1
|
Paudel R, Jafri MS, Ullah A. Gain-of-Function and Loss-of-Function Mutations in the RyR2-Expressing Gene Are Responsible for the CPVT1-Related Arrhythmogenic Activities in the Heart. Curr Issues Mol Biol 2024; 46:12886-12910. [PMID: 39590361 PMCID: PMC11592891 DOI: 10.3390/cimb46110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca2+ release (SOICR), and (d) loss of function. The goal of this study was to use computational models to understand these four mechanisms and how they might contribute to arrhythmia. To this end, we have developed a local control stochastic model of a ventricular cardiac myocyte and used it to investigate how the Ca2+ dynamics in the mutant RyR2 are responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic (β-AR) stimulation or pauses afterward. Into the model, we have incorporated 20,000 distinct cardiac dyads consisting of stochastically gated L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) and the intervening dyadic cleft to analyze the alterations in Ca2+ dynamics. Recent experimental findings were incorporated into the model parameters to test these proposed mechanisms and their role in triggering arrhythmias. The model could not find any connection between SOICR and the destabilization of binding proteins as the arrhythmic mechanisms in the mutant myocyte. On the other hand, the model was able to observe loss-of-function and gain-of-function mutations resulting in EADs (Early Afterdepolarizations) and variations in action potential amplitudes and durations as the precursors to generate arrhythmia, respectively. These computational studies demonstrate how GOF and LOF mutations can lead to arrhythmia and cast doubt on the feasibility of SOICR as a mechanism of arrhythmia.
Collapse
Affiliation(s)
- Roshan Paudel
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
2
|
Tseng WW, Chu CH, Lee YJ, Zhao S, Chang C, Ho YP, Wei AC. Metabolic regulation of mitochondrial morphologies in pancreatic beta cells: coupling of bioenergetics and mitochondrial dynamics. Commun Biol 2024; 7:1267. [PMID: 39369076 PMCID: PMC11455970 DOI: 10.1038/s42003-024-06955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Cellular bioenergetics and mitochondrial dynamics are crucial for the secretion of insulin by pancreatic beta cells in response to elevated levels of blood glucose. To elucidate the interactions between energy production and mitochondrial fission/fusion dynamics, we combine live-cell mitochondria imaging with biophysical-based modeling and graph-based network analysis. The aim is to determine the mechanism that regulates mitochondrial morphology and balances metabolic demands in pancreatic beta cells. A minimalistic differential equation-based model for beta cells is constructed that includes glycolysis, oxidative phosphorylation, calcium dynamics, and fission/fusion dynamics, with ATP synthase flux and proton leak flux as main regulators of mitochondrial dynamics. The model shows that mitochondrial fission occurs in response to hyperglycemia, starvation, ATP synthase inhibition, uncoupling, and diabetic conditions, in which the rate of proton leakage exceeds the rate of mitochondrial ATP synthesis. Under these metabolic challenges, the propensities of tip-to-tip fusion events simulated from the microscopy images of the mitochondrial networks are lower than those in the control group and prevent the formation of mitochondrial networks. The study provides a quantitative framework that couples bioenergetic regulation with mitochondrial dynamics, offering insights into how mitochondria adapt to metabolic challenges.
Collapse
Affiliation(s)
- Wen-Wei Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsiang Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - Chen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Hong Kong Branch of the CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- The Ministry of Education Key Laboratory of Regeneration Medicine, Shatin, New Territories, Hong Kong SAR, China
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Rexius-Hall ML, Khalil NN, Escopete SS, Li X, Hu J, Yuan H, Parker SJ, McCain ML. A myocardial infarct border-zone-on-a-chip demonstrates distinct regulation of cardiac tissue function by an oxygen gradient. SCIENCE ADVANCES 2022; 8:eabn7097. [PMID: 36475790 PMCID: PMC9728975 DOI: 10.1126/sciadv.abn7097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.
Collapse
Affiliation(s)
- Megan L. Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Natalie N. Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sean S. Escopete
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xin Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiayi Hu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongyan Yuan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sarah J. Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Corresponding author.
| |
Collapse
|
4
|
Campana C, Dariolli R, Boutjdir M, Sobie EA. Inflammation as a Risk Factor in Cardiotoxicity: An Important Consideration for Screening During Drug Development. Front Pharmacol 2021; 12:598549. [PMID: 33953668 PMCID: PMC8091045 DOI: 10.3389/fphar.2021.598549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
Numerous commonly prescribed drugs, including antiarrhythmics, antihistamines, and antibiotics, carry a proarrhythmic risk and may induce dangerous arrhythmias, including the potentially fatal Torsades de Pointes. For this reason, cardiotoxicity testing has become essential in drug development and a required step in the approval of any medication for use in humans. Blockade of the hERG K+ channel and the consequent prolongation of the QT interval on the ECG have been considered the gold standard to predict the arrhythmogenic risk of drugs. In recent years, however, preclinical safety pharmacology has begun to adopt a more integrative approach that incorporates mathematical modeling and considers the effects of drugs on multiple ion channels. Despite these advances, early stage drug screening research only evaluates QT prolongation in experimental and computational models that represent healthy individuals. We suggest here that integrating disease modeling with cardiotoxicity testing can improve drug risk stratification by predicting how disease processes and additional comorbidities may influence the risks posed by specific drugs. In particular, chronic systemic inflammation, a condition associated with many diseases, affects heart function and can exacerbate medications’ cardiotoxic effects. We discuss emerging research implicating the role of inflammation in cardiac electrophysiology, and we offer a perspective on how in silico modeling of inflammation may lead to improved evaluation of the proarrhythmic risk of drugs at their early stage of development.
Collapse
Affiliation(s)
- Chiara Campana
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Paci M, Koivumäki JT, Lu HR, Gallacher DJ, Passini E, Rodriguez B. Comparison of the Simulated Response of Three in Silico Human Stem Cell-Derived Cardiomyocytes Models and in Vitro Data Under 15 Drug Actions. Front Pharmacol 2021; 12:604713. [PMID: 33841140 PMCID: PMC8033762 DOI: 10.3389/fphar.2021.604713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hua Rong Lu
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Passini E, Britton OJ, Lu HR, Rohrbacher J, Hermans AN, Gallacher DJ, Greig RJH, Bueno-Orovio A, Rodriguez B. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity. Front Physiol 2017; 8:668. [PMID: 28955244 PMCID: PMC5601077 DOI: 10.3389/fphys.2017.00668] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.
Collapse
Affiliation(s)
- Elisa Passini
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Oliver J Britton
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Hua Rong Lu
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - Jutta Rohrbacher
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - An N Hermans
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - David J Gallacher
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | | | - Alfonso Bueno-Orovio
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Blanca Rodriguez
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| |
Collapse
|
7
|
Colman MA, Pinali C, Trafford AW, Zhang H, Kitmitto A. A computational model of spatio-temporal cardiac intracellular calcium handling with realistic structure and spatial flux distribution from sarcoplasmic reticulum and t-tubule reconstructions. PLoS Comput Biol 2017; 13:e1005714. [PMID: 28859079 PMCID: PMC5597258 DOI: 10.1371/journal.pcbi.1005714] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/13/2017] [Accepted: 08/08/2017] [Indexed: 12/28/2022] Open
Abstract
Intracellular calcium cycling is a vital component of cardiac excitation-contraction coupling. The key structures responsible for controlling calcium dynamics are the cell membrane (comprising the surface sarcolemma and transverse-tubules), the intracellular calcium store (the sarcoplasmic reticulum), and the co-localisation of these two structures to form dyads within which calcium-induced-calcium-release occurs. The organisation of these structures tightly controls intracellular calcium dynamics. In this study, we present a computational model of intracellular calcium cycling in three-dimensions (3-D), which incorporates high resolution reconstructions of these key regulatory structures, attained through imaging of tissue taken from the sheep left ventricle using serial block face scanning electron microscopy. An approach was developed to model the sarcoplasmic reticulum structure at the whole-cell scale, by reducing its full 3-D structure to a 3-D network of one-dimensional strands. The model reproduces intracellular calcium dynamics during control pacing and reveals the high-resolution 3-D spatial structure of calcium gradients and intracellular fluxes in both the cytoplasm and sarcoplasmic reticulum. We also demonstrated the capability of the model to reproduce potentially pro-arrhythmic dynamics under perturbed conditions, pertaining to calcium-transient alternans and spontaneous release events. Comparison with idealised cell models emphasised the importance of structure in determining calcium gradients and controlling the spatial dynamics associated with calcium-transient alternans, wherein the probabilistic nature of dyad activation and recruitment was constrained. The model was further used to highlight the criticality in calcium spark propagation in relation to inter-dyad distances. The model presented provides a powerful tool for future investigation of structure-function relationships underlying physiological and pathophysiological intracellular calcium handling phenomena at the whole-cell. The approach allows for the first time direct integration of high-resolution images of 3-D intracellular structures with models of calcium cycling, presenting the possibility to directly assess the functional impact of structural remodelling at the cellular scale. The organisation of the membrane and sub-cellular structures of cells in the heart closely controls the coupling between its electrical and mechanical function. Computational models of the cellular calcium handling system, which is responsible for this electro-mechanical coupling, have been developed in recent years to study underlying structure-function relationships. Previous models have been largely idealised in structure; we present a new model which incorporates experimental data describing the high-resolution organisation of the primary structures involved in calcium dynamics. Significantly, the structure of the intracellular calcium store is modelled for the first time. The model is shown to reproduce calcium dynamics in control cells in both normal and abnormal conditions, demonstrating its suitability for future investigation of structure-function relationships. Thus, the model presented provides a powerful tool for the direct integration of experimentally acquired structural data in healthy and diseased cells and assessment of the role of structure in regulating normal and abnormal calcium dynamics.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | - Christian Pinali
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew W. Trafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Winslow RL, Walker MA, Greenstein JL. Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:37-67. [PMID: 26562359 DOI: 10.1002/wsbm.1322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
Calcium (Ca(2+)) plays many important regulatory roles in cardiac muscle cells. In the initial phase of the action potential, influx of Ca(2+) through sarcolemmal voltage-gated L-type Ca(2+) channels (LCCs) acts as a feed-forward signal that triggers a large release of Ca(2+) from the junctional sarcoplasmic reticulum (SR). This Ca(2+) drives heart muscle contraction and pumping of blood in a process known as excitation-contraction coupling (ECC). Triggered and released Ca(2+) also feed back to inactivate LCCs, attenuating the triggered Ca(2+) signal once release has been achieved. The process of ECC consumes large amounts of ATP. It is now clear that in a process known as excitation-energetics coupling, Ca(2+) signals exert beat-to-beat regulation of mitochondrial ATP production that closely couples energy production with demand. This occurs through transport of Ca(2+) into mitochondria, where it regulates enzymes of the tricarboxylic acid cycle. In excitation-signaling coupling, Ca(2+) activates a number of signaling pathways in a feed-forward manner. Through effects on their target proteins, these interconnected pathways regulate Ca(2+) signals in complex ways to control electrical excitability and contractility of heart muscle. In a process known as excitation-transcription coupling, Ca(2+) acting primarily through signal transduction pathways also regulates the process of gene transcription. Because of these diverse and complex roles, experimentally based mechanistic computational models are proving to be very useful for understanding Ca(2+) signaling in the cardiac myocyte.
Collapse
Affiliation(s)
- Raimond L Winslow
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Mark A Walker
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Joseph L Greenstein
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
9
|
Abstract
: We used the isolated working rat model to evaluate the effect of therapeutic concentrations (5-10 μM) of ranolazine on contractile performance, oxygen consumption, irreversible ischemic injury, and sarcoplasmic reticulum (SR) function. Ischemic injury was induced by 30 minutes of global ischemia followed by 120 minutes of Langendorff reperfusion and evaluated on the basis of triphenyltetrazolium chloride staining. SR function was determined on the basis of [H]-ryanodine binding, the kinetics of calcium-induced calcium release, measured by quick filtration technique, and oxalate-supported calcium uptake. In working hearts, ranolazine significantly reduced oxygen consumption (P = 0.031), in the absence of significant changes in contractile performance, and decreased irreversible ischemic injury (P = 0.011), if administered either before ischemia-reperfusion (25.4% ± 4.7% vs. 42.7% ± 6.0%) or only at the time of reperfusion (20.2% ± 5.2% vs. 43.7% ± 9.9%). In SR experiments, treatment with ranolazine determined a significant reduction in [H]-ryanodine binding (P = 0.029), because of decreased binding site density (369 ± 9 vs. 405 ± 12 fmol/mg), and in the kinetics of SR calcium release (P = 0.011), whose rate constant was decreased, whereas active calcium uptake was not affected. Ranolazine effectiveness at reperfusion and its ability to module SR calcium release suggest that this drug might be particularly useful to induce cardioprotection during coronary revascularization interventions, although the relevance of the effects on calcium homeostasis remains to be determined.
Collapse
|
10
|
Boyman L, Chikando AC, Williams GSB, Khairallah RJ, Kettlewell S, Ward CW, Smith GL, Kao JPY, Lederer WJ. Calcium movement in cardiac mitochondria. Biophys J 2015; 107:1289-301. [PMID: 25229137 DOI: 10.1016/j.bpj.2014.07.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022] Open
Abstract
Existing theory suggests that mitochondria act as significant, dynamic buffers of cytosolic calcium ([Ca(2+)]i) in heart. These buffers can remove up to one-third of the Ca(2+) that enters the cytosol during the [Ca(2+)]i transients that underlie contractions. However, few quantitative experiments have been presented to test this hypothesis. Here, we investigate the influence of Ca(2+) movement across the inner mitochondrial membrane during both subcellular and global cellular cytosolic Ca(2+) signals (i.e., Ca(2+) sparks and [Ca(2+)]i transients, respectively) in isolated rat cardiomyocytes. By rapidly turning off the mitochondria using depolarization of the inner mitochondrial membrane potential (ΔΨm), the role of the mitochondria in buffering cytosolic Ca(2+) signals was investigated. We show here that rapid loss of ΔΨm leads to no significant changes in cytosolic Ca(2+) signals. Second, we make direct measurements of mitochondrial [Ca(2+)] ([Ca(2+)]m) using a mitochondrially targeted Ca(2+) probe (MityCam) and these data suggest that [Ca(2+)]m is near the [Ca(2+)]i level (∼100 nM) under quiescent conditions. These two findings indicate that although the mitochondrial matrix is fully buffer-capable under quiescent conditions, it does not function as a significant dynamic buffer during physiological Ca(2+) signaling. Finally, quantitative analysis using a computational model of mitochondrial Ca(2+) cycling suggests that mitochondrial Ca(2+) uptake would need to be at least ∼100-fold greater than the current estimates of Ca(2+) influx for mitochondria to influence measurably cytosolic [Ca(2+)] signals under physiological conditions. Combined, these experiments and computational investigations show that mitochondrial Ca(2+) uptake does not significantly alter cytosolic Ca(2+) signals under normal conditions and indicates that mitochondria do not act as important dynamic buffers of [Ca(2+)]i under physiological conditions in heart.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Aristide C Chikando
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland; School of Systems Biology, George Mason University, Fairfax, Virginia
| | - Ramzi J Khairallah
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; University of Maryland School of Nursing, Baltimore, Maryland; Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Sarah Kettlewell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Christopher W Ward
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; University of Maryland School of Nursing, Baltimore, Maryland
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Li Q, Su D, O'Rourke B, Pogwizd SM, Zhou L. Mitochondria-derived ROS bursts disturb Ca²⁺ cycling and induce abnormal automaticity in guinea pig cardiomyocytes: a theoretical study. Am J Physiol Heart Circ Physiol 2014; 308:H623-36. [PMID: 25539710 DOI: 10.1152/ajpheart.00493.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are in close proximity to the redox-sensitive sarcoplasmic reticulum (SR) Ca(2+) release [ryanodine receptors (RyRs)] and uptake [Ca(2+)-ATPase (SERCA)] channels. Thus mitochondria-derived reactive oxygen species (mdROS) could play a crucial role in modulating Ca(2+) cycling in the cardiomyocytes. However, whether mdROS-mediated Ca(2+) dysregulation translates to abnormal electrical activities under pathological conditions, and if yes what are the underlying ionic mechanisms, have not been fully elucidated. We hypothesize that pathological mdROS induce Ca(2+) elevation by modulating SR Ca(2+) handling, which activates other Ca(2+) channels and further exacerbates Ca(2+) dysregulation, leading to abnormal action potential (AP). We also propose that the morphologies of elicited AP abnormality rely on the time of mdROS induction, interaction between mitochondria and SR, and intensity of mitochondrial oxidative stress. To test the hypotheses, we developed a multiscale guinea pig cardiomyocyte model that incorporates excitation-contraction coupling, local Ca(2+) control, mitochondrial energetics, and ROS-induced ROS release. This model, for the first time, includes mitochondria-SR microdomain and modulations of mdROS on RyR and SERCA activities. Simulations show that mdROS bursts increase cytosolic Ca(2+) by stimulating RyRs and inhibiting SERCA, which activates the Na(+)/Ca(2+) exchanger, Ca(2+)-sensitive nonspecific cationic channels, and Ca(2+)-induced Ca(2+) release, eliciting abnormal AP. The morphologies of AP abnormality are largely influenced by the time interval among mdROS burst induction and AP firing, dosage and diffusion of mdROS, and SR-mitochondria distance. This study defines the role of mdROS in Ca(2+) overload-mediated cardiac arrhythmogenesis and underscores the importance of considering mitochondrial targets in designing new antiarrhythmic therapies.
Collapse
Affiliation(s)
- Qince Li
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Cardiac Rhythm Management Laboratory, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Di Su
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Cardiac Rhythm Management Laboratory, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Steven M Pogwizd
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Cardiac Rhythm Management Laboratory, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lufang Zhou
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Cardiac Rhythm Management Laboratory, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
12
|
Winslow RL. Systems biology approaches to understanding the cause and treatment of heart, lung, blood, and sleep disorders. Front Physiol 2014; 5:107. [PMID: 24734021 PMCID: PMC3975123 DOI: 10.3389/fphys.2014.00107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/03/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Raimond L Winslow
- Biomedical Engineering, School of Medicine, Institute for Computational Medicine, The Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
13
|
Li Q, Pogwizd SM, Prabhu SD, Zhou L. Inhibiting Na+/K+ ATPase can impair mitochondrial energetics and induce abnormal Ca2+ cycling and automaticity in guinea pig cardiomyocytes. PLoS One 2014; 9:e93928. [PMID: 24722410 PMCID: PMC3983106 DOI: 10.1371/journal.pone.0093928] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/11/2014] [Indexed: 12/22/2022] Open
Abstract
Cardiac glycosides have been used for the treatment of heart failure because of their capabilities of inhibiting Na+/K+ ATPase (NKA), which raises [Na+]i and attenuates Ca2+ extrusion via the Na+/Ca2+ exchanger (NCX), causing [Ca2+]i elevation. The resulting [Ca2+]i accumulation further enhances Ca2+-induced Ca2+ release, generating the positive inotropic effect. However, cardiac glycosides have some toxic and side effects such as arrhythmogenesis, confining their extensive clinical applications. The mechanisms underlying the proarrhythmic effect of glycosides are not fully understood. Here we investigated the mechanisms by which glycosides could cause cardiac arrhythmias via impairing mitochondrial energetics using an integrative computational cardiomyocyte model. In the simulations, the effect of glycosides was mimicked by blocking NKA activity. Results showed that inhibiting NKA not only impaired mitochondrial Ca2+ retention (thus suppressed reactive oxygen species (ROS) scavenging) but also enhanced oxidative phosphorylation (thus increased ROS production) during the transition of increasing workload, causing oxidative stress. Moreover, concurrent blocking of mitochondrial Na+/Ca2+ exchanger, but not enhancing of Ca2+ uniporter, alleviated the adverse effects of NKA inhibition. Intriguingly, NKA inhibition elicited Ca2+ transient and action potential alternans under more stressed conditions such as severe ATP depletion, augmenting its proarrhythmic effect. This computational study provides new insights into the mechanisms underlying cardiac glycoside-induced arrhythmogenesis. The findings suggest that targeting both ion handling and mitochondria could be a very promising strategy to develop new glycoside-based therapies in the treatment of heart failure.
Collapse
Affiliation(s)
- Qince Li
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven M. Pogwizd
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sumanth D. Prabhu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lufang Zhou
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
14
|
Effects of wenxin keli on the action potential and L-type calcium current in rats with transverse aortic constriction-induced heart failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:572078. [PMID: 24319478 PMCID: PMC3844239 DOI: 10.1155/2013/572078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022]
Abstract
Objective. We investigated the effects of WXKL on the action potential (AP) and the L-type calcium current (ICa-L) in normal and hypertrophied myocytes. Methods. Forty male rats were randomly divided into two groups: the control group and the transverse aortic constriction- (TAC-) induced heart failure group. Cardiac hypertrophy was induced by TAC surgery, whereas the control group underwent a sham operation. Eight weeks after surgery, single cardiac ventricular myocytes were isolated from the hearts of the rats. The APs and ICa-L were recorded using the whole-cell patch clamp technique. Results. The action potential duration (APD) of the TAC group was prolonged compared with the control group and was markedly shortened by WXKL treatment in a dose-dependent manner. The current densities of the ICa-L in the TAC group treated with 5 g/L WXKL were significantly decreased compared with the TAC group. We also determined the effect of WXKL on the gating mechanism of the ICa-L in the TAC group. We found that WXKL decreased the ICa-L by accelerating the inactivation of the channels and delaying the recovery time from inactivation. Conclusions. The results suggest that WXKL affects the AP and blocked the ICa-L, which ultimately resulted in the treatment of arrhythmias.
Collapse
|
15
|
Abstract
Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.
Collapse
|
16
|
Boyman L, Williams GSB, Khananshvili D, Sekler I, Lederer WJ. NCLX: the mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 2013; 59:205-13. [PMID: 23538132 PMCID: PMC3951392 DOI: 10.1016/j.yjmcc.2013.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/15/2013] [Indexed: 11/18/2022]
Abstract
The free Ca(2+) concentration within the mitochondrial matrix ([Ca(2+)]m) regulates the rate of ATP production and other [Ca(2+)]m sensitive processes. It is set by the balance between total Ca(2+) influx (through the mitochondrial Ca(2+) uniporter (MCU) and any other influx pathways) and the total Ca(2+) efflux (by the mitochondrial Na(+)/Ca(2+) exchanger and any other efflux pathways). Here we review and analyze the experimental evidence reported over the past 40years which suggest that in the heart and many other mammalian tissues a putative Na(+)/Ca(2+) exchanger is the major pathway for Ca(2+) efflux from the mitochondrial matrix. We discuss those reports with respect to a recent discovery that the protein product of the human FLJ22233 gene mediates such Na(+)/Ca(2+) exchange across the mitochondrial inner membrane. Among its many functional similarities to other Na(+)/Ca(2+) exchanger proteins is a unique feature: it efficiently mediates Li(+)/Ca(2+) exchange (as well as Na(+)/Ca(2+) exchange) and was therefore named NCLX. The discovery of NCLX provides both the identity of a novel protein and new molecular means of studying various unresolved quantitative aspects of mitochondrial Ca(2+) movement out of the matrix. Quantitative and qualitative features of NCLX are discussed as is the controversy regarding the stoichiometry of the NCLX Na(+)/Ca(2+) exchange, the electrogenicity of NCLX, the [Na(+)]i dependency of NCLX and the magnitude of NCLX Ca(2+) efflux. Metabolic features attributable to NCLX and the physiological implication of the Ca(2+) efflux rate via NCLX during systole and diastole are also briefly discussed.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - George S. B. Williams
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- School of Systems Biology, College of Science, George Mason University, Manassas, VA 20110
| | - Daniel Khananshvili
- Sackler School of Medicine, Department of Physiology and Pharmacology, Tel-Aviv University, Ramat-Aviv 69978, Israel
| | - Israel Sekler
- Goldman Medical School, Dept. Biology & Neurobiology, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - W. J. Lederer
- Center for Biomedical Engineering and Technology and Dept. Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|