1
|
Li J, Li L, Cai S, Song K, Hu S. Identification of novel risk genes for Alzheimer's disease by integrating genetics from hippocampus. Sci Rep 2024; 14:27484. [PMID: 39523385 PMCID: PMC11551212 DOI: 10.1038/s41598-024-78181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative ailment, presently lacking a definitive cure. Given that primary medications for AD patients in the early or middle stages demonstrate optimal efficacy, it becomes crucial to delve into the identification of risk genes associated with early onset. In our study, we compiled and integrated three transcriptomics datasets (GSE48350, GSE36980, GSE5281) originating from the hippocampus of 37 AD patients and 66 healthy controls (CTR) for comprehensive bioinformatics analysis. Comparative analysis with CTR revealed 25 up-regulated genes and 291 down-regulated genes in AD. Those down-regulated genes were notably enriched in processes related to the transmission and transport of synaptic signals. Intriguingly, 27 differentially expressed genes implicated in AD were also correlated with the Braak stage, establishing a connection with various immune cell types that exhibit differences in AD, including cytotoxic T cells, neutrophils, CD4 T cells, Th1, Th2, and Tfh. Significantly, a Cox model, constructed using nine feature genes, effectively stratified AD samples (HR = 2.72, 95% CI 1.94 ~ 3.81, P = 3.6e-10), highlighting their promising potential for risk assessment. In conclusion, our investigation sheds light on novel genes intricately linked to the onset and progression of AD, offering potential biomarkers for the early detection of this debilitating condition. This study contributes valuable insights toward enhancing the strategies for preventing and treating AD.
Collapse
Affiliation(s)
- Jie Li
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lingfang Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Cai
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Kun Song
- Department of Gastrointestinal Surgery & National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shenghui Hu
- Department of Orthopaedics, Xiangya Second Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Apaza Ticona L, Sánchez Sánchez-Corral J, Zou Shi Y, Montoto Lozano N, Slowing Barillas K. Pentacyclic triterpenes as bioactive compounds isolated from Mauritia flexuosa L. f. acting against the Alzheimer's disease. Nat Prod Res 2024:1-10. [PMID: 39377375 DOI: 10.1080/14786419.2024.2412839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Alzheimer's disease is a significant concern due to its high prevalence and the limitations of current treatments. In our research, we investigated Mauritia flexuosa, a medicinal plant traditionally used for headaches, to identify active compounds with potential anti-Alzheimer's effects. Three pentacyclic triterpenes were isolated through column chromatography and characterised from the dichloromethane/methanol extract from Mauritia flexuosa (DCMEMf), with (3β)-3-hydroxy-11-oxours-12-en-28-oic acid (3) showing the highest in vitro activity in the HMC3 and SVG p12 cell lines. Compound 3 inhibited the pharmacological targets NF-κB, PGE2, IDO1, and EGFR with IC50 values of 9.83, 3.86, 1.63 μM, and 49.57 nM, respectively, attributed to a hydroxyl group at the C-3 position of its structure. These findings suggest the potential of these compounds in treating neurological diseases, including headaches, and offer promising prospects for the development of new therapies against Alzheimer's.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
| | | | - Yamin Zou Shi
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Natalia Montoto Lozano
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Karla Slowing Barillas
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Wang Y, Song X, Wang R, Xu X, Du Y, Chen G, Mei J. Genome-Wide Mendelian Randomization Identifies Ferroptosis-Related Drug Targets for Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1185-1197. [PMID: 39247875 PMCID: PMC11380310 DOI: 10.3233/adr-240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/15/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD) currently lacks effective disease-modifying treatments. Recent research suggests that ferroptosis could be a potential therapeutic target. Mendelian randomization (MR) is a widely used method for identifying novel therapeutic targets. Objective Employ genetic information to evaluate the causal impact of ferroptosis-related genes on the risk of AD. Methods 564 ferroptosis-related genes were obtained from FerrDb. We derived genetic instrumental variables for these genes using four brain quantitative trait loci (QTL) and two blood QTL datasets. Summary-data-based Mendelian randomization (SMR) and two-sample MR methods were applied to estimate the causal effects of ferroptosis-related genes on AD. Using extern transcriptomic datasets and triple-transgenic mouse model of AD (3xTg-AD) to further validate the gene targets identified by the MR analysis. Results We identified 17 potential AD risk gene targets from GTEx, 13 from PsychENCODE, and 22 from BrainMeta (SMR p < 0.05 and HEIDI test p > 0.05). Six overlapping ferroptosis-related genes associated with AD were identified, which could serve as potential therapeutic targets (PEX10, CDC25A, EGFR, DLD, LIG3, and TRIB3). Additionally, we further pinpointed risk genes or proteins at the blood tissue and pQTL levels. Notably, EGFR demonstrated significant dysregulation in the extern transcriptomic datasets and 3xTg-AD models. Conclusions This study provides genetic evidence supporting the potential therapeutic benefits of targeting the six druggable genes for AD treatment, especially for EGFR (validated by transcriptome and 3xTg-AD), which could be useful for prioritizing AD drug development in the field of ferroptosis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan/Wuhan First Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Song
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Wang
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinzi Xu
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Yaming Du
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Guohua Chen
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, China
| | - Junhua Mei
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
4
|
Ge Y, Chen S, Wu B, Zhang Y, Wang J, He X, Liu W, Chen Y, Ou Y, Shen X, Huang Y, Gan Y, Yang L, Ma L, Ma Y, Chen K, Chen S, Cui M, Tan L, Dong Q, Zhao Q, Wang Y, Jia J, Yu J. Genome-wide meta-analysis identifies ancestry-specific loci for Alzheimer's disease. Alzheimers Dement 2024; 20:6243-6256. [PMID: 39023044 PMCID: PMC11497642 DOI: 10.1002/alz.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a devastating neurological disease with complex genetic etiology. Yet most known loci have only identified from the late-onset type AD in populations of European ancestry. METHODS We performed a two-stage genome-wide association study (GWAS) of AD totaling 6878 Chinese and 63,926 European individuals. RESULTS In addition to the apolipoprotein E (APOE) locus, our GWAS of two independent Chinese samples uncovered three novel AD susceptibility loci (KIAA2013, SLC52A3, and TCN2) and a novel ancestry-specific variant within EGFR (rs1815157). More replicated variants were observed in the Chinese (31%) than in the European samples (15%). In combining genome-wide associations and functional annotations, EGFR and TCN2 were prioritized as two of the most biologically significant genes. Phenome-wide Mendelian randomization suggests that high mean corpuscular hemoglobin concentration might protect against AD. DISCUSSION The current study reveals novel AD susceptibility loci, emphasizes the importance of diverse populations in AD genetic research, and advances our understanding of disease etiology. HIGHLIGHTS Loci KIAA2013, SLC52A3, and TCN2 were associated with Alzheimer's disease (AD) in Chinese populations. rs1815157 within the EGFR locus was associated with AD in Chinese populations. The genetic architecture of AD varied between Chinese and European populations. EGFR and TCN2 were prioritized as two of the most biologically significant genes. High mean corpuscular hemoglobin concentrations might have protective effects against AD.
Collapse
Affiliation(s)
- Yi‐Jun Ge
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Jun Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Xiao‐Yu He
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Wei‐Shi Liu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yi‐Lin Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ya‐Nan Ou
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Xue‐Ning Shen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yu‐Yuan Huang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yi‐Han Gan
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Liu Yang
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Ling‐Zhi Ma
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Ya‐Hui Ma
- Department of NeurologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ke‐Liang Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Shu‐Fen Chen
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Mei Cui
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Lan Tan
- Department of NeurologyQingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Qiang Dong
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Qian‐Hua Zhao
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping HospitalThird Military Medical UniversityChongqingChina
| | - Jian‐Ping Jia
- Innovation Center for Neurological Disorders and Department of NeurologyNational Clinical Research Center for Geriatric DiseasesXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of NeurologyHuashan HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical CollegeNational Center for Neurological DisordersFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Wang Y, Zhang S, Gong W, Liu X, Mo Q, Shen L, Zhao Y, Wang S, Yuan Z. Multi-Omics Integration Analysis Pinpoint Proteins Influencing Brain Structure and Function: Toward Drug Targets and Neuroimaging Biomarkers for Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:9223. [PMID: 39273172 PMCID: PMC11395524 DOI: 10.3390/ijms25179223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Integrating protein quantitative trait loci (pQTL) data and summary statistics from genome-wide association studies (GWAS) of brain image-derived phenotypes (IDPs) can benefit in identifying IDP-related proteins. Here, we developed a systematic omics-integration analytic framework by sequentially using proteome-wide association study (PWAS), Mendelian randomization (MR), and colocalization (COLOC) analyses to identify the potentially causal brain and plasma proteins for IDPs, followed by pleiotropy analysis, mediation analysis, and drug exploration analysis to investigate potential mediation pathways of pleiotropic proteins to neuropsychiatric disorders (NDs) as well as candidate drug targets. A total of 201 plasma proteins and 398 brain proteins were significantly associated with IDPs from PWAS analysis. Subsequent MR and COLOC analyses further identified 313 potentially causal IDP-related proteins, which were significantly enriched in neural-related phenotypes, among which 91 were further identified as pleiotropic proteins associated with both IDPs and NDs, including EGFR, TMEM106B, GPT, and HLA-B. Drug prioritization analysis showed that 6.33% of unique pleiotropic proteins had drug targets or interactions with medications for NDs. Nine potential mediation pathways were identified to illustrate the mediating roles of the IDPs in the causal effect of the pleiotropic proteins on NDs, including the indirect effect of TMEM106B on Alzheimer's disease (AD) risk via radial diffusivity (RD) of the posterior limb of the internal capsule (PLIC), with the mediation proportion being 11.18%, and the indirect effect of EGFR on AD through RD of PLIC, RD of splenium of corpus callosum (SCC), and fractional anisotropy (FA) of SCC, with the mediation proportion being 18.99%, 22.79%, and 19.91%, respectively. These findings provide novel insights into pathogenesis, drug targets, and neuroimaging biomarkers of NDs.
Collapse
Affiliation(s)
- Yunzhuang Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Sunjie Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Xinyu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Qinyou Mo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Lujia Shen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Yansong Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Shukang Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, 44, Wenhua West Road, Jinan 250012, China
- Institute for Medical Dataology, Shandong University, 12550, Erhuan East Road, Jinan 250003, China
| |
Collapse
|
6
|
Yavuz SC. Synthesis of new two 1,2-disubstituted benzimidazole compounds: their in vitro anticancer and in silico molecular docking studies. BMC Chem 2024; 18:146. [PMID: 39113157 PMCID: PMC11308586 DOI: 10.1186/s13065-024-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
In this study, two new molecules were synthesized from the reaction of 2-methyl-1H-benzo[d]imidazole with aryl halides in the presence of a strong base. The structures newly of synthesized 1,2-disubstituted benzimidazole compounds were characterized using spectroscopic techniques (FT-IR, 1HNMR, 13CNMR) and chromatographic technique (LC/MS). For discovering an effective anticancer drug, the developed heterocyclic compounds were screened against three different human cancer cell lines (A549, DLD-1, and L929). The results demonstrated that of IC50 values of compound 2a were higher as compared to cisplatin for the A549 and DLD-1 cell lines. The frontier molecular orbital (FMO), and molecular electrostatic potential map (MEP) analyses were studied by using DFT (density functional theory) calculations at B3LYP/6-31G** level of theory. The molecular docking studies of the synthesized compound with lung cancer protein, PDB ID: 1M17, and colon cancer antigen proteins, PDB ID: 2HQ6 were performed to compare with experimental and theoretical data. Compound 2a had shown the best binding affinity with -6.6 kcal/mol. It was observed that the theoretical and experimental studies carried out supported each other.
Collapse
Affiliation(s)
- Sevtap Caglar Yavuz
- Department of Medical Services and Technicians, Ilic Dursun Yildirim Vocational School, Erzincan Binali Yildirim University, Erzincan, Türkiye.
| |
Collapse
|
7
|
Lee EH, Kang D, Lee J, Seo SW, Kim CH, Cho J. Dementia incidence varied by anticancer drugs and molecular targeted therapy in a population-based cohort study. Sci Rep 2024; 14:17485. [PMID: 39080315 PMCID: PMC11289456 DOI: 10.1038/s41598-024-68199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Anticancer drugs may affect the incidence of dementia by modulating the common pathophysiology between cancer and dementia. However, there is a paucity of research that focused on anticancer drugs with different mechanisms of action and their associations with subtypes of dementia. Therefore, we aimed to investigate the incidence of dementia according to various groups of anticancer drugs. From the Korea National Health Insurance Service database, our retrospective population-based cohort study enrolled 116,506 cancer patients aged 65 years and older who received anticancer drugs between January 1, 2008 and December 31, 2018. The hazard ratio was determined using Cox proportional hazards regression models, comparing each group of anticancer drugs to all other anticancer drugs, after adjusting for covariates. Antimetabolites (HR = 0.91; 95% CI 0.84-0.97) and molecular targeted therapies (HR = 0.60; 95% CI 0.49-0.74) were associated with a decreased incidence of dementia of the Alzheimer type (DAT), but not with vascular dementia. Among molecular targeted therapies, epidermal growth factor receptor inhibitors (HR = 0.60; 95% CI 0.46-0.79) and multikinase inhibitors (HR = 0.49; 95% CI 0.27-0.89) were associated with a low incidence of DAT only. Our findings highlight the potential for targeted repurposing of anticancer drugs to prevent dementia.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Danbee Kang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Republic of Korea
| | - Jin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Chi-Hun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro170beon-gil, Dongan-gu, Anyang, Gyeonggi-do, 14068, Republic of Korea.
| | - Juhee Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Republic of Korea.
- Center for Cohort Studies, Total Healthcare Screening Center, Kangbuk Samsung Hospital, Sungkyunkwan University, 29, Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea.
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Republic of Korea.
- Departments of Epidemiology and Medicine and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, 2024 E. Monument Street,, Baltimore, MD21205, USA.
| |
Collapse
|
8
|
Cartas‐Cejudo P, Cortés A, Lachén‐Montes M, Anaya‐Cubero E, Puerta E, Solas M, Fernández‐Irigoyen J, Santamaría E. Neuropathological stage-dependent proteome mapping of the olfactory tract in Alzheimer's disease: From early olfactory-related omics signatures to computational repurposing of drug candidates. Brain Pathol 2024; 34:e13252. [PMID: 38454090 PMCID: PMC11189775 DOI: 10.1111/bpa.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by an early olfactory dysfunction, progressive memory loss, and behavioral deterioration. Albeit substantial progress has been made in characterizing AD-associated molecular and cellular events, there is an unmet clinical need for new therapies. In this study, olfactory tract proteotyping performed in controls and AD subjects (n = 17/group) showed a Braak stage-dependent proteostatic impairment accompanied by the progressive modulation of amyloid precursor protein and tau functional interactomes. To implement a computational repurposing of drug candidates with the capacity to reverse early AD-related olfactory omics signatures (OMSs), we generated a consensual OMSs database compiling differential omics datasets obtained by mass-spectrometry or RNA-sequencing derived from initial AD across the olfactory axis. Using the Connectivity Map-based drug repurposing approach, PKC, EGFR, Aurora kinase, Glycogen synthase kinase, and CDK inhibitors were the top pharmacologic classes capable to restore multiple OMSs, whereas compounds with targeted activity to inhibit PI3K, Insulin-like growth factor 1 (IGF-1), microtubules, and Polo-like kinase (PLK) represented a family of drugs with detrimental potential to induce olfactory AD-associated gene expression changes. To validate the potential therapeutic effects of the proposed drugs, in vitro assays were performed. These validation experiments revealed that pretreatment of human neuron-like SH-SY5Y cells with the EGFR inhibitor AG-1478 showed a neuroprotective effect against hydrogen peroxide-induced damage while the pretreatment with the Aurora kinase inhibitor Reversine reduced amyloid-beta (Aβ)-induced neurotoxicity. Taken together, our data pointed out that OMSs may be useful as substrates for drug repurposing to propose novel neuroprotective treatments against AD.
Collapse
Affiliation(s)
- Paz Cartas‐Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Adriana Cortés
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Mercedes Lachén‐Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Elena Anaya‐Cubero
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Elena Puerta
- Department of Pharmacology and ToxicologyUniversity of Navarra, IdiSNAPamplonaSpain
| | - Maite Solas
- Department of Pharmacology and ToxicologyUniversity of Navarra, IdiSNAPamplonaSpain
| | - Joaquín Fernández‐Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
| |
Collapse
|
9
|
Zhao N, Wang J, Huang S, Zhang J, Bao J, Ni H, Gao X, Zhang C. The landscape of programmed cell death-related lncRNAs in Alzheimer's disease and Parkinson's disease. Apoptosis 2024:10.1007/s10495-024-01984-z. [PMID: 38853201 DOI: 10.1007/s10495-024-01984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
This study delivers a thorough analysis of long non-coding RNAs (lncRNAs) in regulating programmed cell death (PCD), vital for neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). We propose a new framework PCDLnc, and identified 20 significant lncRNAs, including HEIH, SNHG15, and SNHG5, associated with PCD gene sets, which were known for roles in proliferation and apoptosis in neurodegenerative diseases. By using GREAT software, we identified regulatory functions of top lncRNAs in different neurodegenerative diseases. Moreover, lncRNAs cis-regulated mRNAs linked to neurodegeneration, including JAK2, AKT1, EGFR, CDC42, SNCA, and ADIPOQ, highlighting their therapeutic potential in neurodegenerative diseases. A further exploration into the differential expression of mRNA identified by PCDLnc revealed a role in apoptosis, ferroptosis and autophagy. Additionally, protein-protein interaction (PPI) network analysis exposed abnormal interactions among key genes, despite their consistent expression levels between disease and normal samples. The randomforest model effectively distinguished between disease samples, indicating a high level of accuracy. Shared gene subsets in AD and PD might serve as potential biomarkers, along with disease-specific gene sets. Besides, we also found the strong relationship between AD and immune infiltration. This research highlights the role of lncRNAs and their associated genes in PCD in neurodegenerative diseases, offering potential therapeutic targets and diagnostic markers for future study and clinical application.
Collapse
Affiliation(s)
- Ning Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Junyi Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shan Huang
- The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingyu Zhang
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jin Bao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Haisen Ni
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinhang Gao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chunlong Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Soelter TM, Howton TC, Clark AD, Oza VH, Lasseigne BN. Altered glia-neuron communication in Alzheimer's Disease affects WNT, p53, and NFkB Signaling determined by snRNA-seq. Cell Commun Signal 2024; 22:317. [PMID: 38849813 PMCID: PMC11157763 DOI: 10.1186/s12964-024-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-β plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFβ, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. METHODS Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in a second and third independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. RESULTS Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We identified ligand-receptor pairs in three independent datasets and found involvement of the Alzheimer's disease risk genes APP and APOE across datasets. Most of the signaling mediators of these interactions were not significantly differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had decreased TF activity in Alzheimer's disease, along with decreased WNT and p53 pathway activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and increased TF activity of NFIL3, an NFkB signaling-associated transcription factor. CONCLUSIONS Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.
Collapse
Affiliation(s)
- Tabea M Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Timothy C Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amanda D Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Vishal H Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Brittany N Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
11
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
12
|
Soelter TM, Howton TC, Clark AD, Oza VH, Lasseigne BN. Altered Glia-Neuron Communication in Alzheimer's Disease Affects WNT, p53, and NFkB Signaling Determined by snRNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569304. [PMID: 38076822 PMCID: PMC10705421 DOI: 10.1101/2023.11.29.569304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Background Alzheimer's disease is the most common cause of dementia and is characterized by amyloid-β plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer's disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer's disease, including WNT, TGFβ, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons. Methods Using public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in a second and third independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons. Results Cell-cell communication between glia and neurons is altered in Alzheimer's disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We identified ligand-receptor pairs in three independent datasets and found involvement of the Alzheimer's disease risk genes APP and APOE across datasets. Most of the signaling mediators of these interactions were not differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely, MYC and TP53, which are associated with WNT and p53 signaling, respectively, had decreased TF activity in Alzheimer's disease, along with decreased WNT and p53 pathway activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and increased TF activity of NFIL3, an NFkB signaling-associated transcription factor. Conclusions Cell-cell communication between glia and neurons in Alzheimer's disease is altered in a cell-type-specific manner involving Alzheimer's disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
13
|
Hiroshima M, Bannai H, Matsumoto G, Ueda M. Application of single-molecule analysis to singularity phenomenon of cells. Biophys Physicobiol 2024; 21:e211018. [PMID: 39175861 PMCID: PMC11338674 DOI: 10.2142/biophysico.bppb-v21.s018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024] Open
Abstract
Single-molecule imaging in living cells is an effective tool for elucidating the mechanisms of cellular phenomena at the molecular level. However, the analysis was not designed for throughput and requires high expertise, preventing it from reaching large scale, which is necessary when searching for rare cells that induce singularity phenomena. To overcome this limitation, we have automated the imaging procedures by combining our own focusing device, artificial intelligence, and robotics. The apparatus, called automated in-cell single-molecule imaging system (AiSIS), achieves a throughput that is a hundred-fold higher than conventional manual imaging operations, enabling the analysis of molecular events by individual cells across a large population. Here, using AiSIS, we demonstrate the single-molecule imaging of molecular behaviors and reactions related to tau protein aggregation, which is considered a singularity phenomenon in neurological disorders. Changes in the dynamics and kinetics of molecular events were observed inside and on the basal membrane of cells after the induction of aggregation. Additionally, to detect rare cells based on the molecular behavior, we developed a method to identify the state of individual cells defined by the quantitative distribution of molecular mobility and clustering. Using this method, cellular variations in receptor behavior were shown to decrease following ligand stimulation. This cell state analysis based on large-scale single-molecule imaging by AiSIS will advance the study of molecular mechanisms causing singularity phenomena.
Collapse
Affiliation(s)
- Michio Hiroshima
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, Osaka 565-0874, Japan
| | - Hiroko Bannai
- School of Advanced Science and Engineering, Department of Electrical Engineering and Biosciences, Waseda University, Shinjuku-ku, Tokyo 162-0056, Japan
| | - Gen Matsumoto
- Department of Neurological Disease Control, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
- Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Laboratory for Cell Signaling Dynamics, RIKEN BDR, Osaka 565-0874, Japan
| |
Collapse
|
14
|
Huang W, Chen Q, Zhou P, Ye S, Fang Z. Neuroprotective effect of chrysophanol in Alzheimer disease via modulating the Ca 2+/EGFR-PLCγ pathway. Neurosci Lett 2024; 824:137684. [PMID: 38355004 DOI: 10.1016/j.neulet.2024.137684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Chrysophanol (CHR) is an anthraquinone compound found in rhubarb, and it possesses neuroprotective properties. The purpose of this study was to gain a better understanding of its role in Alzheimer's disease (AD). In vivo study, D-galactose combined with intracerebral injection of β-protein 25-35(Aβ25-35) were used to establish AD model rats. In vitro study, Aβ25-35 was used to induce AD model cells. Our results indicated that CHR improves learning and memory in AD model rats and provides protection against neuronal damage in both AD model rats and cells. Additionally, we observed that CHR suppressed the protein expression of p-tau, EGFR, PLCγ, IP3R, and CAM, as well as the mRNA levels of tau, EGFR, PLCγ, IP3R, and CAM. Furthermore, we have confirmed that CHR inhibited the fluorescence expression of calcium ions (Ca2+). In conclusion, the CHR may exert neuroprotective effects in AD by reducing tau phosphorylation through the Ca2+/EGFR-PLCγ pathway.
Collapse
Affiliation(s)
- Wei Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Qian Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, PR China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, PR China; Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, PR China
| | - Shu Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, PR China.
| | - Zhengqing Fang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, PR China.
| |
Collapse
|
15
|
Zhang Z, Liu X, Zhang S, Song Z, Lu K, Yang W. A review and analysis of key biomarkers in Alzheimer's disease. Front Neurosci 2024; 18:1358998. [PMID: 38445255 PMCID: PMC10912539 DOI: 10.3389/fnins.2024.1358998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects over 50 million elderly individuals worldwide. Although the pathogenesis of AD is not fully understood, based on current research, researchers are able to identify potential biomarker genes and proteins that may serve as effective targets against AD. This article aims to present a comprehensive overview of recent advances in AD biomarker identification, with highlights on the use of various algorithms, the exploration of relevant biological processes, and the investigation of shared biomarkers with co-occurring diseases. Additionally, this article includes a statistical analysis of key genes reported in the research literature, and identifies the intersection with AD-related gene sets from databases such as AlzGen, GeneCard, and DisGeNet. For these gene sets, besides enrichment analysis, protein-protein interaction (PPI) networks utilized to identify central genes among the overlapping genes. Enrichment analysis, protein interaction network analysis, and tissue-specific connectedness analysis based on GTEx database performed on multiple groups of overlapping genes. Our work has laid the foundation for a better understanding of the molecular mechanisms of AD and more accurate identification of key AD markers.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Xiangtao Liu
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Suixia Zhang
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Zhixin Song
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Ke Lu
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
| | - Wenzhong Yang
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
| |
Collapse
|
16
|
Xu DC, Sas-Nowosielska H, Donahue G, Huang H, Pourshafie N, Good CR, Berger SL. Histone acetylation in an Alzheimer's disease cell model promotes homeostatic amyloid-reducing pathways. Acta Neuropathol Commun 2024; 12:3. [PMID: 38167174 PMCID: PMC10759377 DOI: 10.1186/s40478-023-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's Disease (AD) is a disorder characterized by cognitive decline, neurodegeneration, and accumulation of amyloid plaques and tau neurofibrillary tangles in the brain. Dysregulation of epigenetic histone modifications may lead to expression of transcriptional programs that play a role either in protecting against disease genesis or in worsening of disease pathology. One such histone modification, acetylation of histone H3 lysine residue 27 (H3K27ac), is primarily localized to genomic enhancer regions and promotes active gene transcription. We previously discovered H3K27ac to be more abundant in AD patient brain tissue compared to the brains of age-matched non-demented controls. In this study, we use iPSC-neurons derived from familial AD patients with an amyloid precursor protein (APP) duplication (APPDup neurons) as a model to study the functional effect of lowering CBP/P300 enzymes that catalyze H3K27ac. We found that homeostatic amyloid-reducing genes were upregulated in the APPDup neurons compared to non-demented controls. We lowered CBP/P300 to reduce H3K27ac, which led to decreased expression of numerous of these homeostatic amyloid-reducing genes, along with increased extracellular secretion of a toxic amyloid-β species, Aβ(1-42). Our findings suggest that epigenomic histone acetylation, including H3K27ac, drives expression of compensatory genetic programs in response to AD-associated insults, specifically those resulting from APP duplication, and thus may play a role in mitigating AD pathology in neurons.
Collapse
Affiliation(s)
- Daniel C Xu
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Hanna Sas-Nowosielska
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Hua Huang
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Naemeh Pourshafie
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Charly R Good
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine Philadelphia, Penn Institute of Epigenetics, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Kumari S, Kaur P, Singh AK, Ashar MS, Pradhan R, Rao A, Haldar P, Chakrawarty A, Chatterjee P, Dey S. Quantification of COX-2 Level in Alzheimer's Disease Patients to Develop Potential Blood-Based Biomarker for Early Diagnosis and Therapeutic Target. J Alzheimers Dis 2024; 98:699-713. [PMID: 38427490 DOI: 10.3233/jad-231445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disease and symptoms develop gradually over many years. The current direction for medication development in AD is focused on neuro-inflammation and oxidative stress. Amyloid-β (Aβ) deposition activates microglia leading to neuro-inflammation and neurodegeneration induced by activation of COX-2 via NFκB p50 in glioblastoma cells. Objective The study aimed to evaluate the concentration of COX-2 and NFκB p50 in serum of AD, mild cognitive impairment (MCI), and geriatric control (GC) and to establish a blood-based biomarker for early diagnosis and its therapeutic implications. Methods Proteins and their mRNA level in blood of study groups were measured by surface plasmon resonance (SPR) and quantitative polymerase chain reaction (qPCR), respectively. The level of protein was further validated by western blot. The binding study of designed peptide against COX-2 by molecular docking was verified by SPR. The rescue of neurotoxicity by peptide was also checked by MTT assay on SH-SY5Y cells (neuroblastoma cell line). Results Proteins and mRNA were highly expressed in AD and MCI compared to GC. However, COX-2 decreases with disease duration. The peptide showed binding affinity with COX-2 with low dissociation constant in SPR and rescued the neurotoxicity of SH-SY5Y cells by decreasing the level of Aβ, tau, and pTau proteins. Conclusions It can be concluded that COX-2 protein can serve as a potential blood-based biomarker for early detection and can be a good platform for therapeutic intervention for AD.
Collapse
Affiliation(s)
- Sakshi Kumari
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Priyajit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Suhail Ashar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Rashmita Pradhan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abhijit Rao
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Partha Haldar
- Department of Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Avinash Chakrawarty
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|