1
|
Thomas A, Nair A, Chakraborty S, Jayarajan RO, Joseph J, Ajayaghosh A. A Pyridinium fluorophore for the detection of zinc ions under autophagy conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113006. [PMID: 39128425 DOI: 10.1016/j.jphotobiol.2024.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Molecular probes for sensing and imaging of various analytes and biological specimens are of great importance in clinical diagnostics, therapy, and disease management. Since the cellular concentration of free Zn2+ varies from nanomolar to micromolar range during cellular processes and the high affinity Zn2+ imaging probes tend to saturate at lower concentrations of free Zn2+, fluorescence based probes with moderate binding affinity are desirable in distinguishing the occurrence of higher zinc concentrations in the cells. Herein, we report a new, pentacyclic pyridinium based probe, PYD-PA, having a pendant N,N-di(pyridin-2-ylmethyl)amine (DPA) for Zn2+ detection in the cellular environment. The designed probe is soluble in water and serves as a mitochondria targeting unit, whereas the pendent DPA acts as the coordination site for Zn2+. PYD-PA displayed a threefold enhancement in fluorescence intensity upon Zn2+ binding with a 1:1 binding stoichiometry. Further, the probe showed a selective response to Zn2+ over other biologically relevant metal ions with a moderate binding affinity (Ka = 6.29 × 104 M-1), good photostability, pH insensitivity, and low cytotoxicity. The demonstration of bioimaging in SK-BR-3 breast cancer cell lines confirmed the intracellular Zn ion sensing ability of the probe. The probe was successfully applied for real time monitoring of the fluctuation of intracellular free zinc ions during autophagy conditions, demonstrating its potential for cellular imaging of Zn2+ at higher intracellular concentrations.
Collapse
Affiliation(s)
- Anagha Thomas
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anaga Nair
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip Chakraborty
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roopasree O Jayarajan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Joshy Joseph
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Schubert E, Mun K, Larsson M, Panagiotou S, Idevall-Hagren O, Svensson C, Punga T. Complex regulation of mitochondrial signaling by human adenovirus minor capsid protein VI. J Virol 2024; 98:e0035624. [PMID: 38837380 PMCID: PMC11265209 DOI: 10.1128/jvi.00356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
The controlled release of mitochondrial content into the cytosol has emerged as one of the key steps in mitochondrial signaling. In particular, the release of mitochondrial DNA (mtDNA) into the cytosol has been shown to activate interferon beta (IFN-β) gene expression to execute the innate immune response. In this report, we show that human adenovirus type 5 (HAdV-C5) infection induces the release of mtDNA into the cytosol. The release of mtDNA is mediated by the viral minor capsid protein VI (pVI), which localizes to mitochondria. The presence of the mitochondrial membrane proteins Bak and Bax are needed for the mtDNA release, whereas the viral E1B-19K protein blocked pVI-mediated mtDNA release. Surprisingly, the pVI-mediated mtDNA release did not increase but inhibited the IFN-β gene expression. Notably, the pVI expression caused mitochondrial leakage of the HSP60 protein. The latter prevented specific phosphorylation of the interferon regulatory factor 3 (IRF3) needed for IFN-β gene expression. Overall, we assign a new mitochondria and IFN-β signaling-modulating function to the HAdV-C5 minor capsid protein VI. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, including conjunctivitis and the common cold. HAdVs need to interfere with multiple cellular signaling pathways during the infection to gain control over the host cell. In this study, we identified human adenovirus type 5 (HAdV-C5) minor capsid protein VI as a factor modulating mitochondrial membrane integrity and mitochondrial signaling. We show that pVI-altered mitochondrial signaling impedes the cell's innate immune response, which may benefit HAdV growth. Overall, our study provides new detailed insights into the HAdV-mitochondria interactions and signaling. This knowledge is helpful when developing new anti-viral treatments against pathogenic HAdV infections and improving HAdV-based therapeutics.
Collapse
Affiliation(s)
- Erik Schubert
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kwangchol Mun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Aputen AD, Elias MG, Gilbert J, Sakoff JA, Gordon CP, Scott KF, Aldrich-Wright JR. Platinum(IV) Prodrugs Incorporating an Indole-Based Derivative, 5-Benzyloxyindole-3-Acetic Acid in the Axial Position Exhibit Prominent Anticancer Activity. Int J Mol Sci 2024; 25:2181. [PMID: 38396859 PMCID: PMC10888562 DOI: 10.3390/ijms25042181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Kinetically inert platinum(IV) complexes are a chemical strategy to overcome the impediments of standard platinum(II) antineoplastic drugs like cisplatin, oxaliplatin and carboplatin. In this study, we reported the syntheses and structural characterisation of three platinum(IV) complexes that incorporate 5-benzyloxyindole-3-acetic acid, a bioactive ligand that integrates an indole pharmacophore. The purity and chemical structures of the resultant complexes, P-5B3A, 5-5B3A and 56-5B3A were confirmed via spectroscopic means. The complexes were evaluated for anticancer activity against multiple human cell lines. All complexes proved to be considerably more active than cisplatin, oxaliplatin and carboplatin in most cell lines tested. Remarkably, 56-5B3A demonstrated the greatest anticancer activity, displaying GI50 values between 1.2 and 150 nM. Enhanced production of reactive oxygen species paired with the decline in mitochondrial activity as well as inhibition of histone deacetylase were also demonstrated by the complexes in HT29 colon cells.
Collapse
Affiliation(s)
- Angelico D. Aputen
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Maria George Elias
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
- Ingham Institute, Sydney, NSW 2170, Australia;
| | - Jayne Gilbert
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Jennette A. Sakoff
- Calvary Mater Newcastle Hospital, Newcastle, NSW 2298, Australia; (J.G.); (J.A.S.)
| | - Christopher P. Gordon
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| | - Kieran F. Scott
- Ingham Institute, Sydney, NSW 2170, Australia;
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Janice R. Aldrich-Wright
- School of Science, Western Sydney University, Sydney, NSW 2751, Australia; (A.D.A.); (M.G.E.); (C.P.G.)
| |
Collapse
|
4
|
Mostafavi S, Eskandari N. Mitochondrion: Main organelle in orchestrating cancer escape from chemotherapy. Cancer Rep (Hoboken) 2024; 7:e1942. [PMID: 38151790 PMCID: PMC10849933 DOI: 10.1002/cnr2.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Chemoresistance is a challenging barrier to cancer therapy, and in this context, the role of mitochondria is significant. We put emphasis on key biological characteristics of mitochondria, contributing to tumor escape from various therapies, to find the "Achilles' Heel" of cancer cells for future drug design. RECENT FINDINGS The mitochondrion is a dynamic organelle, and its existence is important for tumor growth. Its metabolites also cooperate with cell signaling in tumor proliferation and drug resistance. CONCLUSION Biological characteristics of this organelle, such as redox balance, DNA depletion, and metabolic reprogramming, provide flexibility to cancer cells to cope with therapy-induced stress.
Collapse
Affiliation(s)
- Samaneh Mostafavi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Nahid Eskandari
- Department of Immunology, Faculty of MedicineIsfahan University of Medical ScienceIsfahanIran
| |
Collapse
|
5
|
Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. Int J Mol Sci 2023; 24:ijms24054482. [PMID: 36901912 PMCID: PMC10003184 DOI: 10.3390/ijms24054482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/12/2023] Open
Abstract
Prostate cancer (PCa) affects millions of men worldwide and is a major cause of cancer-related mortality. Race-associated PCa health disparities are also common and are of both social and clinical concern. Most PCa is diagnosed early due to PSA-based screening, but it fails to discern between indolent and aggressive PCa. Androgen or androgen receptor-targeted therapies are standard care of treatment for locally advanced and metastatic disease, but therapy resistance is common. Mitochondria, the powerhouse of cells, are unique subcellular organelles that have their own genome. A large majority of mitochondrial proteins are, however, nuclear-encoded and imported after cytoplasmic translation. Mitochondrial alterations are common in cancer, including PCa, leading to their altered functions. Aberrant mitochondrial function affects nuclear gene expression in retrograde signaling and promotes tumor-supportive stromal remodeling. In this article, we discuss mitochondrial alterations that have been reported in PCa and review the literature related to their roles in PCa pathobiology, therapy resistance, and racial disparities. We also discuss the translational potential of mitochondrial alterations as prognostic biomarkers and as effective targets for PCa therapy.
Collapse
|
6
|
Jedrzejewska A, Braczko A, Kawecka A, Hellmann M, Siondalski P, Slominska E, Kutryb-Zajac B, Yacoub MH, Smolenski RT. Novel Targets for a Combination of Mechanical Unloading with Pharmacotherapy in Advanced Heart Failure. Int J Mol Sci 2022; 23:9886. [PMID: 36077285 PMCID: PMC9456495 DOI: 10.3390/ijms23179886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022] Open
Abstract
LVAD therapy is an effective rescue in acute and especially chronic cardiac failure. In several scenarios, it provides a platform for regeneration and sustained myocardial recovery. While unloading seems to be a key element, pharmacotherapy may provide powerful tools to enhance effective cardiac regeneration. The synergy between LVAD support and medical agents may ensure satisfying outcomes on cardiomyocyte recovery followed by improved quality and quantity of patient life. This review summarizes the previous and contemporary strategies for combining LVAD with pharmacotherapy and proposes new therapeutic targets. Regulation of metabolic pathways, enhancing mitochondrial biogenesis and function, immunomodulating treatment, and stem-cell therapies represent therapeutic areas that require further experimental and clinical studies on their effectiveness in combination with mechanical unloading.
Collapse
Affiliation(s)
- Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Piotr Siondalski
- Department of Cardiac Surgery, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland
| | - Ewa Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Magdi H. Yacoub
- Heart Science Centre, Imperial College of London at Harefield Hospital, Harefield UB9 6JH, UK
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| |
Collapse
|
7
|
Buchke S, Sharma M, Bora A, Relekar M, Bhanu P, Kumar J. Mitochondria-Targeted, Nanoparticle-Based Drug-Delivery Systems: Therapeutics for Mitochondrial Disorders. Life (Basel) 2022; 12:657. [PMID: 35629325 PMCID: PMC9144057 DOI: 10.3390/life12050657] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Apart from ATP generation, mitochondria are involved in a wide range of functions, making them one of the most prominent organelles of the human cell. Mitochondrial dysfunction is involved in the pathophysiology of several diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, and metabolic disorders. This makes it a target for a variety of therapeutics for the diagnosis and treatment of these diseases. The use of nanoparticles to target mitochondria has significant importance in modern times because they provide promising ways to deliver drug payloads to the mitochondria by overcoming challenges, such as low solubility and poor bioavailability, and also resolve the issues of the poor biodistribution of drugs and pharmacokinetics with increased specificity. This review assesses nanoparticle-based drug-delivery systems, such as liposomes, DQAsome, MITO-Porters, micelles, polymeric and metal nanocarriers, as well as quantum dots, as mitochondria-targeted strategies and discusses them as a treatment for mitochondrial disorders.
Collapse
Affiliation(s)
- Sakshi Buchke
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Dist, Tonk 304022, India; (S.B.); (M.S.)
| | - Muskan Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Dist, Tonk 304022, India; (S.B.); (M.S.)
| | - Anusuiya Bora
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore Campus, Tiruvalam Road, Katpadi, Vellore 632014, India;
| | - Maitrali Relekar
- KEM Hospital Research Centre, KEM Hospital, Rasta Peth, Pune 411011, India;
| | - Piyush Bhanu
- Xome Life Sciences, Bangalore Bioinnovation Centre (BBC), Helix Biotech Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Jitendra Kumar
- Bangalore Bioinnovation Centre (BBC), Helix Biotech Park, Electronics City Phase 1, Bengaluru 560100, India
| |
Collapse
|
8
|
Delcourt M, Delsinne V, Colet JM, Declèves AE, Tagliatti V. Investigation of Mitochondrial Adaptations to Modulation of Carbohydrate Supply during Adipogenesis of 3T3-L1 Cells by Targeted 1H-NMR Spectroscopy. Biomolecules 2021; 11:biom11050662. [PMID: 33947124 PMCID: PMC8146760 DOI: 10.3390/biom11050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: White adipose tissue (WAT) is a dynamic and plastic tissue showing high sensitivity to carbohydrate supply. In such a context, the WAT may accordingly modulate its mitochondrial metabolic activity. We previously demonstrated that a partial replacement of glucose by galactose in a culture medium of 3T3-L1 cells leads to a poorer adipogenic yield and improved global mitochondrial health. In the present study, we investigate key mitochondrial metabolic actors reflecting mitochondrial adaptation in response to different carbohydrate supplies. (2) Methods: The metabolome of 3T3-L1 cells was investigated during the differentiation process using different glucose/galactose ratios and by a targeted approach using 1H-NMR (Proton nuclear magnetic resonance) spectroscopy; (3) Results: Our findings indicate a reduction of adipogenic and metabolic overload markers under the low glucose/galactose condition. In addition, a remodeling of the mitochondrial function triggers the secretion of metabolites with signaling and systemic energetical homeostasis functions. Finally, this study also sheds light on a new way to consider the mitochondrial metabolic function by considering noncarbohydrates related pathways reflecting both healthier cellular and mitochondrial adaptation mechanisms; (4) Conclusions: Different carbohydrates supplies induce deep mitochondrial metabolic and function adaptations leading to overall adipocytes function and profile remodeling during the adipogenesis.
Collapse
Affiliation(s)
- Manon Delcourt
- Metabolic and Molecular Biochemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium;
- Human Biology and Toxicology Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium; (V.D.); (J.-M.C.); (V.T.)
- Correspondence: ; Tel.: +32-(0)65-373506
| | - Virginie Delsinne
- Human Biology and Toxicology Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium; (V.D.); (J.-M.C.); (V.T.)
| | - Jean-Marie Colet
- Human Biology and Toxicology Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium; (V.D.); (J.-M.C.); (V.T.)
| | - Anne-Emilie Declèves
- Metabolic and Molecular Biochemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium;
| | - Vanessa Tagliatti
- Human Biology and Toxicology Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium; (V.D.); (J.-M.C.); (V.T.)
| |
Collapse
|
9
|
Dave DT, Patel BM. Mitochondrial Metabolism in Cancer Cachexia: Novel Drug Target. Curr Drug Metab 2020; 20:1141-1153. [PMID: 31418657 DOI: 10.2174/1389200220666190816162658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cancer cachexia is a metabolic syndrome prevalent in the majority of the advanced cancers and is associated with complications such as anorexia, early satiety, weakness, anaemia, and edema, thereby reducing performance and impairing quality of life. Skeletal muscle wasting is a characteristic feature of cancer-cachexia and mitochondria is responsible for regulating total protein turnover in skeletal muscle tissue. METHODS We carried out exhaustive search for cancer cachexia and role of mitochondria in the same in various databases. All the relevant articles were gathered and the pertinent information was extracted out and compiled which was further structured into different sub-sections. RESULTS Various findings on the mitochondrial alterations in connection to its disturbed normal physiology in various models of cancer-cachexia have been recently reported, suggesting a significant role of the organelle in the pathogenesis of the complications involved in the disorder. It has also been reported that reduced mitochondrial oxidative capacity is due to reduced mitochondrial biogenesis as well as altered balance between fusion and fission protein activities. Moreover, autophagy in mitochondria (termed as mitophagy) is reported to play an important role in cancer cachexia. CONCLUSION The present review aims to put forth the changes occurring in mitochondria and hence explore possible targets which can be exploited in cancer-induced cachexia for treatment of such a debilitating condition.
Collapse
Affiliation(s)
- Dhwani T Dave
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382481, Gujarat, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
10
|
Enhanced Subcellular Trafficking of Resveratrol Using Mitochondriotropic Liposomes in Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11080423. [PMID: 31434345 PMCID: PMC6722595 DOI: 10.3390/pharmaceutics11080423] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are membrane-enclosed organelles present in most eukaryotic cells, described as “power houses of the cell”. The mitochondria can be a target for inducing cancer cell death and for developing strategies to bypass multi drug resistance (MDR) mechanisms. 4-Carboxybutyl triphenylphosphonium bromide-polyethylene glycol-distearoylphosphatidylethanolamine (TPP-DSPE-PEG) and dequalinium-polyethylene glycol-distearoylphosphatidylethanolamine (DQA-DSPE-PEG) were synthesized as mitochondriotropic molecules. Mitochondria-targeting liposomes carrying resveratrol were constructed by modifying the liposome’s surface with TPP-PEG or DQA-PEG, resulting in TLS (Res) and DLS (Res), respectively, with the aim to obtain longer blood circulation and enhanced permeability and retention (EPR). Both TLS (Res) and DLS (Res) showed dimensions of approximately 120 nm and a slightly positive zeta potential. The enhanced cellular uptake and selective accumulation of TLS (Res) and DLS (Res) into the mitochondria were demonstrated by behavioral observation of rhodamine-labeled TLS or DLS, using confocal microscopy, and by resveratrol quantification in the intracellular organelle, using LC–MS/MS. Furthermore, TLS (Res) and DLS (Res) induced cytotoxicity of cancer cells by generating reactive oxygen species (ROS) and by dissipating the mitochondrial membrane potential. Our results demonstrated that TLS (Res) and DLS (Res) could provide a potential strategy to treat cancers by mitochondrial targeting delivery of therapeutics and stimulation of the mitochondrial signaling pathway.
Collapse
|
11
|
Anupama N, Sindhu G, Raghu KG. Significance of mitochondria on cardiometabolic syndromes. Fundam Clin Pharmacol 2018; 32:346-356. [DOI: 10.1111/fcp.12359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/12/2018] [Accepted: 02/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Nair Anupama
- Agroprocessing and Technology Division; CSIR -National Institute for Interdisciplinary Science and Technology (NIIST); Industrial estate P.O., Pappanamcode Thiruvananthapuram 695019 Kerala India
| | - Ganapathy Sindhu
- Agroprocessing and Technology Division; CSIR -National Institute for Interdisciplinary Science and Technology (NIIST); Industrial estate P.O., Pappanamcode Thiruvananthapuram 695019 Kerala India
| | - Kozhiparambil Gopalan Raghu
- Agroprocessing and Technology Division; CSIR -National Institute for Interdisciplinary Science and Technology (NIIST); Industrial estate P.O., Pappanamcode Thiruvananthapuram 695019 Kerala India
| |
Collapse
|
12
|
Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell 2016; 8:25-38. [PMID: 27757847 PMCID: PMC5233613 DOI: 10.1007/s13238-016-0328-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 01/09/2023] Open
Abstract
Mitophagy is an essential intracellular process that eliminates dysfunctional mitochondria and maintains cellular homeostasis. Mitophagy is regulated by the post-translational modification of mitophagy receptors. Fun14 domain-containing protein 1 (FUNDC1) was reported to be a new receptor for hypoxia-induced mitophagy in mammalian cells and interact with microtubule-associated protein light chain 3 beta (LC3B) through its LC3 interaction region (LIR). Moreover, the phosphorylation modification of FUNDC1 affects its binding affinity for LC3B and regulates selective mitophagy. However, the structural basis of this regulation mechanism remains unclear. Here, we present the crystal structure of LC3B in complex with a FUNDC1 LIR peptide phosphorylated at Ser17 (pS17), demonstrating the key residues of LC3B for the specific recognition of the phosphorylated or dephosphorylated FUNDC1. Intriguingly, the side chain of LC3B Lys49 shifts remarkably and forms a hydrogen bond and electrostatic interaction with the phosphate group of FUNDC1 pS17. Alternatively, phosphorylated Tyr18 (pY18) and Ser13 (pS13) in FUNDC1 significantly obstruct their interaction with the hydrophobic pocket and Arg10 of LC3B, respectively. Structural observations are further validated by mutation and isothermal titration calorimetry (ITC) assays. Therefore, our structural and biochemical results reveal a working model for the specific recognition of FUNDC1 by LC3B and imply that the reversible phosphorylation modification of mitophagy receptors may be a switch for selective mitophagy.
Collapse
|