1
|
Rotermund A, Brandt S, Staege MS, Luetzkendorf J, Mueller LP, Mueller T. Differential CMS-Related Expression of Cell Surface Carbonic Anhydrases IX and XII in Colorectal Cancer Models-Implications for Therapy. Int J Mol Sci 2023; 24:ijms24065797. [PMID: 36982873 PMCID: PMC10056265 DOI: 10.3390/ijms24065797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Tumor-associated carbonic anhydrases IX (CAIX) and XII (CAXII) have long been in the spotlight as potential new targets for anti-cancer therapy. Recently, CAIX/CAXII specific inhibitor SLC-0111 has passed clinical phase I study and showed differential response among patients with colorectal cancer (CRC). CRC can be classified into four different consensus molecular subgroups (CMS) showing unique expression patterns and molecular traits. We questioned whether there is a CMS-related CAIX/CAXII expression pattern in CRC predicting response. As such, we analyzed transcriptomic data of tumor samples for CA9/CA12 expression using Cancertool. Protein expression pattern was examined in preclinical models comprising cell lines, spheroids and xenograft tumors representing the CMS groups. Impact of CAIX/CAXII knockdown and SLC-0111 treatment was investigated in 2D and 3D cell culture. The transcriptomic data revealed a characteristic CMS-related CA9/CA12 expression pattern with pronounced co-expression of both CAs as a typical feature of CMS3 tumors. Protein expression in spheroid- and xenograft tumor tissue clearly differed, ranging from close to none (CMS1) to strong CAIX/CAXII co-expression in CMS3 models (HT29, LS174T). Accordingly, response to SLC-0111 analyzed in the spheroid model ranged from no (CMS1) to clear (CMS3), with moderate in CMS2 and mixed in CMS4. Furthermore, SLC-0111 positively affected impact of single and combined chemotherapeutic treatment of CMS3 spheroids. In addition, combined CAIX/CAXII knockdown and more effective treatment with SLC-0111 reduced clonogenic survival of CMS3 modelling single cells. In conclusion, the preclinical data support the clinical approach of targeted CAIX/CAXII inhibition by showing linkage of expression with response and suggest that patients with CMS3-classified tumors would most benefit from such treatment.
Collapse
Affiliation(s)
- Arne Rotermund
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Sarah Brandt
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Jana Luetzkendorf
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Lutz P Mueller
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Thomas Mueller
- Department of Internal Medicine IV (Hematology/Oncology), Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
2
|
Queen A, Bhutto HN, Yousuf M, Syed MA, Hassan MI. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin Cancer Biol 2022; 86:899-913. [PMID: 34998944 DOI: 10.1016/j.semcancer.2022.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
The primary physiological process of respiration produces carbon dioxide (CO2) that reacts with water molecules which subsequently liberates bicarbonate (HCO-3) and protons. Carbonic anhydrases (CAs) are the primary catalyst involved in this conversion. More than 16 isoforms of human CAs show organ or subcellular specific activity. Dysregulation of each CA is associated with multiple pathologies. Out of these members, the overexpression of membrane-bound carbonic anhydrase IX (CAIX) is associated explicitly with hypoxic tumors or various solid cancers. CAIX helps tumors deal with higher CO2 by sequestering it with bicarbonate ions and helping cancer cells to grow in a comparatively hypoxic or acidic environment, thus acting as a pH adaptation switch. CAIX-mediated adaptations in cancer cells include angiogenesis, metabolic alterations, tumor heterogeneity, drug resistance, and regulation of cancer-specific chemokines. This review comprehensively collects and describe the cancer-specific expression mechanism and role of CAIX in cancer growth, progression, heterogeneity, and its structural insight to develop future combinatorial targeted cancer therapies.
Collapse
Affiliation(s)
- Aarfa Queen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Humaira Naaz Bhutto
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
3
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
4
|
Becker HM, Deitmer JW. Proton Transport in Cancer Cells: The Role of Carbonic Anhydrases. Int J Mol Sci 2021; 22:ijms22063171. [PMID: 33804674 PMCID: PMC8003680 DOI: 10.3390/ijms22063171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3−-coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined “transport metabolon”. While transport metabolons built with HCO3−-coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.
Collapse
Affiliation(s)
- Holger M. Becker
- Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
5
|
Venkateswaran G, Dedhar S. Interplay of Carbonic Anhydrase IX With Amino Acid and Acid/Base Transporters in the Hypoxic Tumor Microenvironment. Front Cell Dev Biol 2020; 8:602668. [PMID: 33240897 PMCID: PMC7680889 DOI: 10.3389/fcell.2020.602668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023] Open
Abstract
Solid tumors are challenged with a hypoxic and nutrient-deprived microenvironment. Hence, hypoxic tumor cells coordinatively increase the expression of nutrient transporters and pH regulators to adapt and meet their bioenergetic and biosynthetic demands. Carbonic Anhydrase IX (CAIX) is a membrane-bound enzyme that plays a vital role in pH regulation in the tumor microenvironment (TME). Numerous studies have established the importance of CAIX in mediating tumor progression and metastasis. To understand the mechanism of CAIX in mediating tumor progression, we performed an unbiased proteomic screen to identify the potential interactors of CAIX in the TME using the proximity-dependent biotin identification (BioID) technique. In this review, we focus on the interactors from this BioID screen that are crucial for nutrient and metabolite transport in the TME. We discuss the role of transport metabolon comprising CAIX and bicarbonate transporters in regulating intra- and extracellular pH of the tumor. We also discuss the role of amino acid transporters that are high confidence interactors of CAIX, in optimizing favorable metabolic state for tumor progression, and give our perspective on the coordinative interplay of CAIX with the amino acid transporters in the hypoxic TME.
Collapse
Affiliation(s)
- Geetha Venkateswaran
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, The University of British Columbia, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, The University of British Columbia, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Becker HM, Deitmer JW. Transport Metabolons and Acid/Base Balance in Tumor Cells. Cancers (Basel) 2020; 12:cancers12040899. [PMID: 32272695 PMCID: PMC7226098 DOI: 10.3390/cancers12040899] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Solid tumors are metabolically highly active tissues, which produce large amounts of acid. The acid/base balance in tumor cells is regulated by the concerted interplay between a variety of membrane transporters and carbonic anhydrases (CAs), which cooperate to produce an alkaline intracellular, and an acidic extracellular, environment, in which cancer cells can outcompete their adjacent host cells. Many acid/base transporters form a structural and functional complex with CAs, coined "transport metabolon". Transport metabolons with bicarbonate transporters require the binding of CA to the transporter and CA enzymatic activity. In cancer cells, these bicarbonate transport metabolons have been attributed a role in pH regulation and cell migration. Another type of transport metabolon is formed between CAs and monocarboxylate transporters, which mediate proton-coupled lactate transport across the cell membrane. In this complex, CAs function as "proton antenna" for the transporter, which mediate the rapid exchange of protons between the transporter and the surroundings. These transport metabolons do not require CA catalytic activity, and support the rapid efflux of lactate and protons from hypoxic cancer cells to allow sustained glycolytic activity and cell proliferation. Due to their prominent role in tumor acid/base regulation and metabolism, transport metabolons might be promising drug targets for new approaches in cancer therapy.
Collapse
Affiliation(s)
- Holger M. Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany
- Correspondence:
| | - Joachim W. Deitmer
- Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;
| |
Collapse
|
7
|
Vergara D, Ravaioli S, Fonzi E, Adamo L, Damato M, Bravaccini S, Pirini F, Gaballo A, Barbano R, Pasculli B, Franck J, Fournier I, Salzet M, Maffia M. Carbonic Anhydrase XII Expression Is Modulated during Epithelial Mesenchymal Transition and Regulated through Protein Kinase C Signaling. Int J Mol Sci 2020; 21:ijms21030715. [PMID: 31979064 PMCID: PMC7037142 DOI: 10.3390/ijms21030715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023] Open
Abstract
Members of the carbonic anhydrase family are functionally involved in the regulation of intracellular and extracellular pH in physiological and pathological conditions. Their expression is finely regulated to maintain a strict control on cellular homeostasis, and it is dependent on the activation of extracellular and intracellular signaling pathways. Combining RNA sequencing (RNA-seq), NanoString, and bioinformatics data, we demonstrated that the expression of carbonic anhydrase 12 (CAXII) is significantly different in luminal and triple negative breast cancer (BC) models and patients, and is associated with the activation of an epithelial mesenchymal transition (EMT) program. In BC models, the phorbol ester 12-myristate 13-acetate (PMA)-mediated activation of protein kinase C (PKC) induced a down-regulation of CAXII with a concomitant modulation of other members of the transport metabolon, including CAIX and the sodium bicarbonate cotransporter 3 (NBCn1). This is associated with a remodeling of tumor glycolytic metabolism induced after PKC activation. Overall, this analysis highlights the dynamic nature of transport metabolom and identifies signaling pathways finely regulating this plasticity.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.A.); (M.D.)
- Laboratory of Clinical Proteomics, “Giovanni Paolo II” Hospital, 73100 ASL-Lecce, Italy
- Correspondence: (D.V.); (M.M.); Tel.: +39-0832-661915 (D.V.); +39-0832-298670 (M.M.)
| | - Sara Ravaioli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (S.R.); (E.F.); (S.B.); (F.P.)
| | - Eugenio Fonzi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (S.R.); (E.F.); (S.B.); (F.P.)
| | - Loredaria Adamo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.A.); (M.D.)
- Laboratory of Clinical Proteomics, “Giovanni Paolo II” Hospital, 73100 ASL-Lecce, Italy
| | - Marina Damato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.A.); (M.D.)
- Laboratory of Clinical Proteomics, “Giovanni Paolo II” Hospital, 73100 ASL-Lecce, Italy
| | - Sara Bravaccini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (S.R.); (E.F.); (S.B.); (F.P.)
| | - Francesca Pirini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (S.R.); (E.F.); (S.B.); (F.P.)
| | - Antonio Gaballo
- CNR-NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, 73100 Lecce, Italy;
| | - Raffaela Barbano
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, 71013 San Giovanni Rotondo, Italy; (R.B.); (B.P.)
| | - Barbara Pasculli
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, 71013 San Giovanni Rotondo, Italy; (R.B.); (B.P.)
| | - Julien Franck
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, INSERM, U1192 F-59000 Lille, France; (J.F.); (I.F.); (M.S.)
| | - Isabelle Fournier
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, INSERM, U1192 F-59000 Lille, France; (J.F.); (I.F.); (M.S.)
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Université de Lille, INSERM, U1192 F-59000 Lille, France; (J.F.); (I.F.); (M.S.)
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.A.); (M.D.)
- Laboratory of Clinical Proteomics, “Giovanni Paolo II” Hospital, 73100 ASL-Lecce, Italy
- Correspondence: (D.V.); (M.M.); Tel.: +39-0832-661915 (D.V.); +39-0832-298670 (M.M.)
| |
Collapse
|
8
|
Becker HM. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 2020; 122:157-167. [PMID: 31819195 PMCID: PMC7051959 DOI: 10.1038/s41416-019-0642-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.
Collapse
Affiliation(s)
- Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
9
|
Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM. Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis. Front Neurosci 2019; 13:1301. [PMID: 31866811 PMCID: PMC6909239 DOI: 10.3389/fnins.2019.01301] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Regulation of metabolism is complex and involves enzymes and membrane transporters, which form networks to support energy dynamics. Lactate, as a metabolic intermediate from glucose or glycogen breakdown, appears to play a major role as additional energetic substrate, which is shuttled between glycolytic and oxidative cells, both under hypoxic and normoxic conditions. Transport of lactate across the cell membrane is mediated by monocarboxylate transporters (MCTs) in cotransport with H+, which is a substrate, a signal and a modulator of metabolic processes. MCTs form a “transport metabolon” with carbonic anhydrases (CAs), which not only provide a rapid equilibrium between CO2, HCO3– and H+, but, in addition, enhances lactate transport, as found in Xenopus oocytes, employed as heterologous expression system, as well as in astrocytes and cancer cells. Functional interactions between different CA isoforms and MCTs have been found to be isoform-specific, independent of the enzyme’s catalytic activity, and they require physical interaction between the proteins. CAs mediate between different states of metabolic acidosis, induced by glycolysis and oxidative phosphorylation, and play a relay function in coupling pH regulation and metabolism. In the brain, metabolic processes in astrocytes appear to be linked to bicarbonate transport and to neuronal activity. Here, we focus on physiological processes of energy dynamics in astrocytes as well as on the transfer of energetic substrates to neurons.
Collapse
Affiliation(s)
- Joachim W Deitmer
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | - Sina I Noor
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hanover, Hanover, Germany
| |
Collapse
|
10
|
CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells. Oncogene 2019; 39:1710-1723. [PMID: 31723238 DOI: 10.1038/s41388-019-1098-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Tumor cells rely on glycolysis to meet their elevated demand for energy. Thereby they produce significant amounts of lactate and protons, which are exported via monocarboxylate transporters (MCTs), supporting the formation of an acidic microenvironment. The present study demonstrates that carbonic anhydrase IX (CAIX), one of the major acid/base regulators in cancer cells, forms a protein complex with MCT1 and MCT4 in tissue samples from human breast cancer patients, but not healthy breast tissue. Formation of this transport metabolon requires binding of CAIX to the Ig1 domain of the MCT1/4 chaperon CD147 and is required for CAIX-mediated facilitation of MCT1/4 activity. Application of an antibody, directed against the CD147-Ig1 domain, displaces CAIX from the transporter and suppresses CAIX-mediated facilitation of proton-coupled lactate transport. In cancer cells, this "metabolon disruption" results in a decrease in lactate transport, reduced glycolysis, and ultimately reduced cell proliferation. Taken together, the study shows that carbonic anhydrases form transport metabolons with acid/base transporters in human tumor tissue and that these interactions can be exploited to interfere with tumor metabolism and proliferation.
Collapse
|
11
|
Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, San Martín A, Barros LF. Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem 2019; 294:20135-20147. [PMID: 31719150 DOI: 10.1074/jbc.ra119.009093] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/09/2019] [Indexed: 11/06/2022] Open
Abstract
Monocarboxylate transporter 4 (MCT4) is an H+-coupled symporter highly expressed in metastatic tumors and at inflammatory sites undergoing hypoxia or the Warburg effect. At these sites, extracellular lactate contributes to malignancy and immune response evasion. Intriguingly, at 30-40 mm, the reported Km of MCT4 for lactate is more than 1 order of magnitude higher than physiological or even pathological lactate levels. MCT4 is not thought to transport pyruvate. Here we have characterized cell lactate and pyruvate dynamics using the FRET sensors Laconic and Pyronic. Dominant MCT4 permeability was demonstrated in various cell types by pharmacological means and by CRISPR/Cas9-mediated deletion. Respective Km values for lactate uptake were 1.7, 1.2, and 0.7 mm in MDA-MB-231 cells, macrophages, and HEK293 cells expressing recombinant MCT4. In MDA-MB-231 cells MCT4 exhibited a Km for pyruvate of 4.2 mm, as opposed to >150 mm reported previously. Parallel assays with the pH-sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) indicated that previous Km estimates based on substrate-induced acidification were severely biased by confounding pH-regulatory mechanisms. Numerical simulation using revised kinetic parameters revealed that MCT4, but not the related transporters MCT1 and MCT2, endows cells with the ability to export lactate in high-lactate microenvironments. In conclusion, MCT4 is a high-affinity lactate transporter with physiologically relevant affinity for pyruvate.
Collapse
Affiliation(s)
| | - Pamela Y Sandoval
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Romina Alarcón
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Alex Galaz
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Felipe Baeza-Lehnert
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Robinson Arce-Molina
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile.,Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Anita Guequén
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| | | | - L Felipe Barros
- Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia 5110466, Chile
| |
Collapse
|
12
|
|
13
|
Berrino E, Supuran CT. Novel approaches for designing drugs that interfere with pH regulation. Expert Opin Drug Discov 2019; 14:231-248. [PMID: 30681011 DOI: 10.1080/17460441.2019.1567488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In all living species, pH regulation is a tightly controlled process, with a plethora of proteins involved in its regulation. These include sodium-proton exchangers, carbonic anhydrases, anion exchangers, bicarbonate transporters/cotransporters, H+-ATPases, and monocarboxylate transporters. All of them play crucial roles in acid-base balancing, both in eukaryotic as well as in prokaryotic organisms, making them interesting drug targets for the management of pathological events (in)directly involved in pH regulation. Areas covered: Interfering with pH regulation for the treatment of tumors and microbial infections is the main focus of this review, with particular attention paid to inhibitors targeting the above-mentioned proteins. The latest advances in each field id reviewed. Expert opinion: Interfering with the pH regulation of tumor cells is a validated approach to tackle primary tumors and metastases growth. Carbonic anhydrases are the most investigated proteins of those aforementioned, with several inhibitors in clinical development. Recent advances in the characterization of proteins involved in pH homeostasis of various pathogens evidenced their crucial role in the survival and virulence of bacterial, fungal, and protozoan microorganisms. Some encouraging results shed light on the possibility to target such proteins for obtaining new anti-infectives, overcoming the extensive drug resistance problems of clinically used drugs.
Collapse
Affiliation(s)
- Emanuela Berrino
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| | - Claudiu T Supuran
- a NEUROFARBA Department, Sezione di Scienze Farmaceutiche , University of Florence , Sesto Fiorentino (Florence) , Italy
| |
Collapse
|
14
|
Noor SI, Jamali S, Ames S, Langer S, Deitmer JW, Becker HM. A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells. eLife 2018; 7:35176. [PMID: 29809145 PMCID: PMC5986270 DOI: 10.7554/elife.35176] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023] Open
Abstract
Many tumor cells produce vast amounts of lactate and acid, which have to be removed from the cell to prevent intracellular lactacidosis and suffocation of metabolism. In the present study, we show that proton-driven lactate flux is enhanced by the intracellular carbonic anhydrase CAII, which is colocalized with the monocarboxylate transporter MCT1 in MCF-7 breast cancer cells. Co-expression of MCTs with various CAII mutants in Xenopus oocytes demonstrated that CAII facilitates MCT transport activity in a process involving CAII-Glu69 and CAII-Asp72, which could function as surface proton antennae for the enzyme. CAII-Glu69 and CAII-Asp72 seem to mediate proton transfer between enzyme and transporter, but CAII-His64, the central residue of the enzyme's intramolecular proton shuttle, is not involved in proton shuttling between the two proteins. Instead, this residue mediates binding between MCT and CAII. Taken together, the results suggest that CAII features a moiety that exclusively mediates proton exchange with the MCT to facilitate transport activity.
Collapse
Affiliation(s)
- Sina Ibne Noor
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Somayeh Jamali
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Samantha Ames
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Silke Langer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Holger M Becker
- Division of General Zoology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
15
|
Rasmussen JK, Boedtkjer E. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO 2/HCO 3- fluctuations. J Cereb Blood Flow Metab 2018; 38:492-505. [PMID: 28318362 PMCID: PMC5851140 DOI: 10.1177/0271678x17699224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The CO2/HCO3- buffer minimizes pH changes in response to acid-base loads, HCO3- provides substrate for Na+,HCO3--cotransporters and Cl-/HCO3--exchangers, and H+ and HCO3- modify vasomotor responses during acid-base disturbances. We show here that rat middle cerebral arteries express cytosolic, mitochondrial, extracellular, and secreted carbonic anhydrase isoforms that catalyze equilibration of the CO2/HCO3- buffer. Switching from CO2/HCO3--free to CO2/HCO3--containing extracellular solution results in initial intracellular acidification due to hydration of CO2 followed by gradual alkalinization due to cellular HCO3- uptake. Carbonic anhydrase inhibition decelerates the initial acidification and attenuates the associated transient vasoconstriction without affecting intracellular pH or artery tone at steady-state. Na+,HCO3--cotransport and Na+/H+-exchange activity after NH4+-prepulse-induced intracellular acidification are unaffected by carbonic anhydrase inhibition. Extracellular surface pH transients induced by transmembrane NH3 flux are evident under CO2/HCO3--free conditions but absent when the buffer capacity and apparent H+ mobility increase in the presence of CO2/HCO3- even after the inhibition of carbonic anhydrases. We conclude that (a) intracellular carbonic anhydrase activity accentuates pH transients and vasoconstriction in response to acute elevations of pCO2, (b) CO2/HCO3- minimizes extracellular surface pH transients without requiring carbonic anhydrase activity, and (c) carbonic anhydrases are not rate limiting for acid–base transport across cell membranes during recovery from intracellular acidification.
Collapse
Affiliation(s)
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
16
|
Carbonic Anhydrase IX (CAIX), Cancer, and Radiation Responsiveness. Metabolites 2018; 8:metabo8010013. [PMID: 29439394 PMCID: PMC5874614 DOI: 10.3390/metabo8010013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX has been under intensive investigation as a therapeutic target in cancer. Studies demonstrate that this enzyme has a key role in pH regulation in cancer cells, allowing these cells to adapt to the adverse conditions of the tumour microenviroment. Novel CAIX inhibitors have shown efficacy in both in vitro and in vivo pre-clinical cancer models, adversely affecting cell viability, tumour formation, migration, invasion, and metastatic growth when used alone. In co-treatments, CAIX inhibitors may enhance the effects of anti-angiogenic drugs or chemotherapy agents. Research suggests that these inhibitors may also increase the response of tumours to radiotherapy. Although many of the anti-tumour effects of CAIX inhibition may be dependent on its role in pH regulation, recent work has shown that CAIX interacts with several of the signalling pathways involved in the cellular response to radiation, suggesting that pH-independent mechanisms may also be an important basis of its role in tumour progression. Here, we discuss these pH-independent interactions in the context of the ability of CAIX to modulate the responsiveness of cancer to radiation.
Collapse
|
17
|
Abstract
The high metabolic demand of cancer cells leads to an accumulation of H+ ions in the tumour microenvironment. The disorganized tumour vasculature prevents an efficient wash-out of H+ ions released into the extracellular medium but also favours the development of tumour hypoxic regions associated with a shift towards glycolytic metabolism. Under hypoxia, the final balance of glycolysis, including breakdown of generated ATP, is the production of lactate and a stoichiometric amount of H+ ions. Another major source of H+ ions results from hydration of CO2 produced in the more oxidative tumour areas. All of these events occur at high rates in tumours to fulfil bioenergetic and biosynthetic needs. This Review summarizes the current understanding of how H+-generating metabolic processes segregate within tumours according to the distance from blood vessels and inversely how ambient acidosis influences tumour metabolism, reducing glycolysis while promoting mitochondrial activity. The Review also presents novel insights supporting the participation of acidosis in cancer progression via stimulation of autophagy and immunosuppression. Finally, recent advances in the different therapeutic modalities aiming to either block pH-regulatory systems or exploit acidosis will be discussed.
Collapse
Affiliation(s)
- Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 53 Avenue Mounier B1.53.09, B-1200 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 53 Avenue Mounier B1.53.09, B-1200 Brussels, Belgium
| |
Collapse
|
18
|
McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol (1985) 2016; 121:1290-1305. [DOI: 10.1152/japplphysiol.00630.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 11/22/2022] Open
Abstract
McGinley C, Bishop DJ. Influence of training intensity on adaptations in acid/base transport proteins, muscle buffer capacity, and repeated-sprint ability in active men. J Appl Physiol 121: 1290–1305, 2016. First published October 14, 2016; doi: 10.1152/japplphysiol.00630.2016 .—This study measured the adaptive response to exercise training for each of the acid-base transport protein families, including providing isoform-specific evidence for the monocarboxylate transporter (MCT)1/4 chaperone protein basigin and for the electrogenic sodium-bicarbonate cotransporter (NBCe)1. We investigated whether 4 wk of work-matched, high-intensity interval training (HIIT), performed either just above the lactate threshold (HIITΔ20; n = 8), or close to peak aerobic power (HIITΔ90; n = 8), influenced adaptations in acid-base transport protein abundance, nonbicarbonate muscle buffer capacity (βmin vitro), and exercise capacity in active men. Training intensity did not discriminate between adaptations for most proteins measured, with abundance of MCT1, sodium/hydrogen exchanger (NHE) 1, NBCe1, carbonic anhydrase (CA) II, and CAXIV increasing after 4 wk, whereas there was little change in CAIII and CAIV abundance. βmin vitro also did not change. However, MCT4 protein content only increased for HIITΔ20 [effect size (ES): 1.06, 90% confidence limits × / ÷ 0.77], whereas basigin protein content only increased for HIITΔ90 (ES: 1.49, × / ÷ 1.42). Repeated-sprint ability (5 × 6-s sprints; 24 s passive rest) improved similarly for both groups. Power at the lactate threshold only improved for HIITΔ20 (ES: 0.49; 90% confidence limits ± 0.38), whereas peak O2 uptake did not change for either group. Detraining was characterized by the loss of adaptations for all of the proteins measured and for repeated-sprint ability 6 wk after removing the stimulus of HIIT. In conclusion, 4 wk of HIIT induced improvements in each of the acid-base transport protein families, but, remarkably, a 40% difference in training intensity did not discriminate between most adaptations.
Collapse
Affiliation(s)
- Cian McGinley
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and
| | - David J. Bishop
- College of Sport and Exercise Science, Victoria University, Melbourne, Victoria, Australia; and
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Pertega-Gomes N, Felisbino S, Massie CE, Vizcaino JR, Coelho R, Sandi C, Simoes-Sousa S, Jurmeister S, Ramos-Montoya A, Asim M, Tran M, Oliveira E, Lobo da Cunha A, Maximo V, Baltazar F, Neal DE, Fryer LGD. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J Pathol 2015; 236:517-30. [PMID: 25875424 PMCID: PMC4528232 DOI: 10.1002/path.4547] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 12/27/2022]
Abstract
Metabolic adaptation is considered an emerging hallmark of cancer, whereby cancer cells exhibit high rates of glucose consumption with consequent lactate production. To ensure rapid efflux of lactate, most cancer cells express high levels of monocarboxylate transporters (MCTs), which therefore may constitute suitable therapeutic targets. The impact of MCT inhibition, along with the clinical impact of altered cellular metabolism during prostate cancer (PCa) initiation and progression, has not been described. Using a large cohort of human prostate tissues of different grades, in silico data, in vitro and ex vivo studies, we demonstrate the metabolic heterogeneity of PCa and its clinical relevance. We show an increased glycolytic phenotype in advanced stages of PCa and its correlation with poor prognosis. Finally, we present evidence supporting MCTs as suitable targets in PCa, affecting not only cancer cell proliferation and survival but also the expression of a number of hypoxia-inducible factor target genes associated with poor prognosis. Herein, we suggest that patients with highly glycolytic tumours have poorer outcome, supporting the notion of targeting glycolytic tumour cells in prostate cancer through the use of MCT inhibitors.
Collapse
Affiliation(s)
- Nelma Pertega-Gomes
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| | - Sergio Felisbino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Charlie E Massie
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| | - Jose R Vizcaino
- Department of Pathology, Centro Hospitalar do Porto, Portugal
| | - Ricardo Coelho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Chiranjeevi Sandi
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| | - Susana Simoes-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences,University of Minho, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Sarah Jurmeister
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| | - Antonio Ramos-Montoya
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| | - Mohammad Asim
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| | - Maxine Tran
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| | - Elsa Oliveira
- Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Alexandre Lobo da Cunha
- Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Valdemar Maximo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal.,Department of Pathology and Oncology, Medical Faculty of the University of Porto, Portugal
| | - Fatima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences,University of Minho, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - David E Neal
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK.,Department of Urology, University of Cambridge, and S4, Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Lee G D Fryer
- Uro-oncology Research Group, Cancer Research UK (CRUK) Cambridge Institute, Cambridge, UK
| |
Collapse
|
20
|
Robey RB, Weisz J, Kuemmerle NB, Salzberg AC, Berg A, Brown DG, Kubik L, Palorini R, Al-Mulla F, Al-Temaimi R, Colacci A, Mondello C, Raju J, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Williams GP, Lowe L, Meyer J, Martin FL, Bisson WH, Chiaradonna F, Ryan EP. Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis? Carcinogenesis 2015; 36 Suppl 1:S203-31. [PMID: 26106140 PMCID: PMC4565609 DOI: 10.1093/carcin/bgv037] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.
Collapse
Affiliation(s)
- R Brooks Robey
- Research and Development Service, Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Departments of Medicine and of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03756, USA,
| | - Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nancy B Kuemmerle
- Research and Development Service, Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Departments of Medicine and of
| | - Anna C Salzberg
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Arthur Berg
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Laura Kubik
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy, SYSBIO Center for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Graeme P Williams
- Department of Molecular Medicine, University of Reading, Reading RG6 6UB, UK
| | - Leroy Lowe
- Centre for Biophotonics, LEC, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK, Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada, and
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Francis L Martin
- Centre for Biophotonics, LEC, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy, SYSBIO Center for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| |
Collapse
|
21
|
Kwiatkowska M, Polit JT, Stępiński D, Popłońska K, Wojtczak A, Domίnguez E, Heredia A. Lipotubuloids in ovary epidermis of Ornithogalum umbellatum act as metabolons: suggestion of the name 'lipotubuloid metabolon'. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1157-63. [PMID: 25540439 PMCID: PMC4438445 DOI: 10.1093/jxb/eru469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A metabolon is a temporary, structural-functional complex formed between sequential metabolic enzymes and cellular elements. Cytoplasmic domains called lipotubuloids are present in Ornithogalum umbellatum ovary epidermis. They consist of numerous lipid bodies entwined with microtubules, polysomes, rough endoplasmic reticulum (RER), and actin filaments connected to microtubules through myosin and kinesin. A few mitochondria, Golgi structures, and microbodies are also observed and also, at later development stages, autolytic vacuoles. Each lipotubuloid is surrounded by a tonoplast as it invaginates into a vacuole. These structures appear in young cells, which grow intensively reaching 30-fold enlargement but do not divide. They also become larger due to an increasing number of lipid bodies formed in the RER by the accumulation of lipids between leaflets of the phospholipid bilayer. When a cell ceases to grow, the lipotubuloids disintegrate into individual structures. Light and electron microscope studies using filming techniques, autoradiography with [(3)H]palmitic acid, immunogold labelling with antibodies against DGAT2, phospholipase D1 and lipase, and double immunogold labelling with antibodies against myosin and kinesin, as well as experiments with propyzamide, a microtubule activity inhibitor, have shown that lipotubuloids are functionally and structurally integrated metabolons [here termed lipotubuloid metabolons (LMs)] occurring temporarily in growing cells. They synthesize lipids in lipid bodies in cooperation with microtubules. Some of these lipids are metabolized and used by the cell as nutrients, and others are transformed into cuticle whose formation is mediated by cutinsomes. The latter were discovered in planta using specific anti-cutinsome antibodies visualized by gold labelling. Moreover, LMs are able to rotate autonomously due to the interaction of microtubules, actin filaments, and motor proteins, which influence microtubules by changing their diameter.
Collapse
Affiliation(s)
- Maria Kwiatkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Justyna T Polit
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Dariusz Stępiński
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Katarzyna Popłońska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Agnieszka Wojtczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Eva Domίnguez
- Instituto de Hortofruicultura Subtropical y Mediterránea 'La Mayora' UMA-CSIC, Universidad de Málaga, Campus d Teatinos, 29071 Málaga, Spain
| | - Antonio Heredia
- Instituto de Hortofruicultura Subtropical y Mediterránea 'La Mayora' UMA-CSIC, Universidad de Málaga, Campus d Teatinos, 29071 Málaga, Spain
| |
Collapse
|
22
|
Noor SI, Dietz S, Heidtmann H, Boone CD, McKenna R, Deitmer JW, Becker HM. Analysis of the binding moiety mediating the interaction between monocarboxylate transporters and carbonic anhydrase II. J Biol Chem 2015; 290:4476-86. [PMID: 25561737 DOI: 10.1074/jbc.m114.624577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton-coupled monocarboxylate transporters (MCTs) mediate the exchange of high energy metabolites like lactate between different cells and tissues. We have reported previously that carbonic anhydrase II augments transport activity of MCT1 and MCT4 by a noncatalytic mechanism, while leaving transport activity of MCT2 unaltered. In the present study, we combined electrophysiological measurements in Xenopus oocytes and pulldown experiments to analyze the direct interaction between carbonic anhydrase II (CAII) and MCT1, MCT2, and MCT4, respectively. Transport activity of MCT2-WT, which lacks a putative CAII-binding site, is not augmented by CAII. However, introduction of a CAII-binding site into the C terminus of MCT2 resulted in CAII-mediated facilitation of MCT2 transport activity. Interestingly, introduction of three glutamic acid residues alone was not sufficient to establish a direct interaction between MCT2 and CAII, but the cluster had to be arranged in a fashion that allowed access to the binding moiety in CAII. We further demonstrate that functional interaction between MCT4 and CAII requires direct binding of the enzyme to the acidic cluster (431)EEE in the C terminus of MCT4 in a similar fashion as previously shown for binding of CAII to the cluster (489)EEE in the C terminus of MCT1. In CAII, binding to MCT1 and MCT4 is mediated by a histidine residue at position 64. Taken together, our results suggest that facilitation of MCT transport activity by CAII requires direct binding between histidine 64 in CAII and a cluster of glutamic acid residues in the C terminus of the transporter that has to be positioned in surroundings that allow access to CAII.
Collapse
Affiliation(s)
- Sina Ibne Noor
- From the Department of Biology, Division of Zoology/Membrane Transport and
| | - Steffen Dietz
- From the Department of Biology, Division of Zoology/Membrane Transport and
| | - Hella Heidtmann
- From the Department of Biology, Division of Zoology/Membrane Transport and the Department of Biology, Division of General Zoology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany and
| | - Christopher D Boone
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Robert McKenna
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Joachim W Deitmer
- the Department of Biology, Division of General Zoology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany and
| | - Holger M Becker
- From the Department of Biology, Division of Zoology/Membrane Transport and
| |
Collapse
|
23
|
Peetz J, Barros LF, San Martín A, Becker HM. Functional interaction between bicarbonate transporters and carbonic anhydrase modulates lactate uptake into mouse cardiomyocytes. Pflugers Arch 2014; 467:1469-1480. [PMID: 25118990 DOI: 10.1007/s00424-014-1594-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022]
Abstract
Blood-derived lactate is a precious energy substrate for the heart muscle. Lactate is transported into cardiomyocytes via monocarboxylate transporters (MCTs) together with H(+), which couples lactate uptake to cellular pH regulation. In this study, we have investigated how the interplay between different acid/base transporters and carbonic anhydrases (CA), which catalyze the reversible hydration of CO2, modulates the uptake of lactate into isolated mouse cardiomyocytes. Lactate transport was estimated both as lactate-induced acidification and as changes in intracellular lactate levels measured with a newly developed Förster resonance energy transfer (FRET) nanosensor. Recordings of intracellular pH showed an increase in the rate of lactate-induced acidification when CA was inhibited by 6-ethoxy-2-benzothiazolesulfonamide (EZA), while direct measurements of lactate flux demonstrated a decrease in MCT transport activity, when CA was inhibited. The data indicate that catalytic activity of extracellular CA increases lactate uptake and counteracts intracellular lactate-induced acidification. We propose a hypothetical model, in which HCO3 (-), formed from cell-derived CO2 at the outer surface of the cardiomyocyte plasma membrane by membrane-anchored, extracellular CA, is transported into the cell via Na(+)/HCO3 (-) cotransport to counteract intracellular acidification, while the remaining H(+) stabilizes extracellular pH at the surface of the plasma membrane during MCT activity to enhance lactate influx into cardiomyocytes.
Collapse
Affiliation(s)
- Jan Peetz
- Division of Zoology/Membrane Transport, FB Biologie, TU Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany
| | | | | | - Holger M Becker
- Division of Zoology/Membrane Transport, FB Biologie, TU Kaiserslautern, P.O. Box 3049, 67653, Kaiserslautern, Germany.
| |
Collapse
|
24
|
Klier M, Andes FT, Deitmer JW, Becker HM. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters. J Biol Chem 2013; 289:2765-75. [PMID: 24338019 DOI: 10.1074/jbc.m113.537043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proton-coupled monocarboxylate transporters (MCTs) are carriers of high-energy metabolites such as lactate, pyruvate, and ketone bodies and are expressed in most tissues. It has previously been shown that transport activity of MCT1 and MCT4 is enhanced by the cytosolic carbonic anhydrase II (CAII) independent of its catalytic activity. We have now studied the influence of the extracellular, membrane-bound CAIV on transport activity of MCT1/4, heterologously expressed in Xenopus oocytes. Coexpression of CAIV with MCT1 and MCT4 resulted in a significant increase in MCT transport activity, even in the nominal absence of CO2/HCO3(-). CAIV-mediated augmentation of MCT activity was independent of the CAIV catalytic function, since application of the CA-inhibitor ethoxyzolamide or coexpression of the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT transport activity. The interaction required CAIV at the extracellular surface, since injection of CAIV protein into the oocyte cytosol did not augment MCT transport function. The effects of cytosolic CAII (injected as protein) and extracellular CAIV (expressed) on MCT transport activity, were additive. Our results suggest that intra- and extracellular carbonic anhydrases can work in concert to ensure rapid shuttling of metabolites across the cell membrane.
Collapse
Affiliation(s)
- Michael Klier
- From the Division of General Zoology, Department of Biology, University of Kaiserslautern D-67653 Kaiserslautern, Germany and
| | | | | | | |
Collapse
|