1
|
van der Vleuten BJR, Hovenkamp VA, Varkevisser JM, Spierings MJ. Context-dependent rhythmicity in chimpanzee displays. Proc Biol Sci 2024; 291:20242200. [PMID: 39626754 PMCID: PMC11614530 DOI: 10.1098/rspb.2024.2200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024] Open
Abstract
Rhythm is an important component of human language and music production. Rhythms such as isochrony (intervals spaced equally in time) are also present in vocalizations of certain non-human species, including several birds and mammals. This study aimed to identify rhythmic patterns with music-based methods within the display behaviour of chimpanzees (Pan troglodytes), humans' closest living relatives. Behavioural observations were conducted on individuals from two zoo-housed colonies. We found isochronous rhythms in vocal (e.g. pants, grunts and hoots) as well as in motoric (e.g. swaying and stomping) behavioural sequences. Among individuals, variation was found in the duration between onsets of behavioural elements, resulting in individual-specific tempi. Despite this variation in individual tempi, display sequences were consistently structured with stable, isochronous rhythms. Overall, directed displays targeted at specific individuals were less isochronous than undirected displays. The presence of rhythmic patterns across two independent colonies of chimpanzees suggests that underlying mechanisms for rhythm production may be shared between humans and non-human primates. This shared mechanism indicates that the cognitive requirements for rhythm production potentially preceded human music and language evolution.
Collapse
Affiliation(s)
| | - V. A. Hovenkamp
- Institute of Biology Leiden, Leiden University, Leiden2333 BE, The Netherlands
| | - J. M. Varkevisser
- Institute of Biology Leiden, Leiden University, Leiden2333 BE, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden2333 AK, The Netherlands
| | - M. J. Spierings
- Institute of Biology Leiden, Leiden University, Leiden2333 BE, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden2333 AK, The Netherlands
- Department of Behavioral and Cognitive Biology, Vienna University, Vienna1030, Austria
| |
Collapse
|
2
|
Gray DA. Sexual selection and 'species recognition' revisited: serial processing and order-of-operations in mate choice. Proc Biol Sci 2022; 289:20212687. [PMID: 35317675 PMCID: PMC8941403 DOI: 10.1098/rspb.2021.2687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following the modern synthesis, mating signals were thought of principally as species recognition traits, a view later challenged by a burgeoning interest in sexual selection-specifically mate choice. In the 1990s, these different signal functions were proposed to represent a single process driven by the shape of female preference functions across both intra- and interspecific signal space. However, the properties of reliable 'recognition' signals (stereotyped; low intraspecific variation) and informative 'quality' signals (condition dependent; high intraspecific variation) seem at odds, perhaps favouring different signal components for different functions. Surprisingly, the idea that different components of mating signals are evaluated in series, first to recognize generally compatible mates and then to select for quality, has never been explicitly tested. Here I evaluate patterns of (i) intraspecific signal variation, (ii) female preference function shape and (iii) phylogenetic signal for male cricket call components known to be processed in series. The results show that signal components processed first tend to have low variation, closed preference functions and low phylogenetic signal, whereas signal components processed later show the opposite, suggesting that mating signal evaluation follows an 'order-of-operations'. Applicability of this finding to diverse groups of organisms and sensory modalities is discussed.
Collapse
Affiliation(s)
- David A Gray
- Department of Biology, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8303, USA
| |
Collapse
|
3
|
Gupta S, Alluri RK, Rose GJ, Bee MA. Neural basis of acoustic species recognition in a cryptic species complex. J Exp Biol 2021; 224:jeb243405. [PMID: 34796902 PMCID: PMC10658901 DOI: 10.1242/jeb.243405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022]
Abstract
Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
| | - Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Clemens J, Schöneich S, Kostarakos K, Hennig RM, Hedwig B. A small, computationally flexible network produces the phenotypic diversity of song recognition in crickets. eLife 2021; 10:e61475. [PMID: 34761750 PMCID: PMC8635984 DOI: 10.7554/elife.61475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/03/2021] [Indexed: 01/31/2023] Open
Abstract
How neural networks evolved to generate the diversity of species-specific communication signals is unknown. For receivers of the signals, one hypothesis is that novel recognition phenotypes arise from parameter variation in computationally flexible feature detection networks. We test this hypothesis in crickets, where males generate and females recognize the mating songs with a species-specific pulse pattern, by investigating whether the song recognition network in the cricket brain has the computational flexibility to recognize different temporal features. Using electrophysiological recordings from the network that recognizes crucial properties of the pulse pattern on the short timescale in the cricket Gryllus bimaculatus, we built a computational model that reproduces the neuronal and behavioral tuning of that species. An analysis of the model's parameter space reveals that the network can provide all recognition phenotypes for pulse duration and pause known in crickets and even other insects. Phenotypic diversity in the model is consistent with known preference types in crickets and other insects, and arises from computations that likely evolved to increase energy efficiency and robustness of pattern recognition. The model's parameter to phenotype mapping is degenerate - different network parameters can create similar changes in the phenotype - which likely supports evolutionary plasticity. Our study suggests that computationally flexible networks underlie the diverse pattern recognition phenotypes, and we reveal network properties that constrain and support behavioral diversity.
Collapse
Affiliation(s)
- Jan Clemens
- European Neuroscience Institute Göttingen – A Joint Initiative of the University Medical Center Göttingen and the Max-Planck SocietyGöttingenGermany
- BCCN GöttingenGöttingenGermany
| | - Stefan Schöneich
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
- Friedrich-Schiller-University Jena, Institute for Zoology and Evolutionary ResearchJenaGermany
| | - Konstantinos Kostarakos
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
- Institute of Biology, University of GrazUniversitätsplatzAustria
| | - R Matthias Hennig
- Humboldt-Universität zu Berlin, Department of BiologyPhilippstrasseGermany
| | - Berthold Hedwig
- University of Cambridge, Department of ZoologyCambridgeUnited Kingdom
| |
Collapse
|
5
|
Heller KG, Hemp C. Hyperdiverse songs, duetting, and the roles of intra- and intersexual selection in the acoustic communication of the genus Eurycorypha (Orthoptera: Tettigonioidea, Phaneropterinae). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00452-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Dobbs OL, Talavera JB, Rossi SM, Menjivar S, Gray DA. Signaler-receiver-eavesdropper: Risks and rewards of variation in the dominant frequency of male cricket calls. Ecol Evol 2020; 10:12364-12371. [PMID: 33209294 PMCID: PMC7663976 DOI: 10.1002/ece3.6866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Signals are important for communication and mating, and while they can benefit an individual, they can also be costly and dangerous. Male field crickets call in order to attract female crickets, but gravid females of a parasitoid fly species, Ormia ochracea, are also attracted to the call and use it to pinpoint male cricket hosts. Conspicuousness of the call can vary with frequency, amplitude, and temporal features. Previous work with this system has only considered temporal variation in cricket calls, both large scale, that is, amount of calling and at what time of evening, and small scale, that is, aspects of chirp rate, pulse rate, and numbers of pulses per chirp. Because auditory perception in both crickets and flies relies on the matching of the peak frequency of the call with the peripheral sensory system, peak frequency may be subject to selection both from female crickets and from female flies. Here, we used field playbacks of four different versions of the same male Gryllus lineaticeps calling song that only differed in peak frequency (3.3, 4.3, 5.3, and 6.3 kHz) to test the relative attractiveness of the calls to female crickets and female flies. Our results clearly show that lower frequency calls enhance male safety from fly parasitism, but that the enhanced safety would come at a cost of reduced attraction of female crickets as potential mates. The results imply that eavesdropper pressure can disrupt the matched coevolution of signalers and receivers such that the common concept of matched male-female signaler-receiver coevolution may actually be better described as male-female-predator signaler-receiver-eavesdropper coevolution.
Collapse
Affiliation(s)
- Olivia L. Dobbs
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | | | - Sarina M. Rossi
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - Stephanie Menjivar
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| | - David A. Gray
- Department of BiologyCalifornia State University NorthridgeNorthridgeCAUSA
| |
Collapse
|
7
|
Modular timer networks: abdominal interneurons controlling the chirp and pulse pattern in a cricket calling song. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:921-938. [PMID: 33089402 PMCID: PMC7603463 DOI: 10.1007/s00359-020-01448-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/02/2022]
Abstract
Chirping male crickets combine a 30 Hz pulse pattern with a 3 Hz chirp pattern to drive the rhythmic opening-closing movements of the front wings for sound production. Lesion experiments suggest two coupled modular timer-networks located along the chain of abdominal ganglia, a network in A3 and A4 generating the pulse pattern, and a network organized along with ganglia A4–A6 controlling the generation of the chirp rhythm. We analyzed neurons of the timer-networks and their synaptic connections by intracellular recordings and staining. We identified neurons spiking in phase with the chirps and pulses, or that are inhibited during the chirps. Neurons share a similar “gestalt”, regarding the position of the cell body, the dendritic arborizations and the contralateral ascending axon. Activating neurons of the pulse-timer network elicits ongoing motor activity driving the generation of pulses; this activity is not structured in the chirp pattern. Activating neurons of the chirp-timer network excites pulse-timer neurons; it drives the generation of chirps and during the chirps the pulse pattern is produced. Our results support the hypothesis that two modular networks along the abdominal ganglion chain control the cricket calling song, a pattern generating network in the mesothoracic ganglion may not be required.
Collapse
|
8
|
Deutsch D, Clemens J, Thiberge SY, Guan G, Murthy M. Shared Song Detector Neurons in Drosophila Male and Female Brains Drive Sex-Specific Behaviors. Curr Biol 2019; 29:3200-3215.e5. [PMID: 31564492 PMCID: PMC6885007 DOI: 10.1016/j.cub.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/10/2019] [Accepted: 08/02/2019] [Indexed: 10/25/2022]
Abstract
Males and females often produce distinct responses to the same sensory stimuli. How such differences arise-at the level of sensory processing or in the circuits that generate behavior-remains largely unresolved across sensory modalities. We address this issue in the acoustic communication system of Drosophila. During courtship, males generate time-varying songs, and each sex responds with specific behaviors. We characterize male and female behavioral tuning for all aspects of song and show that feature tuning is similar between sexes, suggesting sex-shared song detectors drive divergent behaviors. We then identify higher-order neurons in the Drosophila brain, called pC2, that are tuned for multiple temporal aspects of one mode of the male's song and drive sex-specific behaviors. We thus uncover neurons that are specifically tuned to an acoustic communication signal and that reside at the sensory-motor interface, flexibly linking auditory perception with sex-specific behavioral responses.
Collapse
Affiliation(s)
- David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jan Clemens
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max-Planck Society, Grisebachstrasse 5, Göttingen 37077, Germany
| | - Stephan Y Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA
| | - Georgia Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Bezos Center for Neural Circuit Dynamics, Princeton Neuroscience Institute, Princeton University, Princeton NJ 08540, USA.
| |
Collapse
|
9
|
Blankers T, Berdan EL, Hennig RM, Mayer F. Physical linkage and mate preference generate linkage disequilibrium for behavioral isolation in two parapatric crickets. Evolution 2019; 73:777-791. [PMID: 30820950 PMCID: PMC6593781 DOI: 10.1111/evo.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Abstract
Behavioral isolation is a potent barrier to gene flow and a source of striking diversity in the animal kingdom. However, it remains unclear if the linkage disequilibrium (LD) between sex‐specific traits required for behavioral isolation results mostly from physical linkage between signal and preference loci or from directional mate preferences. Here, we test this in the field crickets Gryllus rubens and G. texensis. These closely related species diverged with gene flow and have strongly differentiated songs and preference functions for the mate calling song rhythm. We map quantitative trait loci for signal and preference traits (pQTL) as well as for gene expression associated with these traits (eQTL). We find strong, positive genetic covariance between song traits and between song and preference. Our results show that this is in part explained by incomplete physical linkage: although both linked pQTL and eQTL couple male and female traits, major effect loci for different traits were never on the same chromosome. We suggest that the finely tuned, highly divergent preference functions are likely an additional source of LD between male and female traits in this system. Furthermore, pleiotropy of gene expression presents an underappreciated mechanism to link sexually dimorphic phenotypes.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany.,Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma L Berdan
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Current address: Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - R Matthias Hennig
- Department of Behavioral Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frieder Mayer
- Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
10
|
Ronacher B. Innate releasing mechanisms and fixed action patterns: basic ethological concepts as drivers for neuroethological studies on acoustic communication in Orthoptera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:33-50. [PMID: 30617601 PMCID: PMC6394777 DOI: 10.1007/s00359-018-01311-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
This review addresses the history of neuroethological studies on acoustic communication in insects. One objective is to reveal how basic ethological concepts developed in the 1930s, such as innate releasing mechanisms and fixed action patterns, have influenced the experimental and theoretical approaches to studying acoustic communication systems in Orthopteran insects. The idea of innateness of behaviors has directly fostered the search for central pattern generators that govern the stridulation patterns of crickets, katydids or grasshoppers. A central question pervading 50 years of research is how the essential match between signal features and receiver characteristics has evolved and is maintained during evolution. As in other disciplines, the tight interplay between technological developments and experimental and theoretical advances becomes evident throughout this review. While early neuroethological studies focused primarily on proximate questions such as the implementation of feature detectors or central pattern generators, later the interest shifted more towards ultimate questions. Orthoptera offer the advantage that both proximate and ultimate questions can be tackled in the same system. An important advance was the transition from laboratory studies under well-defined acoustic conditions to field studies that allowed to measure costs and benefits of acoustic signaling as well as constraints on song evolution.
Collapse
Affiliation(s)
- Bernhard Ronacher
- Behavioural Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 18, 10099, Berlin, Germany.
| |
Collapse
|
11
|
The ‘hot male’ hypothesis: do female crickets prefer males with increased body temperature in mate choice scenarios? Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Blankers T, Vilaça ST, Waurick I, Gray DA, Hennig RM, Mazzoni CJ, Mayer F, Berdan EL. Demography and selection shape transcriptomic divergence in field crickets. Evolution 2018; 72:553-567. [PMID: 29363111 DOI: 10.1111/evo.13435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
Gene flow, demography, and selection can result in similar patterns of genomic variation and disentangling their effects is key to understanding speciation. Here, we assess transcriptomic variation to unravel the evolutionary history of Gryllus rubens and Gryllus texensis, cryptic field cricket species with highly divergent mating behavior. We infer their demographic history and screen their transcriptomes for footprints of selection in the context of the inferred demography. We find strong support for a long history of bidirectional gene flow, which ceased during the late Pleistocene, and a bottleneck in G. rubens consistent with a peripatric origin of this species. Importantly, the demographic history has likely strongly shaped patterns of genetic differentiation (empirical FST distribution). Concordantly, FST -based selection detection uncovers a large number of outliers, likely comprising many false positives, echoing recent theoretical insights. Alternative genetic signatures of positive selection, informed by the demographic history of the sibling species, highlighted a smaller set of loci; many of these are candidates for controlling variation in mating behavior. Our results underscore the importance of demography in shaping overall patterns of genetic divergence and highlight that examining both demography and selection facilitates a more complete understanding of genetic divergence during speciation.
Collapse
Affiliation(s)
- Thomas Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Sibelle T Vilaça
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Isabelle Waurick
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - David A Gray
- Department of Biology, California State University Northridge, Northridge, California 91330
| | - R Matthias Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Emma L Berdan
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,Department of Marine Sciences, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
13
|
Gray DA, Gabel E, Blankers T, Hennig RM. Multivariate female preference tests reveal latent perceptual biases. Proc Biol Sci 2017; 283:rspb.2016.1972. [PMID: 27807265 DOI: 10.1098/rspb.2016.1972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 11/12/2022] Open
Abstract
The question of why males of many species produce elaborate mating displays has now been largely resolved: females prefer to mate with males that produce such displays. However, the question of why females prefer such displays has been controversial, with an emerging consensus that such displays often provide information to females about the direct fitness benefits that males provide to females and/or the indirect fitness benefits provided to offspring. Alternative explanations, such as production of arbitrarily attractive sons or innate pre-existing female sensory or perceptual bias, have also received support in certain taxa. Here, we describe multivariate female preference functions for male acoustic traits in two chirping species of field crickets with slow pulse rates; our data reveal cryptic female preferences for long trills that have not previously been observed in other chirping species. The trill preferences are evolutionarily pre-existing in the sense that males have not (yet?) exploited them, and they coexist with chirp preferences as alternative stable states within female song preference space. We discuss escape from neuronal adaptation as a possible mechanism underlying such latent preferences.
Collapse
Affiliation(s)
- D A Gray
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - E Gabel
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - T Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - R M Hennig
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Bailey NW, Moran PA, Hennig RM. Divergent mechanisms of acoustic mate recognition between closely related field cricket species (Teleogryllus spp.). Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Kilmer JT, Fowler‐Finn KD, Gray DA, Höbel G, Rebar D, Reichert MS, Rodríguez RL. Describing mate preference functions and other function‐valued traits. J Evol Biol 2017; 30:1658-1673. [DOI: 10.1111/jeb.13122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Affiliation(s)
- J. T. Kilmer
- Behavioral & Molecular Ecology Group Department of Biological Sciences University of Wisconsin–Milwaukee Milwaukee WI USA
| | | | - D. A. Gray
- Department of Biology California State University Northridge Northridge CA USA
| | - G. Höbel
- Behavioral & Molecular Ecology Group Department of Biological Sciences University of Wisconsin–Milwaukee Milwaukee WI USA
| | - D. Rebar
- Department of Zoology University of Cambridge Cambridge UK
| | - M. S. Reichert
- School of Biological, Earth and Environmental Science University College Cork Cork Ireland
| | - R. L. Rodríguez
- Behavioral & Molecular Ecology Group Department of Biological Sciences University of Wisconsin–Milwaukee Milwaukee WI USA
| |
Collapse
|
16
|
Hedwig B, Sarmiento-Ponce EJ. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism. Proc Biol Sci 2017; 284:rspb.2017.0745. [PMID: 28539524 PMCID: PMC5454277 DOI: 10.1098/rspb.2017.0745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/24/2017] [Indexed: 11/30/2022] Open
Abstract
Acoustic communication requires filter mechanisms to process and recognize key features of the perceived signals. We analysed such a filter mechanism in field crickets (Gryllus bimaculatus), which communicate with species-specific repetitive patterns of sound pulses and chirps. A delay-line and coincidence-detection mechanism, in which each sound pulse has an impact on the processing of the following pulse, is implicated to underlie the recognition of the species-specific pulse pattern. Based on this concept, we hypothesized that altering the duration of a single pulse or inter-pulse interval in three-pulse chirps will lead to different behavioural responses. Phonotaxis was tested in female crickets walking on a trackball exposed to different sound paradigms. Changing the duration of either the first, second or third pulse of the chirps led to three different characteristic tuning curves. Long first pulses decreased the phonotactic response whereas phonotaxis remained strong when the third pulse was long. Chirps with three pulses of increasing duration of 5, 20 and 50 ms elicited phonotaxis, but the chirps were not attractive when played in reverse order. This demonstrates specific, pulse duration-dependent effects while sequences of pulses are processed. The data are in agreement with a mechanism in which processing of a sound pulse has an effect on the processing of the subsequent pulse, as outlined in the flow of activity in a delay-line and coincidence-detector circuit. Additionally our data reveal a substantial increase in the gain of phonotaxis, when the number of pulses of a chirp is increased from two to three.
Collapse
Affiliation(s)
- Berthold Hedwig
- Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
17
|
Iglesias PP, Hasson E. The role of courtship song in female mate choice in South American Cactophilic Drosophila. PLoS One 2017; 12:e0176119. [PMID: 28467464 PMCID: PMC5414974 DOI: 10.1371/journal.pone.0176119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Courtship songs have undergone a spectacular diversification in the Drosophila buzzatii cluster. Accordingly, it has been suggested that sexual selection has played a significant role in promoting rapid diversification, reproductive isolation and speciation. However, there is no direct evidence (i.e., song playback experiments with wingless males) supporting this tenet. Moreover, several studies have showed that the courtship song in the genus Drosophila is not always used in female mate choice decisions, nor plays the same role when it is taken into account. In this vein, we use an approach that combines manipulative and playback experiments to explore the importance and the role of courtship song in female mate choice in four species of the D. buzzatii cluster and one species of the closely related D. martensis cluster for outgroup comparison. We also investigate the importance of courtship song in sexual isolation in sympatry between the only semi-cosmopolitan species, D. buzzatii, and the other species of the D. buzzatii cluster. Our study revealed that the courtship song is used by females of the D. buzzatii cluster as a criterion for male acceptance or influences the speed with which males are chosen. In contrast, we showed that this characteristic is not shared by D. venezolana, the representative species of the D. martensis cluster. We also found that the studied species of the D. buzzatii cluster differ in the role that conspecific and heterospecific songs have in female mate choice and in sexual isolation. Our findings support the hypothesis that divergence in female preferences for courtship songs has played a significant role in promoting rapid diversification and reproductive isolation in the D. buzzatii cluster. However, evidence from D. venezolana suggests that the use of the courtship song in female mate choice is not a conserved feature in the D. buzzatii complex.
Collapse
Affiliation(s)
- Patricia P. Iglesias
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
18
|
Bhattacharya M, Isvaran K, Balakrishnan R. A statistical approach to understanding reproductive isolation in two sympatric species of tree crickets. J Exp Biol 2017; 220:1222-1232. [PMID: 28096428 DOI: 10.1242/jeb.146852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
Abstract
In acoustically communicating animals, reproductive isolation between sympatric species is usually maintained through species-specific calls. This requires that the receiver be tuned to the conspecific signal. Mapping the response space of the receiver onto the signal space of the conspecific investigates this tuning. A combinatorial approach to investigating the response space is more informative as the influence on the receiver of the interactions between the features is also elucidated. However, most studies have examined individual preference functions rather than the multivariate response space. We studied the maintenance of reproductive isolation between two sympatric tree cricket species (Oecanthus henryi and Oecanthus indicus) through the temporal features of the calls. Individual response functions were determined experimentally for O. henryi, the results from which were combined in a statistical framework to generate a multivariate quantitative receiver response space. The predicted response was higher for the signals of the conspecific than for signals of the sympatric heterospecific, indicating maintenance of reproductive isolation through songs. The model allows prediction of response to untested combinations of temporal features as well as delineation of the evolutionary constraints on the signal space. The model can also be used to predict the response of O. henryi to other heterospecific signals, making it a useful tool for the study of the evolution and maintenance of reproductive isolation via long-range acoustic signals.
Collapse
Affiliation(s)
- Monisha Bhattacharya
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Kavita Isvaran
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rohini Balakrishnan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
19
|
Multivariate Phenotypic Evolution: Divergent Acoustic Signals and Sexual Selection in Gryllus Field Crickets. Evol Biol 2016. [DOI: 10.1007/s11692-016-9388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Gabel E, Gray DA, Matthias Hennig R. How females of chirping and trilling field crickets integrate the 'what' and 'where' of male acoustic signals during decision making. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:823-837. [PMID: 27638304 DOI: 10.1007/s00359-016-1124-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
In crickets acoustic communication serves mate selection. Female crickets have to perceive and integrate male cues relevant for mate choice while confronted with several different signals in an acoustically diverse background. Overall female decisions are based on the attractiveness of the temporal pattern (informative about the 'what') and on signal intensity (informative about the 'where') of male calling songs. Here, we investigated how the relevant cues for mate choice are integrated during the decision process by females of five different species of chirping and trilling field crickets. Using a behavioral design, female preferences in no-choice and choice situations for male calling songs differing in pulse rate, modulation depth, intensities, chirp/trill arrangements and temporal shifts were examined. Sensory processing underlying decisions in female field crickets is rather similar as combined evidence suggested that incoming song patterns were analyzed separately by bilaterally paired networks for pattern attractiveness and pattern intensity. A downstream gain control mechanism leads to a weighting of the intensity cue by pattern attractiveness. While remarkable differences between species were observed with respect to specific processing steps, closely related species exhibited more similar preferences than did more distantly related species.
Collapse
Affiliation(s)
- Eileen Gabel
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115, Berlin, Germany.
| | - David A Gray
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115, Berlin, Germany
| |
Collapse
|
21
|
Jacob PF, Hedwig B. Acoustic signalling for mate attraction in crickets: Abdominal ganglia control the timing of the calling song pattern. Behav Brain Res 2016; 309:51-66. [DOI: 10.1016/j.bbr.2016.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/31/2023]
|
22
|
Hartbauer M, Römer H. Rhythm Generation and Rhythm Perception in Insects: The Evolution of Synchronous Choruses. Front Neurosci 2016; 10:223. [PMID: 27303257 PMCID: PMC4885851 DOI: 10.3389/fnins.2016.00223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/06/2016] [Indexed: 11/15/2022] Open
Abstract
Insect sounds dominate the acoustic environment in many natural habitats such as rainforests or meadows on a warm summer day. Among acoustic insects, usually males are the calling sex; they generate signals that transmit information about the species-identity, sex, location, or even sender quality to conspecific receivers. Males of some insect species generate signals at distinct time intervals, and other males adjust their own rhythm relative to that of their conspecific neighbors, which leads to fascinating acoustic group displays. Although signal timing in a chorus can have important consequences for the calling energetics, reproductive success and predation risk of individuals, still little is known about the selective forces that favor the evolution of insect choruses. Here, we review recent advances in our understanding of the neuronal network responsible for acoustic pattern generation of a signaler, and pattern recognition in receivers. We also describe different proximate mechanisms that facilitate the synchronous generation of signals in a chorus and provide examples of suggested hypotheses to explain the evolution of chorus synchrony in insects. Some hypotheses are related to sexual selection and inter-male cooperation or competition, whereas others refer to the selection pressure exerted by natural predators. In this article, we summarize the results of studies that address chorus synchrony in the tropical katydid Mecopoda elongata, where some males persistently signal as followers although this reduces their mating success.
Collapse
Affiliation(s)
- Manfred Hartbauer
- Behavioural Ecology and Neurobiology, Institute of Zoology, University of GrazGraz, Austria
| | | |
Collapse
|
23
|
Divergence in male cricket song and female preference functions in three allopatric sister species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:347-60. [PMID: 27026021 DOI: 10.1007/s00359-016-1083-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Multivariate female preference functions for male sexual signals have rarely been investigated, especially in a comparative context among sister species. Here we examined male signal and female preference co-variation in three closely related, but allopatric species of Gryllus crickets and quantified male song traits as well as female preferences. We show that males differ conspicuously in either one of two relatively static song traits, carrier frequency or pulse rate; female preference functions for these traits also differed, and would in combination enhance species discrimination. In contrast, the relatively dynamic song traits, chirp rate and chirp duty cycle, show minimal divergence among species and relatively greater conservation of female preference functions. Notably, among species we demonstrate similar mechanistic rules for the integration of pulse and chirp time scales, despite divergence in pulse rate preferences. As these are allopatric taxa, selection for species recognition per se is unlikely. More likely sexual selection combined with conserved properties of preference filters enabled divergent coevolution of male song and female preferences.
Collapse
|
24
|
Hedwig BG. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition. Front Physiol 2016; 7:46. [PMID: 26941647 PMCID: PMC4766296 DOI: 10.3389/fphys.2016.00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Intraspecific acoustic communication requires filtering processes and feature detectors in the auditory pathway of the receiver for the recognition of species-specific signals. Insects like acoustically communicating crickets allow describing and analysing the mechanisms underlying auditory processing at the behavioral and neural level. Female crickets approach male calling song, their phonotactic behavior is tuned to the characteristic features of the song, such as the carrier frequency and the temporal pattern of sound pulses. Data from behavioral experiments and from neural recordings at different stages of processing in the auditory pathway lead to a concept of serially arranged filtering mechanisms. These encompass a filter for the carrier frequency at the level of the hearing organ, and the pulse duration through phasic onset responses of afferents and reciprocal inhibition of thoracic interneurons. Further, processing by a delay line and coincidence detector circuit in the brain leads to feature detecting neurons that specifically respond to the species-specific pulse rate, and match the characteristics of the phonotactic response. This same circuit may also control the response to the species-specific chirp pattern. Based on these serial filters and the feature detecting mechanism, female phonotactic behavior is shaped and tuned to the characteristic properties of male calling song.
Collapse
|
25
|
Abstract
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Collapse
Affiliation(s)
- Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, D-37077 Göttingen, Germany;
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| |
Collapse
|
26
|
Schöneich S, Kostarakos K, Hedwig B. An auditory feature detection circuit for sound pattern recognition. SCIENCE ADVANCES 2015; 1:e1500325. [PMID: 26601259 PMCID: PMC4643773 DOI: 10.1126/sciadv.1500325] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/26/2015] [Indexed: 06/01/2023]
Abstract
From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns.
Collapse
Affiliation(s)
| | | | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
27
|
Schmidt AK, Riede K, Römer H. No phenotypic signature of acoustic competition in songs of a tropical cricket assemblage. Behav Ecol 2015. [DOI: 10.1093/beheco/arv141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Wirtssohn S, Ronacher B. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper. J Neurophysiol 2015; 113:2280-8. [PMID: 25609104 DOI: 10.1152/jn.00390.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 01/20/2015] [Indexed: 11/22/2022] Open
Abstract
Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution.
Collapse
Affiliation(s)
- Sarah Wirtssohn
- Behavioural Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany; and Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Bernhard Ronacher
- Behavioural Physiology Group, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany; and Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
29
|
Blankers T, Hennig RM, Gray DA. Conservation of multivariate female preference functions and preference mechanisms in three species of trilling field crickets. J Evol Biol 2015; 28:630-41. [PMID: 25661511 DOI: 10.1111/jeb.12599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/30/2022]
Abstract
Divergence in mate recognition systems among closely related species is an important contributor to assortative mating and reproductive isolation. Here, we examine divergence in male song traits and female preference functions in three cricket species with songs consisting of long trills. The shape of female preference functions appears to be mostly conserved across species and follows the predictions from a recent model for song recognition. Multivariate preference profiles, combining the pulse and trill parameters, demonstrate selectivity for conspecific pulse rates and high trill duty cycles. The rules for integration across pulse and trill timescales were identical for all three species. Generally, we find greater divergence in male song traits than in associated female preferences. For pulse rate, we find a strong match between divergent male traits and female peak preferences. Preference functions for trill parameters and carrier frequency are similar between species and show less congruence between signal and preference. Differences among traits in the degree of trait-preference (mis)match may reflect the strength of preferences and the potential for linkage disequilibrium, selective constraints and alternative selective pressures, but appear unrelated to selection for mate recognition per se.
Collapse
Affiliation(s)
- T Blankers
- Behavioural Physiology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | | |
Collapse
|
30
|
Insect hearing: from physics to ecology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1-4. [DOI: 10.1007/s00359-014-0966-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/30/2022]
|
31
|
Hemp C, Heller KG, Warchałowska-Śliwa E, Grzywacz B, Hemp A. Ecology, acoustics and chromosomes of the East African genus Afroanthracites Hemp & Ingrisch (Orthoptera, Tettigoniidae, Conocephalinae, Agraeciini) with the description of new species. ORG DIVERS EVOL 2014. [DOI: 10.1007/s13127-014-0194-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Computational principles underlying recognition of acoustic signals in grasshoppers and crickets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:61-71. [PMID: 25258206 DOI: 10.1007/s00359-014-0946-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Grasshoppers and crickets independently evolved hearing organs and acoustic communication. They differ considerably in the organization of their auditory pathways, and the complexity of their songs, which are essential for mate attraction. Recent approaches aimed at describing the behavioral preference functions of females in both taxa by a simple modeling framework. The basic structure of the model consists of three processing steps: (1) feature extraction with a bank of 'LN models'-each containing a linear filter followed by a nonlinearity, (2) temporal integration, and (3) linear combination. The specific properties of the filters and nonlinearities were determined using a genetic learning algorithm trained on a large set of different song features and the corresponding behavioral response scores. The model showed an excellent prediction of the behavioral responses to the tested songs. Most remarkably, in both taxa the genetic algorithm found Gabor-like functions as the optimal filter shapes. By slight modifications of Gabor filters several types of preference functions could be modeled, which are observed in different cricket species. Furthermore, this model was able to explain several so far enigmatic results in grasshoppers. The computational approach offered a remarkably simple framework that can account for phenotypically rather different preference functions across several taxa.
Collapse
|