Sophora alopecuroide - Taraxacum Decoction (STD) is a traditional Chinese herbal formulation that has demonstrated significant potential in combating tumors. Despite its apparent effectiveness, the specific mechanisms through which STD exerts its anti-tumor properties remain largely unexplored and are yet to be fully understood. In our study, we provided evidence that STD effectively inhibits cellular growth and movement, as well as halting the cell cycle at the G2/M checkpoint. Furthermore, our pharmacological network analysis indicated that STD might induce cell death through a process known as ferroptosis. This hypothesis was substantiated by observing important biochemical changes associated with ferroptosis, including a decrease in glutathione (GSH) levels, an increase in iron accumulation, and elevated levels of reactive oxygen species (ROS) and lipid peroxidation. Additionally, we noted a significant rise in the expression of pro-ferroptosis genes such as Keap1, Nrf2, and HO-1, further supporting our findings. Significantly, and in line with the in vitro results, STD also showed a strong ability to inhibit tumor growth by inducing ferroptosis in a subcutaneous tumor model. Additionally, STD treatment changed the tumor immune microenvironment (TIME), as seen by an increase in CD107a+ CD8 and NK cells within the tumor. These findings demonstrate that STD induces ferroptosis and alters TIME to combat tumors, suggesting that STD may be a viable alternative treatment for patients with NSCLC.
Collapse
Affiliation(s)
- Ouyang Xiaohu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
4
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
5
|
Chu Y, Huang J, Pan D. LOXL3 Silencing Hampers the Metastasis and Angiogenesis of Gastric Cancer Cells Dependent on Ferroptosis Activation. Mol Biotechnol 2024:10.1007/s12033-024-01229-z. [PMID: 39192165 DOI: 10.1007/s12033-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 08/29/2024]
Abstract
Gastric cancer (GC) remains a major unmet clinical problem accountable for considerable incidence and fatality rate. Lysyl oxidase-like 3 (LOXL3) has been recognized to be overexpressed in GC. Our work was meant to disclose the significance of LOXL3 in the advancement of GC and the likely action mechanism. LOXL3 expression in GC tissues and its correlation with the outcome of GC patients were investigated through bioinformatics tools. RT-qPCR and western blotting inspected LOXL3 expression in GC cells. CCK-8 method, EDU, as well as colony formation assays assayed cell proliferation. The capacities of cells to migrate and invade were appraised by wound healing and transwell assays, severally. Tube formation assay and ELISA measured angiogenesis. TBARS, C11 BODIPY staining, and FerroOrange estimated ferroptosis. Western blotting examined the expression of proteins implicated in metastasis and ferroptosis. The up-regulation of LOXL3 expression was noticed in GC tissues and cells, which was also associated with the poor outcome of GC patients. When LOXL3 was underexpressed, the proliferation, migration, invasion, epithelial-mesenchymal transition, and angiogenesis of GC cells were all halted. In addition, LOXL3 deletion resulted in the activation of ferroptosis in GC cells, and ferrostatin-1 (Fer-1), the specific ferroptosis inhibitor, compensated the suppressive role of LOXL3 down-regulation in the proliferation, metastasis, and angiogenesis of GC cells in vitro. All in all, knockdown of LOXL3 may serve an activator of ferroptosis to obstruct the aggressive process of GC.
Collapse
Affiliation(s)
- Yinyue Chu
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou, 441300, Hubei, China
| | - Jian Huang
- Department of Gastrointestinal Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, 441300, Hubei, China
| | - Dongfeng Pan
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou, 441300, Hubei, China.
| |
Collapse
|
6
|
Shan L, Chen Y, An G, Tao X, Qiao C, Chen M, Li J, Lin R, Wu J, Zhao C. Polyphyllin I exerts anti-hepatocellular carcinoma activity by targeting ZBTB16 to activate the PPARγ/RXRα signaling pathway. Chin Med 2024; 19:113. [PMID: 39182119 PMCID: PMC11344421 DOI: 10.1186/s13020-024-00984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Studies have reported that polyphyllin I (PPI) had effective anti-tumor activity against hepatocellular carcinoma (HCC). However, the precise molecular mechanism of this action and the direct target remain unclear. The aim of this study was to discover the molecular targets and the exact mechanism of PPI in the treatment of HCC. METHODS Various HCC cells and Zebrafish xenotransplantation models were used to examine the efficacy of PPI against HCC. A proteome microarray, surface plasmon resonance (SPR) analysis, small molecule transfection, and molecular docking were conducted to confirm the direct binding targets of PPI. Transcriptome and Western blotting were then used to determine the exact responding mechanism. Finally, the anticancer effect and its precise mechanism, as well as the safety of PPI, were verified using a mouse tumor xenograft study. RESULTS The results demonstrated that PPI had significant anticancer activity against HCC in both in vitro studies of two cells and the zebrafish model. Notably, PPI selectively enhanced the action of the Zinc finger and BTB domain-containing 16 (ZBTB16) protein by directly binding to it. Furthermore, specific knockdown of ZBTB16 markedly attenuated PPI-dependent inhibition of HCC cell proliferation and migration caused by overexpression of the gene. The transcriptome and Western blotting also confirmed that the interaction between ZBTB16 and PPI also activated the PPARγ/RXRα pathway. Finally, the mouse experiments confirmed the efficacy and safety of PPI to treat HCC. CONCLUSIONS Our results indicate that ZBTB16 is a promising drug target for HCC and that PPI as a potent ZBTB16 agonist has potential as a therapeutic agent against HCC by regulating the ZBTB16/PPARγ/RXRα signaling axis.
Collapse
Affiliation(s)
- Lu Shan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yijun Chen
- Institute of Prescriptions and Syndromes, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyu Tao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chuanqi Qiao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Meilin Chen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Department of Pharmacy, Jinjiang Municipal Hospital, Quanzhou, 362200, Fujian, China
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ruichao Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chongjun Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
7
|
Wang Y, Xu J, Fu Z, Zhang R, Zhu W, Zhao Q, Wang P, Hu C, Cheng X. The role of reactive oxygen species in gastric cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0182. [PMID: 38982978 DOI: 10.20892/j.issn.2095-3941.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Gastric cancer (GC) ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide. Reactive oxygen species (ROS) are highly oxidative oxygen-derived products that have crucial roles in cell signaling regulation and maintaining internal balance. ROS are closely associated with the occurrence, development, and treatment of GC. This review summarizes recent findings on the sources of ROS and the bidirectional regulatory effects on GC and discusses various treatment modalities for GC that are related to ROS induction. In addition, the regulation of ROS by natural small molecule compounds with the highest potential for development and applications in anti-GC research is summarized. The aim of the review is to accelerate the clinical application of modulating ROS levels as a therapeutic strategy for GC.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhenjie Fu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ruolan Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Weiwei Zhu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Qianyu Zhao
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
8
|
Zhou X, Zhang D, Lei J, Ren J, Yang B, Cao Z, Guo C, Li Y. Polyphyllin I induces rapid ferroptosis in acute myeloid leukemia through simultaneous targeting PI3K/SREBP-1/SCD1 axis and triggering of lipid peroxidation. J Nat Med 2024; 78:618-632. [PMID: 38668832 DOI: 10.1007/s11418-024-01811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Acute myeloid leukemia (AML) is a malignant disease that is difficult to completely cure. Polyphyllin I (PPI), a steroidal saponin isolated from Paris polyphylla, has exhibited multiple biological activities. Here, we discovered the superior cytotoxicity of PPI on AML cells MOLM-13 with an IC50 values of 0.44 ± 0.09 μM. Mechanically, PPI could cause ferroptosis via the accumulation of intracellular iron concentration and triggering lipid peroxidation. Interestingly, PPI could induced stronger ferroptosis in a short time of about 6 h compared to erastin. Furthermore, we demonstrate that PPI-induced rapid ferroptosis is due to the simultaneous targeting PI3K/SREBP-1/SCD1 axis and triggering lipid peroxidation, and PI3K inhibitor Alpelisib can enhance the activity of erastin-induced ferroptosis. Molecular docking simulations and kinase inhibition assays demonstrated that PPI is a PI3K inhibitor. In addition, PPI significantly inhibited tumor progression and prolonged mouse survival at 4 mg/kg with well tolerance. In summary, our study highlights the therapeutic potential of PPI for AML and shows its unique dual mechanism.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jieting Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jixia Ren
- College of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Bo Yang
- Department of Pharmacy, Panzhihua Central Hospital, Dali University, Panzhihua, China
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Chuanjie Guo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Department of Pharmacy, The Seventh People's Hospital of Chengdu, Chengdu, China.
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Kang C, Sang Q, Liu D, Wang L, Li J, Liu X. Polyphyllin I alleviates neuroinflammation after cerebral ischemia-reperfusion injury via facilitating autophagy-mediated M2 microglial polarization. Mol Med 2024; 30:59. [PMID: 38745316 PMCID: PMC11094947 DOI: 10.1186/s10020-024-00828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.
Collapse
Affiliation(s)
- Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China
| | - Qiuling Sang
- Department of Neuroelectrophysiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Dingxi Liu
- Department of Clinical Medicine, Zunyi Medical University, Zhuhai, 519041, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China.
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China.
| |
Collapse
|
10
|
Zhang L, Liu W, Li Y, Fu Y, Xu C, Yu M. Polyphyllin I Sensitizes Cisplatin-Resistant Human Cervical Cancer Cells to Cisplatin Treatment. Nutr Cancer 2024; 76:656-665. [PMID: 38733116 DOI: 10.1080/01635581.2024.2350107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Cervical cancer (CC) is a common gynecological malignancy, and improving cisplatin sensitivity has become a hot topic in CC chemotherapy research. Polyphyllin I (PPI), a potent bioactive compound found in Rhizoma Paridis, known for its anticancer properties, remains underexplored in CC resistance. In this study, we evaluated PPI's impact on cisplatin-resistant CC cells and elucidated its underlying mechanism. Our findings reveal that PPI enhances the sensitivity of cisplatin-resistant CC cells to the drug, promotes apoptosis, and inhibits cell migration. Mechanistically, PPI was found to regulate p53 expression and its target genes, and suppressing p53 expression reverses PPI's sensitizing effect in drug-resistant CC cells. In conclusion, PPI showed promise in sensitizing cisplatin-resistant human CC cells to cisplatin treatment, suggesting that it could serve as a potent adjunct therapy for cervical cancer, particularly for cases that have developed resistance to cisplatin, thereby providing a promising basis for further clinical investigation into PPI for enhancing the efficacy of existing chemotherapy regimens in resistant cervical cancer.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Wenzhi Liu
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Yu Li
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanyuan Fu
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Chuanhua Xu
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Minmin Yu
- Department of Gynecology and Obstetrics, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Hou J, Wang B, Li J, Liu W. Ferroptosis and its role in gastric and colorectal cancers. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:183-196. [PMID: 38682167 PMCID: PMC11058540 DOI: 10.4196/kjpp.2024.28.3.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 05/01/2024]
Abstract
Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.
Collapse
Affiliation(s)
- Jinxiu Hou
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Bo Wang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Weifang People’s Hospital, Weifang 261041, Shandong, China
| | - Wenbo Liu
- Central Laboratory, The First Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong, China
| |
Collapse
|
12
|
Nie A, Shen C, Zhou Z, Wang J, Sun B, Zhu C. Ferroptosis: Potential opportunities for natural products in cancer therapy. Phytother Res 2024; 38:1173-1190. [PMID: 38116870 DOI: 10.1002/ptr.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Cancer cells often exhibit defects in the execution of cell death, resulting in poor clinical outcomes for patients with many cancer types. Ferroptosis is a newly discovered form of programmed cell death characterized by intracellular iron overload and lipid peroxidation in the cell membrane. Increasing evidence suggests that ferroptosis is closely associated with a wide variety of physiological and pathological processes, particularly in cancer. Notably, various bioactive natural products have been shown to induce the initiation and execution of ferroptosis in cancer cells, thereby exerting anticancer effects. In this review, we summarize the core regulatory mechanisms of ferroptosis and the multifaceted roles of ferroptosis in cancer. Importantly, we focus on natural products that regulate ferroptosis in cancer cells, such as terpenoids, polyphenols, alkaloids, steroids, quinones, and polysaccharides. The clinical efficacy, adverse effects, and drug-drug interactions of these natural products need to be evaluated in further high-quality studies to accelerate their application in cancer treatment.
Collapse
Affiliation(s)
- Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaozan Shen
- Department of Clinical Pharmacy, The Second People's Hospital of Huaihua, Huaihua, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Wang J, Ni BY, Wang J, Han L, Ni X, Wang XM, Cao LC, Sun QH, Han XP, Cui HJ. Research progress of Paris polyphylla in the treatment of digestive tract cancers. Discov Oncol 2024; 15:31. [PMID: 38324023 PMCID: PMC10850040 DOI: 10.1007/s12672-024-00882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Cancer has become one of the most important causes of human death. In particular, the 5 year survival rate of patients with digestive tract cancer is low. Although chemotherapy drugs have a certain efficacy, they are highly toxic and prone to chemotherapy resistance. With the advancement of antitumor research, many natural drugs have gradually entered basic clinical research. They have low toxicity, few adverse reactions, and play an important synergistic role in the combined targeted therapy of radiotherapy and chemotherapy. A large number of studies have shown that the active components of Paris polyphylla (PPA), a common natural medicinal plant, can play an antitumor role in a variety of digestive tract cancers. In this paper, the main components of PPA such as polyphyllin, C21 steroids, sterols, and flavonoids, amongst others, are introduced, and the mechanisms of action and research progress of PPA and its active components in the treatment of various digestive tract cancers are reviewed and summarized. The main components of PPA have been thoroughly explored to provide more detailed references and innovative ideas for the further development and utilization of similar natural antitumor drugs.
Collapse
Affiliation(s)
- Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Bao-Yi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Chaoyang, China
| | - Lei Han
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin Ni
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xin-Miao Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu-Chang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian-Hui Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Pu Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hu-Jun Cui
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
14
|
Jian H, Chen Z, Du H, Liao T, Sun Y, Ke D, Yu Y. Inhibition of ferroptosis by POLE2 in gastric cancer cells involves the activation of NRF2/GPX4 pathway. J Cell Mol Med 2024; 28:e17983. [PMID: 38070189 PMCID: PMC10805511 DOI: 10.1111/jcmm.17983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 01/25/2024] Open
Abstract
Gastric cancer results in great cancer mortality worldwide, and inducing ferroptosis dramatically improves the malignant phenotypes of gastric cancer. DNA polymerase epsilon subunit 2 (POLE2) plays indispensable roles in tumorigenesis; however, its involvement and molecular basis in ferroptosis and gastric cancer are not clear. Human gastric cancer cells were infected with lentiviral vectors to knock down or overexpress POLE2, and cell ferroptosis was detected. To further validate the involvement of nuclear factor erythroid 2-related factor 2 (NRF2) and glutathione peroxidase 4 (GPX4), lentiviral vectors were used. POLE2 expression was elevated in human gastric cancer cells and tissues and closely correlated with clinicopathological features in gastric cancer patients. POLE2 knockdown was induced, while POLE2 overexpression inhibited ferroptosis of human gastric cancer cells, thereby modulating the malignant phenotypes of gastric cancer. Mechanistic studies revealed that POLE2 overexpression elevated NRF2 expression and activity and subsequently activated GPX4, which then prevented lipid peroxidation and ferroptosis in human gastric cancer cells. In contrast, either NRF2 or GPX4 silence significantly prevented POLE2 overexpression-mediated inductions of cell proliferation, migration, invasion and inhibition of ferroptosis. POLE2 overexpression inhibits ferroptosis in human gastric cancer cells through activating NRF2/GPX4 pathway, and inhibiting POLE2 may be a crucial strategy to treat gastric cancer.
Collapse
Affiliation(s)
- Hui Jian
- Department of Gastrointestinal SurgeryAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| | - Zhi‐Qiang Chen
- Department of Gastrointestinal SurgeryAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| | - Heng Du
- Department of Gastrointestinal SurgeryHuanggang Central Hospital Affiliated to Yangtze UniversityHuanggangHubeiChina
| | - Ting Liao
- Department of GastroenterologyAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| | - Yi‐Chen Sun
- Department of OncologyAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| | - Dong Ke
- Department of Gastrointestinal SurgeryRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yang Yu
- Department of Gastrointestinal SurgeryAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| |
Collapse
|
15
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Zheng F, Bi JC, Wei YY, Wang Y, Zhang Q, Liang CL, Wu J, Dai Z. MiR-124-3p mediates gastric cancer cell ferroptosis induced by an anti-cancer drug polyphyllin I. Front Pharmacol 2023; 14:1285799. [PMID: 38027010 PMCID: PMC10664244 DOI: 10.3389/fphar.2023.1285799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Ferroptosis is an emerging type of regulated cell death and associated with antitumoral therapy, while some microRNAs have been shown to regulate the tumorigenesis and cancer progression. Meanwhile, polyphyllin I (PPI) has exhibited antitumoral effects by promoting cancer cell apoptosis and ferroptosis. However, it is unclear whether PPI induces cancer cell ferroptosis by regulating microRNAs. Methods: We used two gastric cancer cell lines (AGS and MKN-45) to set up a tumor model of the nude mice, which were then treated daily with PPI to measure the cancer growth in vitro and in vivo. Ferroptosis was measured using immunofluorescence staining and flow cytometric analysis according to levels of intracellular ROS, lipid ROS and ferrous ions. Moreover, NRF2 expression was measured by Western blotting. In some experiments, the mimics or inhibitors of miR-124-3p were used to further confirm its involvement in PPI-induced cancer cell ferroptosis. Results: Here we found that miR-124-3p mediated cancer ferroptosis and tumor repression induced by PPI since PPI increased miR-124-3p expression in gastric cancer cells and promoted their ferroptosis, whereas inhibition of miR-124-3p mostly abolished the effects of PPI on tumor growth, ferroptosis and NRF2 expression. Moreover, miR-124-3p mimics promoted cancer cell ferroptosis by downregulating NRF2 through directly targeting 3'-UTR region of NRF2, confirming a role for miR-124-3p in regulating PPI-induced ferroptosis. Conclusion: PPI exerts its antitumoral effects on the gastric cancer by promoting cell ferroptosis via regulating miR-124-3p. Our findings have clinical implications for cancer chemotherapy.
Collapse
Affiliation(s)
- Fang Zheng
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jian-Can Bi
- Department of Internal Medicine, The First People’s Hospital of Jingdezhen, Jingdezhen, Jiangxi, China
| | - Yu-Yan Wei
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yeshu Wang
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qunfang Zhang
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianwei Wu
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Joint Immunology Program, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Liao Y, Gui Y, Li Q, An J, Wang D. The signaling pathways and targets of natural products from traditional Chinese medicine treating gastric cancer provide new candidate therapeutic strategies. Biochim Biophys Acta Rev Cancer 2023; 1878:188998. [PMID: 37858623 DOI: 10.1016/j.bbcan.2023.188998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Gastric cancer (GC) is one of the severe malignancies with high incidence and mortality, especially in Eastern Asian countries. Significant advancements have been made in diagnosing and treating GC over the past few decades, resulting in tremendous improvements in patient survival. In recent years, traditional Chinese medicine (TCM) has garnered considerable attention as an alternative therapeutic approach for GC due to its multicomponent and multitarget characteristics. Consequently, natural products found in TCM have attracted researchers' attention, as growing evidence suggests that these natural products can impede GC progression by regulating various biological processes. Nevertheless, their molecular mechanisms are not systematically uncovered. Here, we review the major signaling pathways involved in GC development. Additionally, clinical GC samples were analyzed. Moreover, the anti-GC effects of natural products, their underlying mechanisms and potential targets were summarized. These summaries are intended to facilitate further relevant research, and accelerate the clinical applications of natural products in GC treatment.
Collapse
Affiliation(s)
- Yile Liao
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Gui
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun An
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
18
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
19
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|