1
|
Fujikawa K, Nonaka N, Wang X, Shibata S. An in situ hybridization study of syndecan family during the late stages of developing mouse molar tooth germ. Anat Sci Int 2022; 97:358-368. [PMID: 35119611 DOI: 10.1007/s12565-022-00647-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/01/2022] [Indexed: 11/27/2022]
Abstract
Expression of syndecan-1, 2, 3, and 4 mRNAs during the late stages of tooth germ formation was investigated by in situ hybridization, using [35S]-UTP-labeled cRNA probes. Syndecan-1 mRNA was mainly expressed in the stellate reticulum and stratum intermedium as well as at the cervical region of dental papilla/dental follicle during E18.5-P3.0. Expression in the dental epithelium was enhanced during the postnatal periods, which was supported by real-time RT-PCR analysis. These spatiotemporal expression patterns may suggest specific roles of syndecan-1 in tooth formation such as tooth eruption or root formation. Syndecan-3 mRNA expression became evident in odontoblasts at E18.5, but compared to collagen type I mRNA, which was strongly expressed at this stage, syndecan-3 expression in odontoblast was restricted in mature odontoblasts beneath the cusps during the postnatal periods. This result was also supported by real-time RT-PCR analysis, and indicated that syndecan-3 may be involved in the progress of dentinogenesis rather than in the initiation of it. Syndecan-4 mRNA roughly showed comparable expression patterns to those of syndecan-3. Syndecan-2 mRNA did not show significant expression during the experimental period, but real-time RT-PCR analysis suggested that syndecan-2 expression might be enhanced with hard tissue formation.
Collapse
Affiliation(s)
- Kaoru Fujikawa
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo, Japan
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo, Japan
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Shunichi Shibata
- Department of Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Anatomy, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan.
| |
Collapse
|
2
|
Rodent incisor and molar dental follicles show distinct characteristics in tooth eruption. Arch Oral Biol 2021; 126:105117. [PMID: 33845260 DOI: 10.1016/j.archoralbio.2021.105117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Rodent incisors and molars show different eruption patterns. Dental follicles and their interaction with dental epithelia play key roles in tooth eruption. However, little is known about the differences between incisor dental follicle (IF) and molar dental follicle (MF) during tooth eruption of rodents. This study aimed to investigate the differences between IF and MF during tooth eruption under induction with cervical-loop cells (CLC) and Hertwig's epithelial root sheath (HERS) cells of rats. MATERIALS AND METHODS CLC, HERS, IF, MF cells were isolated from 10 postnatal day 7 rats and identified by immunofluorescence staining. CLC or HERS cells-derived conditioned medium (CM) was obtained to induce IF and MF cells. Cell proliferation, mineralization, gene and protein expression related to tooth eruption were detected, and histological analysis was also performed. RESULTS The osteogenic differentiation and mineralization abilities of IF cells were stronger than those of MF cells. Both CLC and HERS cells-derived CM enhanced these abilities of IF cells, whereas they showed the opposite effect on MF cells. At 7, 10, and 15 d after birth, IF cells expressed more OPG and less RANKL than MF cells. CONCLUSIONS IF and MF cells present distinct characteristics in tooth eruption, CLC and HERS cells have significant inductive effects on them.
Collapse
|
3
|
Wu J, Li H, Han L, Sun T, Tian Y, Wang X. The spatiotemporal expression pattern of Syndecans in murine embryonic teeth. Gene Expr Patterns 2020; 36:119109. [PMID: 32220631 DOI: 10.1016/j.gep.2020.119109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/05/2023]
Abstract
The hierarchical interactions between the dental epithelium and dental mesenchyme represent a common paradigm for organogenesis. During tooth development, various morphogens interact with extracellular components in the extracellular matrix and on the cell surfaces to transmit regulatory signaling into cells. We recently found pivotal roles of FAM20B-catalyzed proteoglycans in the control of murine tooth number at embryonic stages. However, the expression pattern of proteoglycans in embryonic teeth has not been well understood. We extracted total RNA from E14.5 murine tooth germs for semi-quantitative RT-PCR analysis of 29 proteoglycans, and identified 23 of them in the embryonic teeth. As a major subfamily of FAM20B-catalyzed proteoglycans, Syndecans are important candidates being potentially involved in the tooth development of mice. We examined the expression pattern of Syndecans in embryonic teeth using in situ hybridization (ISH) and immunohistochemistry (IHC) approaches. Syndecan-1 is mainly present in the dental mesenchyme at early embryonic stages. Subsequently, its expression expands to both dental epithelium and dental mesenchyme. Syndecan-2 is strongly expressed in the dental mesenchyme at early embryonic stages, then shifts to the stratum intermedium and inner dental epithelium at cap stages. Syndecan-3 shows a gradually increased expression that initially in the dental epithelium of both incisors and molars and then in the inner dental epithelium and stratum intermedium in molars alone. Syndecan-4 is localized in the dental epithelium in incisors and the dental follicle mesenchyme in molars at early cap stage. The spatiotemporal expression pattern of Syndecans in murine embryonic teeth suggest potential roles of these proteoglycans in murine tooth morphogenesis.
Collapse
Affiliation(s)
- Jingyi Wu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Hong Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Lu Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Tianyu Sun
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ye Tian
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246.
| |
Collapse
|
4
|
Duplancic R, Roguljic M, Puhar I, Vecek N, Dragun R, Vukojevic K, Saraga-Babic M, Kero D. Syndecans and Enzymes for Heparan Sulfate Biosynthesis and Modification Differentially Correlate With Presence of Inflammatory Infiltrate in Periodontitis. Front Physiol 2019; 10:1248. [PMID: 31611818 PMCID: PMC6773826 DOI: 10.3389/fphys.2019.01248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Periodontitis is a common degenerative disease initiated by the bacteria in subgingival biofilm. The exposure to bacterial biofilm triggers host inflammatory response whose dysregulation is ultimately responsible for the destruction of hard and soft periodontal tissues resulting in tooth loss. To date, significant effort has been invested in the research of the involvement of host cells and inflammatory mediators in regulation of inflammatory response in periodontitis. Syndecans (Sdcs) belong to a four-member family of heparan sulfate proteoglycans (HSPGs). Sdcs are compound molecules comprised of the core protein to which several heparan sulfate (HS) glycosaminoglycan (GAG) chains are attached. The role of Sdcs in pathogenesis of periodontitis is poorly investigated despite the numerous reports from experimental studies about the critical involvement of these factors in modulation of various aspects of inflammatory response, such as the formation of inflammatory mediators gradients, leukocyte recruitment and extracellular matrix remodeling in resolution of inflammation. Most of these functions of Sdcs are HS-related and, thus, dependent upon the structure of HS. This, in turn, is determined by the combinatorial action of enzymes for biosynthesis and modification of HS such as exostosis (EXTs), sulfotransferases (NDSTs), and heparanase 1 (HPSE1). The data presented in this study clearly indicate that some Sdcs display different expression profiles in healthy and diseased periodontal tissue. Additionally, the differences in expression profiles of HS GAG biosynthesis and modification enzymes (EXTs, NDSTs, and HPSE1) in healthy and diseased periodontal tissue imply that changes in HS GAG content and structure might also take place during periodontitis. Most notably, expression profiles of Sdcs, EXTs, NDSTs, and HPSE1 differentially correlate with the presence of inflammatory infiltrate in healthy and diseased periodontal tissue, which might imply that these factors could also be involved in modulation of inflammatory response in periodontitis.
Collapse
Affiliation(s)
- Roko Duplancic
- Study Programme of Dental Medicine, School of Medicine, University of Split, Split, Croatia
| | - Marija Roguljic
- Department of Oral Pathology and Periodontology, Study Programme of Dental Medicine, School of Medicine, University of Split, Split, Croatia
| | - Ivan Puhar
- Department of Periodontology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Nika Vecek
- Study Programme of Dental Medicine, School of Medicine, University of Split, Split, Croatia
| | - Ruzica Dragun
- Study Programme of Dental Medicine, School of Medicine, University of Split, Split, Croatia
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.,Laboratory for Early Human Development, School of Medicine, University of Split, Split, Croatia
| | - Mirna Saraga-Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia.,Laboratory for Early Human Development, School of Medicine, University of Split, Split, Croatia
| | - Darko Kero
- Study Programme of Dental Medicine, School of Medicine, University of Split, Split, Croatia.,Laboratory for Early Human Development, School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
5
|
Kero D, Bilandzija TS, Arapovic LL, Vukojevic K, Saraga-Babic M. Syndecans and Enzymes Involved in Heparan Sulfate Biosynthesis and Degradation Are Differentially Expressed During Human Odontogenesis. Front Physiol 2018; 9:732. [PMID: 29962964 PMCID: PMC6010574 DOI: 10.3389/fphys.2018.00732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Syndecans belong to a four-member family of cell surface heparan sulfate proteoglycans (HSPGs) abundantly present in various tissues. They are primarily recognized as extracellular matrix (ECM) receptors able to bind various ECM components and form gradients of morphogens and growth factors. Syndecans are composed of core protein with distinctive cytoplasmic, transmembrane, and extracellular domains to which several HS glycosaminoglycan (GAG) chains are covalently attached. In development of composite organs, such as teeth, expression patterns of syndecans display temporo-spatial shifts between epithelial and mesenchymal tissue compartments. Along with diverse functional properties of syndecans and generally large number of their interactors due to HS GAG chain content, this suggests possible involvement of syndecans in modulation of epithelial-to-mesenchymal crosstalk. Functional versatility of syndecans greatly depends upon the biochemical properties of attached HS GAG chains. These are specifically determined during the HS biosynthesis by the combinatorial action of glycosyl-transferases (Exts/EXTs) and bi-functional sulfotransferases (Ndsts/NDSTs), as well as by post-biosynthetic enzymatic cleavage of HS by the only active endoglucuronidase in mammals, heparanase 1 (Hpse1/HPSE1). Matching the essential requirement for HS during organogenesis, null-mutant animals for genes encoding these enzymes display severe developmental anomalies of mineralized tissues (including teeth) with embryonic or perinatal lethality. In this study, we analyzed expression of syndecan HSPGs (syndecans 1, 2, and 4), enzymes involved in HS biosynthesis (EXT1, NDST1, NDST2) and HS cleavage (HPSE1) in human tooth germs during the early stages of odontogenesis. All of the investigated factors displayed temporo-spatial differences in expression patterns, and some of them showed distinctive asymmetries of expression domains. Our findings suggest that these factors might be differentially involved in cellular processes which take place during the early odontogenic sequence in humans.
Collapse
Affiliation(s)
- Darko Kero
- Department of Dental Morphology and Anthropology, Study Program of Dental Medicine, School of Medicine, University of Split, Split, Croatia
| | - Tanja Simic Bilandzija
- Department of Maxillofacial Surgery, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina.,Study Program of Dental Medicine, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Lidija Lasic Arapovic
- Study Program of Dental Medicine, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.,Primary Health Care Center Mostar, Mostar, Bosnia and Herzegovina
| | - Katarina Vukojevic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| | - Mirna Saraga-Babic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Split, Croatia
| |
Collapse
|
6
|
Jiang T, Liu F, Wang WG, Jiang X, Wen X, Hu KJ, Xue Y. Distribution of Cathepsin K in Late Stage of Tooth Germ Development and Its Function in Degrading Enamel Matrix Proteins in Mouse. PLoS One 2017; 12:e0169857. [PMID: 28095448 PMCID: PMC5240959 DOI: 10.1371/journal.pone.0169857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/25/2016] [Indexed: 01/24/2023] Open
Abstract
Cathepsin K (CTSK) is a member of cysteine proteinase family, and is predominantly expressed in osteoclastsfor degradationof bone matrix proteins. Given the similarity in physical properties of bone and dental mineralized tissues, including enamel, dentin and cementum, CTSK is likely to take part in mineralization process during odontogenesis. On the other hand, patients with pycnodysostosis caused by mutations of the CTSK gene displayedmultipledental abnormalities, such as hypoplasia of the enamel, obliterated pulp chambers, hypercementosis and periodontal disease. Thereforeitis necessary to study the metabolic role of CTSK in tooth matrix proteins. In this study, BALB/c mice at embryonic day 18 (E18), post-natal day 1 (P1), P5, P10 and P20 were used (5 mice at each time point)for systematic analyses of CTSK expression in the late stage of tooth germ development. We found that CTSK was abundantly expressed in the ameloblasts during secretory and maturation stages (P5 and P10) by immunohistochemistry stainings.During dentinogenesis, the staining was also intense in the mineralization stage (P5 and P10),but not detectable in the early stage of dentin formation (P1) and after tooth eruption (P20).Furthermore, through zymography and digestion test in vitro, CTSK was proved to be capable of hydrolyzing Emdogain and also cleaving Amelogenininto multiple products. Our resultsshed lights on revealing new functions of CTSK and pathogenesis of pycnodysostosis in oral tissues.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
| | - Fen Liu
- Department of Periodontology, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
- Department of Stomatology, Northwest Women's and Children's Hospital, Xi’an, P. R. China
| | - Wei-Guang Wang
- Department of Cardiovascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an, P. R. China
- Medical Unit, Troops PLA, Liaocheng, P. R. China
| | - Xin Jiang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
- Department of Oral and Maxillofacial Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, P. R. China
| | - Xuan Wen
- Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
| | - Kai-Jin Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
- * E-mail: (YX); (KH)
| | - Yang Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, the Fourth Military Medical University, Xi’an, P. R. China
- * E-mail: (YX); (KH)
| |
Collapse
|
7
|
Etemad-Moghadam S, Alaeddini M. A comparative study of syndecan-1 expression in different odontogenic tumors. J Oral Biol Craniofac Res 2016; 7:23-26. [PMID: 28316917 DOI: 10.1016/j.jobcr.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Expression of various cellular/molecular factors change during the course of tumor formation from odontogenic tissues of the tooth germ. Evaluation of these factors can help provide a better perception of the tumorigenesis and biologic behavior of odontogenic tumors (OTs). Syndecan-1 is a heparan sulfate proteoglycan which has not been extensively investigated in these lesions. The objective of the present study was to assess the immunohistochemical expression of CD138 in adenomatoid odontogenic tumor (AOT), ameloblastic fibroma (AF) and odontogenic myxoma (OM) and to compare it with ameloblastoma and keratocystic odontogenic tumor (KCOT). METHOD A total of 58 OTs consisting of 7 AOTs, 5 OMs, 7 AFs, 29 KCOTs and 10 ameloblastomas were immunohistochemically stained with monoclonal antibody against syndecan-1 and the percentage and intensity of the immunostained cells was assessed. Kruskal-Wallis test followed by Bonferroni analysis was used for comparisons (P < 0.05). RESULTS Syndecan-1 was expressed in all samples except for OMs. Both percentage and intensity of syndecan-1 expression were statistically different among the studied OTs (P < 0.001). Pairwise comparisons showed significant difference only between OMs and each of the other tumors. CONCLUSION Syndecan-1 may be involved in the pathogenesis of AOT, AF, KCOT and ameloblastoma. However, considering the different behaviors of these tumors along with their similar expression of syndecan-1, it seems that its effect on clinical aggressiveness is limited. The significance of negative immunoexpression of this protein in OM requires further investigation.
Collapse
Affiliation(s)
- Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|