1
|
Nagai M, Ewbank H, Po SS, Dasari TW. Cardio-respiratory coupling and myocardial recovery in heart failure with reduced ejection fraction. Respir Physiol Neurobiol 2024; 328:104313. [PMID: 39122159 DOI: 10.1016/j.resp.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION The interaction between the cardiovascular and respiratory systems in healthy subjects is determined by the autonomic nervous system and reflected in respiratory sinus arrhythmia. Recently, another pattern of cardio-respiratory coupling (CRC) has been proposed linking synchronization of heart and respiratory system. However, CRC has not been studied precisely in heart failure (HF) with reduced ejection fraction (EF) (HFrEF) according to the myocardial recovery. METHODS 10-min resting electrocardiography measurements were performed in persistent HFrEF patients (n=40) who had a subsequent left ventricular EF (LVEF) of ≤ 40 %, HF with recovered EF patients (HFrecEF) (n=41) who had a subsequent LVEF of > 40 % and healthy controls (n=40). Respiratory frequency, respiratory rate, CRC index, time-domain, frequency-domain and nonlinear heart rate variability indices were obtained using standardized software-Kubios™. CRC index was defined as respiratory high-frequency peak minus heart rate variability high-frequency peak. RESULTS Respiratory rate was positively correlated with high-frequency (HF) peak (Hz) in both persistent HFrEF group (p<0.001) and HFrecEF group (p<0.001), while respiratory rate was negatively correlated with HF power (ms2) in the healthy controls (p<0.05). CRC index was lowest in the persistent HFrEF group followed by HFrecEF and was high in healthy controls (0.008 vs 0.012 vs 0.056 Hz, p=0.03). CONCLUSION CRC index was lowest in patients with impaired myocardial recovery, which indicates that cardio-respiratory synchrony is stronger in persistent HFrEF. This may represent a higher HF peak (Hz)/lower HF power (ms2) and abnormal sympathovagal balance in persistent HFrEF group compared to healthy controls. Further work is underway to tests this hypothesis and determine the utility of CRC index in HF phenotypes and its utility as a potential biomarker of response with neuromodulation.
Collapse
Affiliation(s)
- Michiaki Nagai
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA.
| | - Hallum Ewbank
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA
| | - Sunny S Po
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA
| | - Tarun W Dasari
- Cardiovascular section, Department of medicine, University of Oklahoma Health Science Center, OK, USA.
| |
Collapse
|
2
|
Kamra K, Zucker IH, Schultz HD, Wang HJ. Chemoreflex sensitization occurs in both male and female rats during recovery from acute lung injury. Front Physiol 2024; 15:1401774. [PMID: 39105084 PMCID: PMC11298475 DOI: 10.3389/fphys.2024.1401774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Sex-specific patterns in respiratory conditions, such as asthma, COPD, cystic fibrosis, obstructive sleep apnea, and idiopathic pulmonary fibrosis, have been previously documented. Animal models of acute lung injury (ALI) have offered insights into sex differences, with male mice exhibiting distinct lung edema and vascular leakage compared to female mice. Our lab has provided evidence that the chemoreflex is sensitized in male rats during the recovery from bleomycin-induced ALI, but whether sex-based chemoreflex changes occur post-ALI is not known. To bridge this gap, the current study employed the bleomycin-induced ALI animal model to investigate sex-based differences in chemoreflex activation during the recovery from ALI. Methods ALI was induced using a single intra-tracheal instillation of bleomycin (bleo, 2.5 mg/Kg) (day 1). Resting respiratory frequency (fR) was measured at 1-2 days pre-bleo, day 7 (D7) post-bleo, and 1 month (1 mth) post-bleo. The chemoreflex responses to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia (21% O2, 5% CO2) were measured before bleo administration (pre-bleo) and 1 mth post-bleo using whole-body plethysmography. The apnea-hypopnea Index (AHI), post-sigh apneas, and sighs were measured at each time point. Results There were no significant differences in resting fR between male and female rats at the pre-bleo time point or in the increase in resting fR at D7 post-bleo. At 1 mth post-bleo, the resting fR was partially restored in both sexes but the recovery towards normal ranges of resting fR was significantly lower in male rats. The AHI, post-sigh apneas, and sighs were not different between male and female rats pre-bleo and 1 mth post-bleo. However, at D7 post-bleo, the male rats exhibited a higher AHI than female rats. Both male and female rats exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia with no significant differences between sexes. Conclusion A sex difference in resting ventilatory parameters occurs post ALI with a prolonged increase in resting fR and larger AHI in male rats. On the other hand, we did not find any sex differences in the chemoreflex sensitization that occurs at 1 mth post-bleo. This work contributes to a better understanding of sex-based variations in lung disorders.
Collapse
Affiliation(s)
- Kajal Kamra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
3
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
4
|
Lataro RM, Moraes DJA, Gava FN, Omoto ACM, Silva CAA, Brognara F, Alflen L, Brazão V, Colato RP, do Prado JC, Ford AP, Salgado HC, Paton JFR. P2X3 receptor antagonism attenuates the progression of heart failure. Nat Commun 2023; 14:1725. [PMID: 36977675 PMCID: PMC10050083 DOI: 10.1038/s41467-023-37077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.
Collapse
Affiliation(s)
- Renata M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Davi J A Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabio N Gava
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical Veterinary, Agrarian Sciences Center, Londrina State University, Londrina, Brazil
| | - Ana C M Omoto
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos A A Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lais Alflen
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Deep Singh T. Abnormal Sleep-Related Breathing Related to Heart Failure. Sleep Med Clin 2022; 17:87-98. [PMID: 35216764 DOI: 10.1016/j.jsmc.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sleep-disordered breathing (SDB) is highly prevalent in patients with heart failure (HF). Untreated obstructive sleep apnea (OSA) and central sleep apnea (CSA) in patients with HF are associated with worse outcomes. Detailed sleep history along with polysomnography (PSG) should be conducted if SDB is suspected in patients with HF. First line of treatment is the optimization of medical therapy for HF and if symptoms persist despite optimization of the treatment, positive airway pressure (PAP) therapy will be started to treat SDB. At present, there is limited evidence to prescribe any drugs for treating CSA in patients with HF. There is limited evidence for the efficacy of continuous positive airway pressure (CPAP) or adaptive servo-ventilation (ASV) in improving mortality in patients with heart failure with reduced ejection fraction (HFrEF). There is a need to perform well-designed studies to identify different phenotypes of CSA/OSA in patients with HF and to determine which phenotype responds to which therapy. Results of ongoing trials, ADVENT-HF, and LOFT-HF are eagerly awaited to shed more light on the management of CSA in patients with HF. Until then the management of SDB in patients with HF is limited due to the lack of evidence and guidance for treating SDB in patients with HF.
Collapse
Affiliation(s)
- Tripat Deep Singh
- Academy of Sleep Wake Science, #32 St.no-9 Guru Nanak Nagar, near Gurbax Colony, Patiala, Punjab, India 147003.
| |
Collapse
|
6
|
Pinna GD, Maestri R. Computer-Assisted Assessment of the Interaction Between Arousals, Breath-by-Breath Ventilation, and Chemical Drive During Cheyne-Stokes Respiration in Heart Failure Patients. Front Physiol 2022; 13:815352. [PMID: 35222084 PMCID: PMC8867072 DOI: 10.3389/fphys.2022.815352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Transient increases in ventilation induced by arousal from sleep during Cheyne-Stokes respiration in heart failure patients are thought to contribute to sustaining and exacerbating the ventilatory oscillation. The only possibility to investigate the validity of this notion is to use observational data. This entails some significant challenges: (i) accurate identification of both arousal onset and offset; (ii) detection of short arousals (<3 s); (iii) breath-by-breath analysis of the interaction between arousals and ventilation; (iv) careful control for important confounding factors. In this paper we report how we have tackled these challenges by developing innovative computer-assisted methodologies. The identification of arousal onset and offset is performed by a hybrid approach that integrates visual scoring with computer-based automated analysis. We use a statistical detector to automatically discriminate between dominant theta–delta and dominant alpha activity at each instant of time. Moreover, a statistical detector is used to validate visual scoring of K complexes, delta waves or artifacts associated with an EEG frequency shift, as well as frequency shifts to beta activity. A high-resolution (250 ms) state-transition diagram providing continuous information on the sleep-wake state of the subject is finally obtained. Based on this information, arousals are automatically identified as any state change from sleep to wakefulness lasting ≥2 s. The assessment of the interaction between arousals and ventilation is performed using a breath-by-breath, case-control approach. The arousal-associated change in ventilation is measured as the normalized difference between minute ventilation in the case breath (i.e., with arousal) and that in the control breath (i.e., without arousal), controlling for sleep stage and chemical drive. The latter is estimated by using information from pulse oximetry at the finger. In the last part of the paper, we discuss main potential sources of error inherent in the described methodologies.
Collapse
|
7
|
Pinna GD, Robbi E, Bruschi C, La Rovere MT, Maestri R. Interaction Between Arousals and Ventilation During Cheyne-Stokes Respiration in Heart Failure Patients: Insights From Breath-by-Breath Analysis. Front Med (Lausanne) 2022; 8:742458. [PMID: 34977056 PMCID: PMC8717813 DOI: 10.3389/fmed.2021.742458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Study Objectives: Arousals from sleep during the hyperpneic phases of Cheyne-Stokes respiration with central sleep apnea (CSR-CSA) in patients with heart failure are thought to cause ventilatory overshoot and a consequent longer apnea, thereby sustaining and exacerbating ventilatory instability. However, data supporting this model are lacking. We investigated the relationship between arousals, hyperpnea and post-hyperpnea apnea length during CSR-CSA. Methods: Breath-by-breath changes in ventilation associated with the occurrence of arousal were evaluated in 18 heart failure patients with CSR-CSA, apnea-hypopnea index ≥15/h and central apnea index ≥5/h. The change in apnea length associated with the presence of arousal during the previous hyperpnea was also evaluated. Potential confounding variables (chemical drive, sleep stage) were controlled for. Results: Arousals were associated with a large increase in ventilation at the beginning of the hyperpnea (+76 ± 35%, p < 0.0001), that rapidly declined during its crescendo phase. Around peak hyperpnea, the change in ventilation was -8 ± 26% (p = 0.14). The presence of arousal during the hyperpnea was associated with a median increase in the length of the subsequent apnea of +4.6% (Q1, Q2: -0.7%, 20.5%; range: -8.5%, 36.2%) (p = 0.021). The incidence of arousals occurring at the beginning of hyperpnea and mean ventilation in the region around its peak were independent predictors of the change in apnea length (p = 0.004 and p = 0.015, respectively; R2 = 0.78). Conclusions: Arousals from sleep during CSR-CSA in heart failure patients are associated with a rapidly decreasing ventilatory overshoot at the beginning of the hyperpnea, followed by a tendency toward a slight ventilatory undershoot around its peak. On average, arousals are also associated with a modest increase in post-hyperpnea apnea length; however, large increases in apnea length (>20%) occur in about a quarter of the patients.
Collapse
Affiliation(s)
- Gian Domenico Pinna
- Laboratory for the Study of Ventilatory Instability, Department of Biomedical Engineering, Montescano Institute - IRCCS, Istituti Clinici Scientifici Maugeri, Montescano, Italy
| | - Elena Robbi
- Sleep and Respiratory Function Unit, Montescano Institute - IRCCS, Istituti Clinici Scientifici Maugeri, Montescano, Italy.,Laboratory for the Study of the Autonomic Nervous System, Department of Cardiology, Montescano Institute - IRCCS, Istituti Clinici Scientifici Maugeri, Montescano, Italy
| | - Claudio Bruschi
- Department of Pneumology, Montescano Institute - IRCCS, Istituti Clinici Scientifici Maugeri, Montescano, Italy
| | - Maria Teresa La Rovere
- Laboratory for the Study of the Autonomic Nervous System, Department of Cardiology, Montescano Institute - IRCCS, Istituti Clinici Scientifici Maugeri, Montescano, Italy
| | - Roberto Maestri
- Laboratory for the Study of Ventilatory Instability, Department of Biomedical Engineering, Montescano Institute - IRCCS, Istituti Clinici Scientifici Maugeri, Montescano, Italy
| |
Collapse
|
8
|
Schwarz KG, Pereyra KV, Toledo C, Andrade DC, Díaz HS, Díaz-Jara E, Ortolani D, Rios-Gallardo A, Arias P, Las Heras A, Vera I, Ortiz FC, Inestrosa NC, Vio CP, Del Rio R. Effects of enriched-potassium diet on cardiorespiratory outcomes in experimental non-ischemic chronic heart failure. Biol Res 2021; 54:43. [PMID: 34952651 PMCID: PMC8710008 DOI: 10.1186/s40659-021-00365-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology. Interestingly, potassium (K+) supplemented diets showed promising results in normalizing RAS axis and autonomic dysfunction in vascular diseases, lowering cardiovascular risk. Whether subtle increases in dietary K+ consumption may exert similar effects in CHF has not been previously tested. Accordingly, we aimed to evaluate the effects of dietary K+ supplementation on cardiorespiratory alterations in rats with CHF. Methods Adult male Sprague–Dawley rats underwent volume overload to induce non-ischemic CHF. Animals were randomly allocated to normal chow diet (CHF group) or supplemented K+ diet (CHF+K+ group) for 6 weeks. Cardiac arrhythmogenesis, sympathetic outflow, baroreflex sensitivity, breathing disorders, chemoreflex function, respiratory–cardiovascular coupling and cardiac function were evaluated. Results Compared to normal chow diet, K+ supplemented diet in CHF significantly reduced arrhythmia incidence (67.8 ± 15.1 vs. 31.0 ± 3.7 events/hour, CHF vs. CHF+K+), decreased cardiac sympathetic tone (ΔHR to propranolol: − 97.4 ± 9.4 vs. − 60.8 ± 8.3 bpm, CHF vs. CHF+K+), restored baroreflex function and attenuated irregular breathing patterns. Additionally, supplementation of the diet with K+ restores normal central respiratory chemoreflex drive and abrogates pathological cardio-respiratory coupling in CHF rats being the outcome an improved cardiac function. Conclusion Our findings support that dietary K+ supplementation in non-ischemic CHF alleviate cardiorespiratory dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00365-z.
Collapse
Affiliation(s)
- Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Fisiología y Medicina de Altura, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Paulina Arias
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexandra Las Heras
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Vera
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos P Vio
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Csizmadia S, Fodor GH, Palkó A, Vörös E. Size of the Carotid Body in Patients with Cardiovascular and Respiratory Diseases Measured by Computed Tomography Angiography: A Case-Control Study. Radiol Res Pract 2021; 2021:9499420. [PMID: 34697571 PMCID: PMC8538397 DOI: 10.1155/2021/9499420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Carotid bodies (CBs) play an important role in regulating sympathetic nervous system activity. Thus, they are likely to be enlarged in patients with certain cardiovascular and respiratory diseases. The aim of this case-control study was to verify this hypothesis using computed tomography angiography (CTA). METHODS We retrospectively analysed 141 CTAs including 16 controls, 96 patients with only hypertension (HT), 12 with HT and previous acute myocardial infarction (AMI), 9 with HT and heart failure (HF), and 8 with HT and chronic obstructive pulmonary disease (COPD). We assessed the data using analysis of variance, with p < 0.05 indicating significance. RESULTS CB average areas in the controls were 2.31 mm2 (right side (RS)) vs. 2.34 mm2 (left side (LS)). CB size was significantly enlarged in patients with HT: 3.07 mm2 (RS) (p=0.019) vs. 2.91 mm2 (LS) (p=0.002). If AMI (RS: 3.5 mm2; LS: 3.44 mm2) or HF (RS: 4.01 mm2; LS: 4.55 mm2) was associated with HT, the CB size was even more enlarged. COPD did not affect CB size (RS: 2.40 mm2; LS: 2.29 mm2). CONCLUSIONS Our data showed that certain diseases with increased activity of the sympathetic nervous system were associated with significantly enlarged CBs.
Collapse
Affiliation(s)
- Sándor Csizmadia
- Affidea Hungary Ltd. Budapest, 44-46 Bókay János Street, Budapest H-1083, Hungary
| | - Gergely H. Fodor
- Department of Medical Physics and Informatics, University of Szeged, Faculty of General Medicine, 9 Korányi Alley, Szeged H-6725, Hungary
| | - András Palkó
- Department of Radiology, University of Szeged, Faculty of General Medicine, 6 Semmelweis Street, Szeged H-6725, Hungary
| | - Erika Vörös
- Department of Radiology, University of Szeged, Faculty of General Medicine, 6 Semmelweis Street, Szeged H-6725, Hungary
| |
Collapse
|
10
|
Radovanović NN, Pavlović SU, Milašinović G, Platiša MM. Effects of Cardiac Resynchronization Therapy on Cardio-Respiratory Coupling. ENTROPY 2021; 23:e23091126. [PMID: 34573751 PMCID: PMC8472383 DOI: 10.3390/e23091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022]
Abstract
In this study, the effect of cardiac resynchronization therapy (CRT) on the relationship between the cardiovascular and respiratory systems in heart failure subjects was examined for the first time. We hypothesized that alterations in cardio-respiratory interactions, after CRT implantation, quantified by signal complexity, could be a marker of a favorable CRT response. Sample entropy and scaling exponents were calculated from synchronously recorded cardiac and respiratory signals 20 min in duration, collected in 47 heart failure patients at rest, before and 9 months after CRT implantation. Further, cross-sample entropy between these signals was calculated. After CRT, all patients had lower heart rate and CRT responders had reduced breathing frequency. Results revealed that higher cardiac rhythm complexity in CRT non-responders was associated with weak correlations of cardiac rhythm at baseline measurement over long scales and over short scales at follow-up recording. Unlike CRT responders, in non-responders, a significant difference in respiratory rhythm complexity between measurements could be consequence of divergent changes in correlation properties of the respiratory signal over short and long scales. Asynchrony between cardiac and respiratory rhythm increased significantly in CRT non-responders during follow-up. Quantification of complexity and synchrony between cardiac and respiratory signals shows significant associations between CRT success and stability of cardio-respiratory coupling.
Collapse
Affiliation(s)
- Nikola N. Radovanović
- Pacemaker Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.U.P.); (G.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-366-3690; Fax: +381-11-362-9095
| | - Siniša U. Pavlović
- Pacemaker Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.U.P.); (G.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Goran Milašinović
- Pacemaker Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.U.P.); (G.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana M. Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
| |
Collapse
|
11
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Keir DA, Duffin J, Floras JS. Measuring Peripheral Chemoreflex Hypersensitivity in Heart Failure. Front Physiol 2020; 11:595486. [PMID: 33447244 PMCID: PMC7802759 DOI: 10.3389/fphys.2020.595486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) induces chronic sympathetic activation. This disturbance is a consequence of both compensatory reflex disinhibition in response to lower cardiac output and patient-specific activation of one or more excitatory stimuli. The result is the net adrenergic output that exceeds homeostatic need, which compromises cardiac, renal, and vascular function and foreshortens lifespan. One such sympatho-excitatory mechanism, evident in ~40-45% of those with HFrEF, is the augmentation of carotid (peripheral) chemoreflex ventilatory and sympathetic responsiveness to reductions in arterial oxygen tension and acidosis. Recognition of the contribution of increased chemoreflex gain to the pathophysiology of HFrEF and to patients' prognosis has focused attention on targeting the carotid body to attenuate sympathetic drive, alleviate heart failure symptoms, and prolong life. The current challenge is to identify those patients most likely to benefit from such interventions. Two assumptions underlying contemporary test protocols are that the ventilatory response to acute hypoxic exposure quantifies accurately peripheral chemoreflex sensitivity and that the unmeasured sympathetic response mirrors the determined ventilatory response. This Perspective questions both assumptions, illustrates the limitations of conventional transient hypoxic tests for assessing peripheral chemoreflex sensitivity and demonstrates how a modified rebreathing test capable of comprehensively quantifying both the ventilatory and sympathoneural efferent responses to peripheral chemoreflex perturbation, including their sensitivities and recruitment thresholds, can better identify individuals most likely to benefit from carotid body intervention.
Collapse
Affiliation(s)
- Daniel A. Keir
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - James Duffin
- Department of Anesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
| | - John S. Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada
| |
Collapse
|
13
|
Hutson TN, Rezaei F, Gautier NM, Indumathy J, Glasscock E, Iasemidis L. Directed Connectivity Analysis of the Neuro-Cardio- and Respiratory Systems Reveals Novel Biomarkers of Susceptibility to SUDEP. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:301-311. [PMID: 34223181 PMCID: PMC8249082 DOI: 10.1109/ojemb.2020.3036544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 01/11/2023] Open
Abstract
Goal: Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality and its pathophysiological mechanisms remain unknown. We set to record and analyze for the first time concurrent electroencephalographic (EEG), electrocardiographic (ECG), and unrestrained whole-body plethysmographic (Pleth) signals from control (WT - wild type) and SUDEP-prone mice (KO- knockout Kcna1 animal model). Employing multivariate autoregressive models (MVAR) we measured all tri-organ effective directional interactions by the generalized partial directed coherence (GPDC) in the frequency domain over time (hours). When compared to the control (WT) animals, the SUDEP-prone (KO) animals exhibited (p < 0.001) reduced afferent and efferent interactions between the heart and the brain over the full frequency spectrum (0-200Hz), enhanced efferent interactions from the brain to the lungs and from the heart to the lungs at high (>90 Hz) frequencies (especially during periods with seizure activity), and decreased feedback from the lungs to the brain at low (<40 Hz) frequencies. These results show that impairment in the afferent and efferent pathways in the holistic neuro-cardio-respiratory network could lead to SUDEP, and effective connectivity measures and their dynamics could serve as novel biomarkers of susceptibility to SUDEP and seizures respectively.
Collapse
Affiliation(s)
- T. Noah Hutson
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
| | - Farnaz Rezaei
- Department of Mathematics and StatisticsLouisiana Tech UniversityRustonLA71272USA
| | - Nicole M. Gautier
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA71130USA
| | - Jagadeeswaran Indumathy
- Department of PhysiologyJawaharlal Institute of Postgraduate Medical Education and ResearchPuducherryIndia
| | - Edward Glasscock
- Department of Biological SciencesSouthern Methodist UniversityDallasTX75275USA
| | - Leonidas Iasemidis
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
- Center for Biomedical Engineering and Rehabilitation ScienceLouisiana Tech UniversityRustonLA71272USA
| |
Collapse
|
14
|
Javaheri S, Brown LK, Khayat RN. Update on Apneas of Heart Failure With Reduced Ejection Fraction: Emphasis on the Physiology of Treatment. Chest 2020; 157:1637-1646. [DOI: 10.1016/j.chest.2019.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/17/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
|
15
|
Callara AL, Morelli MS, Hartwig V, Landini L, Giannoni A, Passino C, Emdin M, Vanello N. Ld-EEG Effective Brain Connectivity in Patients With Cheyne-Stokes Respiration. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1216-1225. [PMID: 32191895 DOI: 10.1109/tnsre.2020.2981991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The characterization of brain cortical activity in heart-failure patients affected by Cheyne-Stokes Respiration might provide relevant information about the mechanism underlying this pathology. Central autonomic network is gaining increasing attention for its role in the regulation of breathing and cardiac functions. In this scenario, evaluating changes in cortical connectivity associated with Cheyne-Stokes Respiration may be of interest in the study of specific brain-activity related to such disease. Nonetheless, the inter subject variability, the temporal dynamics of Central-Apnea/Hyperpnea cycles and the limitations of clinical setups lead to different methodological challenges. To this aim, we present a framework for the assessment of cortico-cortical interactions from Electroencephalographic signals acquired using low-density caps and block-design paradigms, arising from endogenous triggers. The framework combines ICA-decomposition, unsupervised clustering, MVAR modelling and a permutation-bootstrap strategy for evaluating significant connectivity differences between conditions. A common network, lateralized towards the left hemisphere, was depicted across 8 patients exhibiting Cheyne-Stokes Respiration patterns during acquisitions. Significant differences in connectivity at the group level were observed based on patients' ventilatory condition. Interactions were significantly higher during hyperpnea periods with respect to central apneas and occurred mainly in the delta band. Opposite-sign differences were observed for higher frequencies (i.e. beta, low-gamma).
Collapse
|
16
|
Debi RA, Spector SP. Heart to breathe: partial ablation of rostral ventrolateral medulla catecholaminergic neurons mediates disordered breathing in volume overload heart failure rats. J Physiol 2020; 598:447-449. [PMID: 31900936 DOI: 10.1113/jp279368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ryan Andrew Debi
- York University, Biology, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada
| | | |
Collapse
|
17
|
Toledo C, Andrade DC, Díaz HS, Pereyra KV, Schwarz KG, Díaz-Jara E, Oliveira LM, Takakura AC, Moreira TS, Schultz HD, Marcus NJ, Del Rio R. Rostral ventrolateral medullary catecholaminergic neurones mediate irregular breathing pattern in volume overload heart failure rats. J Physiol 2019; 597:5799-5820. [PMID: 31642520 DOI: 10.1113/jp278845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/14/2019] [Indexed: 08/25/2023] Open
Abstract
KEY POINTS A strong association between disordered breathing patterns, elevated sympathetic activity, and enhanced central chemoreflex drive has been shown in experimental and human heart failure (HF). The aim of this study was to determine the contribution of catecholaminergic rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) to both haemodynamic and respiratory alterations in HF. Apnoea/hypopnoea incidence (AHI), breathing variability, respiratory-cardiovascular coupling, cardiac autonomic control and cardiac function were analysed in HF rats with or without selective ablation of RVLM-C1 neurones. Partial lesion (∼65%) of RVLM-C1 neurones reduces AHI, respiratory variability, and respiratory-cardiovascular coupling in HF rats. In addition, the deleterious effects of central chemoreflex activation on cardiac autonomic balance and cardiac function in HF rats was abolished by ablation of RVLM-C1 neurones. Our findings suggest that RVLM-C1 neurones play a pivotal role in breathing irregularities in volume overload HF, and mediate the sympathetic responses induced by acute central chemoreflex activation. ABSTRACT Rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) modulate sympathetic outflow and breathing under normal conditions. Heart failure (HF) is characterized by chronic RVLM-C1 activation, increased sympathetic activity and irregular breathing patterns. Despite studies showing a relationship between RVLM-C1 and sympathetic activity in HF, no studies have addressed a potential contribution of RVLM-C1 neurones to irregular breathing in this context. Thus, the aim of this study was to determine the contribution of RVLM-C1 neurones to irregular breathing patterns in HF. Sprague-Dawley rats underwent surgery to induce volume overload HF. Anti-dopamine β-hydroxylase-saporin toxin (DβH-SAP) was used to selectively lesion RVLM-C1 neurones. At 8 weeks post-HF induction, breathing pattern, blood pressures (BP), respiratory-cardiovascular coupling (RCC), central chemoreflex function, cardiac autonomic control and cardiac function were studied. Reduction (∼65%) of RVLM-C1 neurones resulted in attenuation of irregular breathing, decreased apnoea-hypopnoea incidence (11.1 ± 2.9 vs. 6.5 ± 2.5 events h-1 ; HF+Veh vs. HF+DβH-SAP; P < 0.05) and improved cardiac autonomic control in HF rats. Pathological RCC was observed in HF rats (peak coherence >0.5 between breathing and cardiovascular signals) and was attenuated by DβH-SAP treatment (coherence: 0.74 ± 0.12 vs. 0.54 ± 0.10, HF+Veh vs. HF+DβH-SAP rats; P < 0.05). Central chemoreflex activation had deleterious effects on cardiac function and cardiac autonomic control in HF rats that were abolished by lesion of RVLM-C1 neurones. Our findings reveal that RVLM-C1 neurones play a major role in irregular breathing patterns observed in volume overload HF and highlight their contribution to cardiac dysautonomia and deterioration of cardiac function during chemoreflex activation.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Andrade DC, Toledo C, Díaz HS, Lucero C, Arce-Álvarez A, Oliveira LM, Takakura AC, Moreira TS, Schultz HD, Marcus NJ, Alcayaga J, Del Rio R. Ablation of brainstem C1 neurons improves cardiac function in volume overload heart failure. Clin Sci (Lond) 2019; 133:393-405. [PMID: 30626730 DOI: 10.1042/cs20180589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 08/25/2023]
Abstract
Activation of the sympathetic nervous system is a hallmark of heart failure (HF) and is positively correlated with disease progression. Catecholaminergic (C1) neurons located in the rostral ventrolateral medulla (RVLM) are known to modulate sympathetic outflow and are hyperactivated in volume overload HF. However, there is no conclusive evidence showing a contribution of RVLM-C1 neurons to the development of cardiac dysfunction in the setting of HF. Therefore, the aim of this study was to determine the role of RVLM-C1 neurons in cardiac autonomic control and deterioration of cardiac function in HF rats. A surgical arteriovenous shunt was created in adult male Sprague-Dawley rats to induce HF. RVLM-C1 neurons were selectively ablated using cell-specific immunotoxin (dopamine-β hydroxylase saporin [DβH-SAP]) and measures of cardiac autonomic tone, function, and arrhythmia incidence were evaluated. Cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction were present in HF rats and improved after DβH-SAP toxin treatment. Most importantly, the progressive decline in fractional shortening observed in HF rats was reduced by DβH-SAP toxin. Our results unveil a pivotal role played by RVLM-C1 neurons in cardiac autonomic imbalance, arrhythmogenesis and cardiac dysfunction in volume overload-induced HF.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Escuela de Kinesiología, Facultad de Salud, Universidad Católica Silva Henríquez, Santiago, Chile
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brasil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brasil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brasil
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha NE, U.S.A
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines IA, U.S.A
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
19
|
Kouakam C, Stephan-Blanchard E, Léké A, Kongolo G, Haraux E, Delanaud S, Telliez F, Chardon K. The hypoxic test in preterm neonates reinvestigated. Pediatr Pulmonol 2018; 53:483-491. [PMID: 29136344 DOI: 10.1002/ppul.23907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
AIM We currently lack a suitable gold-standard method for implementation on modern equipment to assess peripheral chemoreceptor sensitivity. The aim of the present study was to develop an accurate and reproducible method for assessing peripheral chemoreceptors sensitivity in sleeping preterm neonates. METHODS A poïkilocapnic hypoxic test was performed twice during rapid eye movement sleep (REM sleep) and non-rapid eye movement sleep (nonREM sleep). The infant breathed hypoxic gas (15% O2 ) for 60 s. The ventilatory response to hypoxia was assessed by comparing minute ventilation during the control period (21% O2 ) with successive 4-cycles sequences during hypoxia. We detected the first statistically significant increase in minute ventilation and recorded the corresponding response time. RESULTS During normoxia, minute ventilation was higher during REM sleep than in nonREM sleep (428.1 mL · min-1 · kg-1 [307.7-633.6]; 388.8 mL · min-1 · kg-1 [264.7-608.0], respectively; P = 0.001). After hypoxia, minute ventilation increased in both REM and nonREM sleep. The response was significantly higher in REM than in nonREM (25.3% [10.8-80.0] and 16.8% [7.5-33.2], respectively; P = 0.005). The intraclass correlation coefficients for all respiratory parameters were above 0.90. CONCLUSION We have developed a highly reliable method for assessing peripheral chemoreceptors sensitivity at the response time to hypoxia. In the future, researchers could use this method to assess the involvement of peripheral chemoreceptors in infants who experience chronic hypoxia (e.g. in bronchopulmonary dysplasia and recurrent apnea).
Collapse
Affiliation(s)
- Christelle Kouakam
- PériTox-INERIS laboratory UMR_I 01, Jules Verne University of Picardy, Amiens, France
| | | | - André Léké
- PériTox-INERIS laboratory UMR_I 01, Jules Verne University of Picardy, Amiens, France.,Department of Neonatal Medicine, University Hospital, Amiens, France
| | - Guy Kongolo
- Department of Pediatric Intensive Care Unit, University Hospital, Amiens, France
| | - Elodie Haraux
- PériTox-INERIS laboratory UMR_I 01, Jules Verne University of Picardy, Amiens, France.,Department of Pediatric Surgery, University Hospital, Amiens, France
| | - Stéphane Delanaud
- PériTox-INERIS laboratory UMR_I 01, Jules Verne University of Picardy, Amiens, France
| | - Frédéric Telliez
- PériTox-INERIS laboratory UMR_I 01, Jules Verne University of Picardy, Amiens, France
| | - Karen Chardon
- PériTox-INERIS laboratory UMR_I 01, Jules Verne University of Picardy, Amiens, France
| |
Collapse
|
20
|
Radovanović NN, Pavlović SU, Milašinović G, Kirćanski B, Platiša MM. Bidirectional Cardio-Respiratory Interactions in Heart Failure. Front Physiol 2018; 9:165. [PMID: 29559923 PMCID: PMC5845639 DOI: 10.3389/fphys.2018.00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals) and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin), with sinus rhythm and ventricular extrasystoles (HF-VES), and with permanent atrial fibrillation (HF-AF). We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF) there is no coherence between signals (p < 0.01), while in HF-Sin it is reduced (p < 0.05), compared with control subjects. In all heart failure groups causality between signals is diminished, but with significantly stronger causality of RR signal in respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the presence of atrial/ventricular arrhythmias and it could be revealed by complementary methods of time series analysis.
Collapse
Affiliation(s)
| | - Siniša U Pavlović
- Pacemaker Center, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Milašinović
- Pacemaker Center, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Mirjana M Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Chu G, Choi P, McDonald VM. Sleep disturbance and sleep-disordered breathing in hemodialysis patients. Semin Dial 2017; 31:48-58. [DOI: 10.1111/sdi.12617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ginger Chu
- Nephrology Department; Medical & Interventional Services; John Hunter Hospital; Hunter New England Local Health District NSW Australia
- School of Nursing and Midwifery; University of Newcastle; Newcastle NSW Australia
| | - Peter Choi
- Nephrology Department; Medical & Interventional Services; John Hunter Hospital; Hunter New England Local Health District NSW Australia
| | - Vanessa M. McDonald
- School of Nursing and Midwifery; University of Newcastle; Newcastle NSW Australia
- Priority Research Centre for Healthy Lung; School of Nursing and Midwifery; University of Newcastle; Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine; John Hunter Hospital; Hunter New England Local Health District NSW Australia
| |
Collapse
|
22
|
Abstract
Central sleep apnea and Cheyne-Stokes respiration are commonly observed breathing patterns during sleep in patients with congestive heart failure. Common risk factors are male gender, older age, presence of atrial fibrillation, and daytime hypocapnia. Proposed mechanisms include augmented peripheral and central chemoreceptor sensitivity, which increase ventilator instability during both wakefulness and sleep; diminished cerebrovascular reactivity and increased circulation time, which impair the normal buffering of Paco2 and hydrogen ions and delay the detection of changes in Paco2 during sleep; and rostral fluid shifts that predispose to hypocapnia.
Collapse
|
23
|
Toledo C, Andrade DC, Lucero C, Arce-Alvarez A, Díaz HS, Aliaga V, Schultz HD, Marcus NJ, Manríquez M, Faúndez M, Del Rio R. Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. J Physiol 2017; 595:2479-2495. [PMID: 28181258 DOI: 10.1113/jp273558] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Heart failure with preserved ejection fraction (HFpEF) is associated with disordered breathing patterns, and sympatho-vagal imbalance. Although it is well accepted that altered peripheral chemoreflex control plays a role in the progression of heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying deterioration of cardiac function in HFpEF are poorly understood. We found that central chemoreflex is enhanced in HFpEF and neuronal activation is increased in pre-sympathetic regions of the brainstem. Our data showed that activation of the central chemoreflex pathway in HFpEF exacerbates diastolic dysfunction, worsens sympatho-vagal imbalance and markedly increases the incidence of cardiac arrhythmias in rats with HFpEF. ABSTRACT Heart failure (HF) patients with preserved ejection fraction (HFpEF) display irregular breathing, sympatho-vagal imbalance, arrhythmias and diastolic dysfunction. It has been shown that tonic activation of the central and peripheral chemoreflex pathway plays a pivotal role in the pathophysiology of HF with reduced ejection fraction. In contrast, no studies to date have addressed chemoreflex function or its effect on cardiac function in HFpEF. Therefore, we tested whether peripheral and central chemoreflexes are hyperactive in HFpEF and if chemoreflex activation exacerbates cardiac dysfunction and autonomic imbalance. Sprague-Dawley rats (n = 32) were subjected to sham or volume overload to induce HFpEF. Resting breathing variability, chemoreflex gain, cardiac function and sympatho-vagal balance, and arrhythmia incidence were studied. HFpEF rats displayed [mean ± SD; chronic heart failure (CHF) vs. Sham, respectively] a marked increase in the incidence of apnoeas/hypopnoeas (20.2 ± 4.0 vs. 9.7 ± 2.6 events h-1 ), autonomic imbalance [0.6 ± 0.2 vs. 0.2 ± 0.1 low/high frequency heart rate variability (LF/HFHRV )] and cardiac arrhythmias (196.0 ± 239.9 vs. 19.8 ± 21.7 events h-1 ). Furthermore, HFpEF rats showed increase central chemoreflex sensitivity but not peripheral chemosensitivity. Accordingly, hypercapnic stimulation in HFpEF rats exacerbated increases in sympathetic outflow to the heart (229.6 ± 43.2% vs. 296.0 ± 43.9% LF/HFHRV , normoxia vs. hypercapnia, respectively), incidence of cardiac arrhythmias (196.0 ± 239.9 vs. 576.7 ± 472.9 events h-1 ) and diastolic dysfunction (0.008 ± 0.004 vs. 0.027 ± 0.027 mmHg μl-1 ). Importantly, the cardiovascular consequences of central chemoreflex activation were related to sympathoexcitation since these effects were abolished by propranolol. The present results show that the central chemoreflex is enhanced in HFpEF and that acute activation of central chemoreceptors leads to increases of cardiac sympathetic outflow, cardiac arrhythmogenesis and impairment in cardiac function in rats with HFpEF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Valentín Aliaga
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mónica Manríquez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Marcelo Faúndez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
24
|
Correale M, Carpagnano GE, Brunetti ND, Forte L, Monaco I, Ferraretti A, Sabato R, Barbaro MPF, Di Biase M, Lacedonia D. Respiratory drive in patients with chronic heart failure and central sleep apnea: Data from the Daunia Heart Failure Registry. Int J Cardiol 2017; 230:630-633. [PMID: 28065692 DOI: 10.1016/j.ijcard.2016.12.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/17/2016] [Accepted: 12/25/2016] [Indexed: 11/18/2022]
Affiliation(s)
| | | | | | - Lucia Forte
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Ilenia Monaco
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Armando Ferraretti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | | | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
25
|
Pijacka W, McBryde FD, Marvar PJ, Lincevicius GS, Abdala APL, Woodward L, Li D, Paterson DJ, Paton JFR. Carotid sinus denervation ameliorates renovascular hypertension in adult Wistar rats. J Physiol 2016; 594:6255-6266. [PMID: 27510951 DOI: 10.1113/jp272708] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/03/2016] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Peripheral chemoreflex sensitization is a feature of renovascular hypertension. Carotid sinus nerve denervation (CSD) has recently been shown to relieve hypertension and reduce sympathetic activity in other rat models of hypertension. We show that CSD in renovascular hypertension halts further increases in blood pressure. Possible mechanisms include improvements in baroreceptor reflex sensitivity and renal function, restoration of cardiac calcium signalling towards control levels, and reduced neural inflammation. Our data suggest that the peripheral chemoreflex may be a viable therapeutic target for renovascular hypertension. ABSTRACT The peripheral chemoreflex is known to be hyper-responsive in both spontaneously hypertensive (SHR) and Goldblatt hypertensive (two kidney one clip; 2K1C) rats. We have previously shown that carotid sinus nerve denervation (CSD) reduces arterial blood pressure (ABP) in SHR. In the present study, we show that CSD ameliorates 2K1C hypertension and reveal the potential underlying mechanisms. Adult Wistar rats were instrumented to record ABP via telemetry, and then underwent CSD (n = 9) or sham CSD (n = 9) 5 weeks after renal artery clipping, in comparison with normal Wistar rats (n = 5). After 21 days, renal function was assessed, and tissue was collected to assess sympathetic postganglionic intracellular calcium transients ([Ca2+ ]i ) and immune cell infiltrates. Hypertensive 2K1C rats showed a profound elevation in ABP (Wistar: 98 ± 4 mmHg vs. 2K1C: 147 ± 8 mmHg; P < 0.001), coupled with impairments in renal function and baroreflex sensitivity, increased neuroinflammatory markers and enhanced [Ca2+ ]I in stellate neurons (P < 0.05). CSD reduced ABP in 2K1C+CSD rats and prevented the further progressive increase in ABP seen in 2K1C+sham CSD rats, with a between-group difference of 14 ± 2 mmHg by week 3 (P < 0.01), which was accompanied by improvements in both baroreflex control and spectral indicators of cardiac sympatho-vagal balance. Furthermore, CSD improved protein and albuminuria, decreased [Ca2+ ]i evoked responses from stellate neurons, and also reduced indicators of brainstem inflammation. In summary, CSD in 2K1C rats reduces the hypertensive burden and improves renal function. This may be mediated by improvements in autonomic balance, functional remodelling of post-ganglionic neurons and reduced inflammation. Our results suggest that the peripheral chemoreflex may be considered as a potential therapeutic target for controlling renovascular hypertension.
Collapse
Affiliation(s)
- Wioletta Pijacka
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Fiona D McBryde
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.,Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J Marvar
- Department of Pharmacology and Physiology, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| | - Gisele S Lincevicius
- Cardiovascular Division - Department of Physiology, Escola Paulista de Medicina, Universidade Federal de, Sao Paulo, Brazil
| | - Ana P L Abdala
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Lavinia Woodward
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
26
|
Toledo C, Andrade DC, Lucero C, Schultz HD, Marcus N, Retamal M, Madrid C, Del Rio R. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J Physiol 2016; 595:43-51. [PMID: 27218485 DOI: 10.1113/jp272075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic heart failure (CHF) is a major public health problem. Tonic hyper-activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho-excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mauricio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Carlos Madrid
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
27
|
Iturriaga R, Del Rio R, Idiaquez J, Somers VK. Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease. Biol Res 2016; 49:13. [PMID: 26920146 PMCID: PMC4768417 DOI: 10.1186/s40659-016-0073-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/12/2016] [Indexed: 11/10/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation
of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile. .,Dirección de Investigación, Universidad Científica del Sur, Lima, Peru.
| | - Juan Idiaquez
- Catedra de Neurología, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
Limberg JK, Johnson BD, Holbein WW, Ranadive SM, Mozer MT, Joyner MJ. Interindividual variability in the dose-specific effect of dopamine on carotid chemoreceptor sensitivity to hypoxia. J Appl Physiol (1985) 2016; 120:138-47. [PMID: 26586909 PMCID: PMC4719057 DOI: 10.1152/japplphysiol.00723.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/13/2015] [Indexed: 11/22/2022] Open
Abstract
Human studies use varying levels of low-dose (1-4 μg·kg(-1)·min(-1)) dopamine to examine peripheral chemosensitivity, based on its known ability to blunt carotid body responsiveness to hypoxia. However, the effect of dopamine on the ventilatory responses to hypoxia is highly variable between individuals. Thus we sought to determine 1) the dose response relationship between dopamine and peripheral chemosensitivity as assessed by the ventilatory response to hypoxia in a cohort of healthy adults, and 2) potential confounding cardiovascular responses at variable low doses of dopamine. Young, healthy adults (n = 30, age = 32 ± 1, 24 male/6 female) were given intravenous (iv) saline and a range of iv dopamine doses (1-4 μg·kg(-1)·min(-1)) prior to and throughout five hypoxic ventilatory response (HVR) tests. Subjects initially received iv saline, and after each HVR the dopamine infusion rate was increased by 1 μg·kg(-1)·min(-1). Tidal volume, respiratory rate, heart rate, blood pressure, and oxygen saturation were continuously measured. Dopamine significantly reduced HVR at all doses (P < 0.05). When subjects were divided into high (n = 13) and low (n = 17) baseline chemosensitivity, dopamine infusion (when assessed by dose) reduced HVR in the high group only (P < 0.01), with no effect of dopamine on HVR in the low group (P > 0.05). Dopamine infusion also resulted in a reduction in blood pressure (3 μg·kg(-1)·min(-1)) and total peripheral resistance (1-4 μg·kg(-1)·min(-1)), driven primarily by subjects with low baseline chemosensitivity. In conclusion, we did not find a single dose of dopamine that elicited a nadir HVR in all subjects. Additionally, potential confounding cardiovascular responses occur with dopamine infusion, which may limit its usage.
Collapse
Affiliation(s)
| | - Blair D Johnson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Walter W Holbein
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| | | | - Michael T Mozer
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
29
|
Giannoni A, Raglianti V, Mirizzi G, Taddei C, Del Franco A, Iudice G, Bramanti F, Aimo A, Pasanisi E, Emdin M, Passino C. Influence of central apneas and chemoreflex activation on pulmonary artery pressure in chronic heart failure. Int J Cardiol 2016; 202:200-6. [DOI: 10.1016/j.ijcard.2015.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/16/2015] [Accepted: 09/06/2015] [Indexed: 10/23/2022]
|
30
|
Andrade DC, Lucero C, Toledo C, Madrid C, Marcus NJ, Schultz HD, Del Rio R. Relevance of the Carotid Body Chemoreflex in the Progression of Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:467597. [PMID: 26779536 PMCID: PMC4686619 DOI: 10.1155/2015/467597] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Chronic heart failure (CHF) is a global health problem affecting millions of people. Autonomic dysfunction and disordered breathing patterns are commonly observed in patients with CHF, and both are strongly related to poor prognosis and high mortality risk. Tonic activation of carotid body (CB) chemoreceptors contributes to sympathoexcitation and disordered breathing patterns in experimental models of CHF. Recent studies show that ablation of the CB chemoreceptors improves autonomic function and breathing control in CHF and improves survival. These exciting findings indicate that alterations in CB function are critical to the progression of CHF. Therefore, better understanding of the physiology of the CB chemoreflex in CHF could lead to improvements in current treatments and clinical management of patients with CHF characterized by high chemosensitivity. Accordingly, the main focus of this brief review is to summarize current knowledge of CB chemoreflex function in different experimental models of CHF and to comment on their potential translation to treatment of human CHF.
Collapse
Affiliation(s)
- David C. Andrade
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Carlos Madrid
- Centro de Fisiología Celular e Integrativa, Clínica Alemana-Universidad del Desarrollo, 7500000 Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA
| | - Harold D. Schultz
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
- Dirección de Investigación, Universidad Científica del Sur, Lima 15067, Peru
| |
Collapse
|
31
|
Del Rio R, Iturriaga R, Schultz HD. Editorial: Carotid body: a new target for rescuing neural control of cardiorespiratory balance in disease. Front Physiol 2015; 6:181. [PMID: 26175689 PMCID: PMC4483515 DOI: 10.3389/fphys.2015.00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center for Biomedical Research, Universidad Autónoma de Chile Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratory of Neurobiology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
32
|
Role of the Carotid Body Chemoreflex in the Pathophysiology of Heart Failure: A Perspective from Animal Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:167-85. [PMID: 26303479 DOI: 10.1007/978-3-319-18440-1_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment and management of chronic heart failure (CHF) remains an important focus for new and more effective clinical strategies. This important goal, however, is dependent upon advancing our understanding of the underlying pathophysiology. In CHF, sympathetic overactivity plays an important role in the development and progression of the cardiac and renal dysfunction and is often associated with breathing dysregulation, which in turn likely mediates or aggravates the autonomic imbalance. In this review we will summarize evidence that in CHF, the elevation in sympathetic activity and breathing instability that ultimately lead to cardiac and renal failure are driven, at least in part, by maladaptive activation of the carotid body (CB) chemoreflex. This maladaptive change derives from a tonic increase in CB afferent activity. We will focus our discussion on an understanding of mechanisms that alter CB afferent activity in CHF and its consequence on reflex control of autonomic, respiratory, renal, and cardiac function in animal models of CHF. We will also discuss the potential translational impact of targeting the CB in the treatment of CHF in humans, with relevance to other cardio-respiratory diseases.
Collapse
|