1
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
2
|
Wang HZ, Li JY, Yao CL, Li MM, Zhang Y, Feng L, Guo DA. Systematic Characterization of Sesquiterpenes from Dendrobium nobile through Offline Two-Dimensional Chromatography Tandem Mass Spectrometry and Target Isolation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19733-19747. [PMID: 39190823 DOI: 10.1021/acs.jafc.4c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Dendrobium nobile is a species of the genus Dendrobium that can be used as both a medicinal herb and healthy food. The sesquiterpenes in D. nobile have attracted extensive attention in recent years. In this study, Amide × RP offline two-dimensional chromatography separation tandem high-resolution mass spectrometry combined with GNPS (Global Natural Product Social Molecular Networking) was developed for the characterization of sesquiterpenes in D. nobile. After first-dimensional amide separation, the 70% ethanol extract of D. nobile was divided into 40 fractions, which were analyzed by second-dimensional reverse-phase system separation and LTQ-Orbitrap detection. The raw data was imported into the GNPS, resulting in the efficient clustering of similar substances. Finally, 594 sesquiterpene compounds were characterized, and 25 compounds were isolated based on molecular network analysis, including six new compounds. In vitro bioassays, the isolated compounds decreased NO production in the LPS-induced microglial BV-2 cell model and the content of MDA in PC12 cells, demonstrating neuroprotective activity. These findings unraveled the underlying material and provided valuable insights into the quality control of D. nobile.
Collapse
Affiliation(s)
- Han-Ze Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia-Yuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meng-Meng Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Feng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-An Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Chen W, Sun Q, Wang J, Wu Y, Zhu B, Qin L. Colonization by the endophytic fungus Phyllosticta fallopiae combined with the element Si promotes the growth of Dendrobium nobile. Int J Biol Macromol 2024; 274:133343. [PMID: 38925191 DOI: 10.1016/j.ijbiomac.2024.133343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Endophytic fungi can promote plant growth and development, particularly of Orchidaceae species. Previously, we found that the endophytic fungus Phyllosticta fallopiae DN14, collected from Dendrobium nobile growing on rocks in a wild habitat, significantly promoted growth of its host plant D. nobile, an important herb in Chinese traditional medicine that contains the bioactive component dendrobine. Phyllosticta was positively correlated with FW and dendrobine content of D. nobile and with Si content of the epiphytic matrix. Si is also highly beneficial for the growth and productivity of many plants. Here, we co-cultured D. nobile with P. fallopiae DN14 in half-strength Murashige and Skoog medium with and without various concentrations of Si to investigate the effects of DN14 and Si on plant fresh weight and dendrobine content. We also explored the effects of DN14 infection and colonization on host plant growth, Si accumulation and transport, and expression of key genes, as well as the interaction between DN14 and Si. The combination of DN14 and Si promoted the lignification of D. nobile roots, stems, and leaves and markedly increased the thickening of xylem cell walls. Co-culture with DN14 increased transport of Si from roots to stems and from stems to leaves. Transcriptome sequencing and qRT-PCR analyses showed that enhancement of D. nobile growth by DN14 and Si may involve upregulation of plant hormone-related genes (AUX/IAA and MYC) and lignin biosynthesis genes (HCT, PAL1, and PAL2). Insoluble Si promoted the growth of DN14, perhaps through downregulation of genes (e.g., FBP, MPI, RPIAD) related to carbohydrate metabolism, and DN14 in turn promoted the transformation of insoluble Si into soluble Si for plant uptake. These findings demonstrate that endophytic fungi and Si can improve the growth of D. nobile and therefore show promise as organic amendments for commercial cultivation.
Collapse
Affiliation(s)
- Wenhua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Qingmei Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jingxuan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yutong Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
4
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
5
|
Gao C, Wu X, Yang Z, Qin L, Wu D, Fan Q, Zhao Y, Tan D, Li J, Zhang J, He Y. Quantitative analysis of six sesquiterpene glycosides from Dendrobium nobile Lindl. under different growth conditions by high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry in MRM mode. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1249-1260. [PMID: 38659238 DOI: 10.1002/pca.3356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION The sesquiterpene glycosides (SGs) from Dendrobium nobile Lindl. have immunomodulatory effects. However, there are no studies on the growth conditions affecting its contents and quantitative analysis methods. OBJECTIVE In the present study, a quantitative analysis method for six SGs from D. nobile was established. We explored which growth conditions could affect the contents of SGs, providing a basis for the cultivation and clinical application of D. nobile. METHODS Firstly, based on the optimization of mass spectrometry parameters and extraction conditions for six SGs in D. nobile, a method for the determination of the contents of six SGs was established using high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Then, the methodology of the established method was validated. Secondly, the established method was applied to determine the contents of six SGs from 78 samples of D. nobile grown under different growth conditions. Finally, chemometrics analysis was employed to analyze the results and select optimal growth conditions for D. nobile. RESULTS The results indicated significant variations in the contents of SGs from D. nobile grown under different growth conditions. The primary factors influencing SG contents included age, geographical origin, altitude, and epiphytic pattern. CONCLUSION Therefore, the established method for determining SG contents from D. nobile is stable. In particular, the SG contents were relatively high in samples of 3-year-old D. nobile grown at an altitude of approximately 500 m on Danxia rocks in Chishui, Guizhou.
Collapse
Affiliation(s)
- Chunxue Gao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhou Yang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
- Guizhou Standard Pharmaceutical Health Co., Ltd., Zunyi, China
- Key Laboratory of Natural Bioactive Substances of Fujian Province, Fuzhou, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiaying Li
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Zhao R, Yan S, Hu Y, Rao D, Li H, Chun Z, Zheng S. Metabolic and Transcriptomic Profile Revealing the Differential Accumulating Mechanism in Different Parts of Dendrobium nobile. Int J Mol Sci 2024; 25:5356. [PMID: 38791394 PMCID: PMC11121218 DOI: 10.3390/ijms25105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Dendrobium nobile is an important orchid plant that has been used as a traditional herb for many years. For the further pharmaceutical development of this resource, a combined transcriptome and metabolome analysis was performed in different parts of D. nobile. First, saccharides, organic acids, amino acids and their derivatives, and alkaloids were the main substances identified in D. nobile. Amino acids and their derivatives and flavonoids accumulated strongly in flowers; saccharides and phenols accumulated strongly in flowers and fruits; alkaloids accumulated strongly in leaves and flowers; and a nucleotide and its derivatives and organic acids accumulated strongly in leaves, flowers, and fruits. Simultaneously, genes for lipid metabolism, terpenoid biosynthesis, and alkaloid biosynthesis were highly expressed in the flowers; genes for phenylpropanoids biosynthesis and flavonoid biosynthesis were highly expressed in the roots; and genes for other metabolisms were highly expressed in the leaves. Furthermore, different members of metabolic enzyme families like cytochrome P450 and 4-coumarate-coA ligase showed differential effects on tissue-specific metabolic accumulation. Members of transcription factor families like AP2-EREBP, bHLH, NAC, MADS, and MYB participated widely in differential accumulation. ATP-binding cassette transporters and some other transporters also showed positive effects on tissue-specific metabolic accumulation. These results systematically elucidated the molecular mechanism of differential accumulation in different parts of D. nobile and enriched the library of specialized metabolic products and promising candidate genes.
Collapse
Affiliation(s)
- Ruoxi Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
| | - Shou Yan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
- Hejiang Public Inspection and Testing Center, Sichuan Quality Supervision and Inspection Center for Se-rich and Zn-rich Products, Luzhou 646200, China
| | - Yadong Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
| | - Dan Rao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Hongjie Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100041, China
| | - Ze Chun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
| | - Shigang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (R.Z.)
| |
Collapse
|
7
|
Hsu WH, Sangkhathat C, Lu MK, Lin WY, Liu HP, Lin YL. Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila. Antioxidants (Basel) 2024; 13:603. [PMID: 38790708 PMCID: PMC11118839 DOI: 10.3390/antiox13050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese medicine (TCM) for nourishing yin, clearing heat, and brightening the eyes. The polysaccharide is one of the major components in D. nobile. However, the effect on ocular cells remains unclear. This study aimed to investigate whether the polysaccharide from D. nobile can protect the eyes from blue light-induced injury. A crude (DN-P) and a partially purified polysaccharide (DN-PP) from D. nobile were evaluated for their protective effects on blue light-induced damage in ARPE-19 and 661W cells. The in vivo study investigated the electroretinographic response and the expression of phototransduction-related genes in the retinas of a Drosophila model. The results showed that DN-P and DN-PP could improve blue light-induced damage in ARPE-19 and 661W cells, including cell viability, antioxidant activity, reactive oxygen species (ROS)/superoxide production, and reverse opsin 3 protein expression in a concentration-dependent manner. The in vivo study indicated that DN-P could alleviate eye damage and reverse the expression of phototransduction-related genes, including ninaE, norpA, Gαq, Gβ76C, Gγ30A, TRP, and TRPL, in a dose-dependent manner in blue light-exposed Drosophila. In conclusion, this is the first report demonstrating that D. nobile polysaccharide pretreatment can protect retinal cells and retinal photoreceptors from blue light-induced damage. These results provide supporting evidence for the beneficial potential of D. nobile in preventing blue light-induced eye damage and improving eyesight.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
| | - Chanikan Sangkhathat
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan;
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan; (W.-H.H.); (C.S.)
- Department of Pharmacy, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
8
|
Li L, Chen H, Huang G, Lv Y, Yao L, Guo Z, Qiu S, Wang X, Wei C. Structure of Polysaccharide from Dendrobium nobile Lindl. and Its Mode of Action on TLR4 to Exert Immunomodulatory Effects. Foods 2024; 13:1356. [PMID: 38731727 PMCID: PMC11083282 DOI: 10.3390/foods13091356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Dendrobium nobile Lindl. polysaccharide (DNP1) showed good anti-inflammatory activity in our previous study. In this study, the structural characterization of DNP1 and its mode of action on TLR4 were investigated. Structural characterization suggested that DNP1 was a linear glucomannan composed of (1 → 4)-β-Manp and (1 → 4)-β-Glcp residues, and the acetyl group was linked to the C-2 of Manp. The possible repeating structural units of DNP1 were [→4)-2-OAc-β-Manp-(1→]3 →4)-β-Glcp-(1→. Surface plasmon resonance (SPR) binding test results showed that DNP1 did not bind directly to TLR4. The TLR4 and MD2 receptor blocking tests confirmed that DNP1 needs MD2 and TLR4 to participate in its anti-inflammatory effect. The binding energy of DNP1 to TLR4-MD2 was -7.9 kcal/mol, indicating that DNP1 could bind to the TLR4-MD2 complex stably. Therefore, it is concluded that DNP1 may play an immunomodulatory role by binding to the TLR4-MD2 complex and inhibiting the TLR4-MD2-mediated signaling pathway.
Collapse
Affiliation(s)
- Lian Li
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
| | - Hang Chen
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
| | - Guichun Huang
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yiyi Lv
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
| | - Li Yao
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zhongxia Guo
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
| | - Shuyi Qiu
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
| | - Xiaodan Wang
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
| | - Chaoyang Wei
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (L.L.); (H.C.); (G.H.); (Y.L.); (L.Y.); (Z.G.); (S.Q.); (X.W.)
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Luo Y, Yang D, Xu Y, Wu D, Tan D, Qin L, Wu X, Lu Y, He Y. Hypoglycemic Effects and Quality Marker Screening of Dendrobium nobile Lindl. at Different Growth Years. Molecules 2024; 29:699. [PMID: 38338442 PMCID: PMC10856227 DOI: 10.3390/molecules29030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: The effect of Dendrobium nobile Lindl. (D. nobile) on hyperglycemic syndrome has only been recently known for several years. Materials of D. nobile were always collected from the plants cultivated in various growth ages. However, regarding the efficacy of D. nobile on hyperglycemic syndrome, it was still unknown as to which cultivation age would be selected. On the other hand, with the lack of quality markers, it is difficult to control the quality of D. nobile to treat hyperglycemic syndrome. (2) Methods: The effects of D. nobile cultivated at year 1 and year 3 were checked on alloxan-induced diabetic mice while their body weight, diet, water intake, and urinary output were monitored. Moreover, levels of glycosylated serum protein and insulin were measured using Elisa kits. The constituents of D. nobile were identified and analyzed by using UPLC-Q/trap. Quality markers were screened out by integrating the data from UPLC-Q/trap into a network pharmacology model. (3) Results: The D. nobile cultivated at both year 1 and year 3 showed a significant effect on hyperglycemic syndrome at the high dosage level; however, regarding the significant level, D. nobile from year 1 showed the better effect. In D. nobile, most of the metabolites were identified as alkaloids and sesquiterpene glycosides. Alkaloids, represented by dendrobine, were enriched in D. nobile from year 1, while sesquiterpene glycosides were enriched in D. nobile from year 3. Twenty one metabolites were differentially expressed between D. nobile from year 1 and year 3. The aforementioned 21 metabolites were enriched to 34 therapeutic targets directly related to diabetes. (4) Conclusions: Regarding the therapy for hyperglycemic syndrome, D. nobile cultivated at year 1 was more recommended than that at year 3. Alkaloids were recommended to be used as markers to control the quality of D. nobile for hyperglycemic syndrome treatment.
Collapse
Affiliation(s)
- Yi Luo
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Da Yang
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Yanzhe Xu
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Yanliu Lu
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| | - Yuqi He
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (Y.L.); (D.Y.); (Y.X.)
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China; (D.W.); (D.T.); (L.Q.); (X.W.)
| |
Collapse
|
10
|
Zhang T, Yang X, Wang F, Liu P, Xie M, Lu C, Liu J, Sun J, Fan B. Comparison of the Metabolomics of Different Dendrobium Species by UPLC-QTOF-MS. Int J Mol Sci 2023; 24:17148. [PMID: 38138977 PMCID: PMC10742841 DOI: 10.3390/ijms242417148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Dendrobium Sw. (family Orchidaceae) is a renowned edible and medicinal plant in China. Although widely cultivated and used, less research has been conducted on differential Dendrobium species. In this study, stems from seven distinct Dendrobium species were subjected to UPLC-QTOF-MS/MS analysis. A total of 242 metabolites were annotated, and multivariate statistical analysis was employed to explore the variance in the extracted metabolites across the various groups. The analysis demonstrated that D. nobile displays conspicuous differences from other species of Dendrobium. Specifically, D. nobile stands out from the remaining six taxa of Dendrobium based on 170 distinct metabolites, mainly terpene and flavonoid components, associated with cysteine and methionine metabolism, flavonoid biosynthesis, and galactose metabolism. It is believed that the variations between D. nobile and other Dendrobium species are mainly attributed to three metabolite synthesis pathways. By comparing the chemical composition of seven species of Dendrobium, this study identified the qualitative components of each species. D. nobile was found to differ significantly from other species, with higher levels of terpenoids, flavonoids, and other compounds that are for the cardiovascular field. By comparing the chemical composition of seven species of Dendrobium, these qualitative components have relevance for establishing quality standards for Dendrobium.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Xinxin Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Pengfei Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Mengzhou Xie
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Cong Lu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Jiameng Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Jing Sun
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| | - Bei Fan
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (X.Y.); (F.W.); (P.L.); (C.L.); (J.L.)
| |
Collapse
|