1
|
Narta K, Teltumbade MR, Vishal M, Sadaf S, Faruq M, Jama H, Waseem N, Rao A, Sen A, Ray K, Mukhopadhyay A. Whole Exome Sequencing Reveals Novel Candidate Genes in Familial Forms of Glaucomatous Neurodegeneration. Genes (Basel) 2023; 14:495. [PMID: 36833422 PMCID: PMC9957298 DOI: 10.3390/genes14020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Glaucoma is the largest cause of irreversible blindness with a multifactorial genetic etiology. This study explores novel genes and gene networks in familial forms of primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) to identify rare mutations with high penetrance. Thirty-one samples from nine MYOC-negative families (five POAG and four PACG) underwent whole-exome sequencing and analysis. A set of prioritized genes and variations were screened in an independent validation cohort of 1536 samples and the whole-exome data from 20 sporadic patients. The expression profiles of the candidate genes were analyzed in 17 publicly available expression datasets from ocular tissues and single cells. Rare, deleterious SNVs in AQP5, SRFBP1, CDH6 and FOXM1 from POAG families and in ACACB, RGL3 and LAMA2 from PACG families were found exclusively in glaucoma cases. AQP5, SRFBP1 and CDH6 also revealed significant altered expression in glaucoma in expression datasets. Single-cell expression analysis revealed enrichment of identified candidate genes in retinal ganglion cells and corneal epithelial cells in POAG; whereas for PACG families, retinal ganglion cells and Schwalbe's Line showed enriched expression. Through an unbiased exome-wide search followed by validation, we identified novel candidate genes for familial cases of POAG and PACG. The SRFBP1 gene found in a POAG family is located within the GLC1M locus on Chr5q. Pathway analysis of candidate genes revealed enrichment of extracellular matrix organization in both POAG and PACG.
Collapse
Affiliation(s)
- Kiran Narta
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Ramesh Teltumbade
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vishal
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Samreen Sadaf
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
| | - Mohd. Faruq
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hodan Jama
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Naushin Waseem
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Aparna Rao
- L. V. Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Kunal Ray
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Arijit Mukhopadhyay
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (Near Sukhdev Vihar), New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Translational Medicine Unit, Biomedical Research & Innovation Centre, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
2
|
Espinosa-Cantú A, Cruz-Bonilla E, Noda-Garcia L, DeLuna A. Multiple Forms of Multifunctional Proteins in Health and Disease. Front Cell Dev Biol 2020; 8:451. [PMID: 32587857 PMCID: PMC7297953 DOI: 10.3389/fcell.2020.00451] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Protein science has moved from a focus on individual molecules to an integrated perspective in which proteins emerge as dynamic players with multiple functions, rather than monofunctional specialists. Annotation of the full functional repertoire of proteins has impacted the fields of biochemistry and genetics, and will continue to influence basic and applied science questions - from the genotype-to-phenotype problem, to our understanding of human pathologies and drug design. In this review, we address the phenomena of pleiotropy, multidomain proteins, promiscuity, and protein moonlighting, providing examples of multitasking biomolecules that underlie specific mechanisms of human disease. In doing so, we place in context different types of multifunctional proteins, highlighting useful attributes for their systematic definition and classification in future research directions.
Collapse
Affiliation(s)
- Adriana Espinosa-Cantú
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| | - Erika Cruz-Bonilla
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Guanajuato, Mexico
| |
Collapse
|
3
|
Ribeiro DM, Briere G, Bely B, Spinelli L, Brun C. MoonDB 2.0: an updated database of extreme multifunctional and moonlighting proteins. Nucleic Acids Res 2020; 47:D398-D402. [PMID: 30371819 PMCID: PMC6323955 DOI: 10.1093/nar/gky1039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
MoonDB 2.0 (http://moondb.hb.univ-amu.fr/) is a database of predicted and manually curated extreme multifunctional (EMF) and moonlighting proteins, i.e. proteins that perform multiple unrelated functions. We have previously shown that such proteins can be predicted through the analysis of their molecular interaction subnetworks, their functional annotations and their association to distinct groups of proteins that are involved in unrelated functions. In MoonDB 2.0, we updated the set of human EMF proteins (238 proteins), using the latest functional annotations and protein–protein interaction networks. Furthermore, for the first time, we applied our method to four additional model organisms - mouse, fly, worm and yeast - and identified 54 novel EMF proteins in these species. In addition to novel predictions, this update contains 63 human and yeast proteins that were manually curated from literature, including descriptions of moonlighting functions and associated references. Importantly, MoonDB’s interface was fully redesigned and improved, and its entries are now cross-referenced in the UniProt Knowledgebase (UniProtKB). MoonDB will be updated once a year with the novel EMF candidates calculated from the latest available protein interactions and functional annotations.
Collapse
Affiliation(s)
- Diogo M Ribeiro
- Aix-Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France
| | | | - Benoit Bely
- The European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus CB10 1SD, UK
| | - Lionel Spinelli
- Aix-Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France
| | - Christine Brun
- Aix-Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France.,CNRS, Marseille, France
| |
Collapse
|
4
|
Multitalented actors inside and outside the cell: recent discoveries add to the number of moonlighting proteins. Biochem Soc Trans 2019; 47:1941-1948. [DOI: 10.1042/bst20190798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023]
Abstract
During the past few decades, it's become clear that many enzymes evolved not only to act as specific, finely tuned and carefully regulated catalysts, but also to perform a second, completely different function in the cell. In general, these moonlighting proteins have a single polypeptide chain that performs two or more distinct and physiologically relevant biochemical or biophysical functions. This mini-review describes examples of moonlighting proteins that have been found within the past few years, including some that play key roles in human and animal diseases and in the regulation of biochemical pathways in food crops. Several belong to two of the most common subclasses of moonlighting proteins: trigger enzymes and intracellular/surface moonlighting proteins, but a few represent less often observed combinations of functions. These examples also help illustrate some of the current methods used for identifying proteins with multiple functions. In general, a greater understanding about the functions and molecular mechanisms of moonlighting proteins, their roles in the regulation of cellular processes, and their involvement in health and disease could aid in many areas including developing new antibiotics, predicting the functions of the millions of proteins being identified through genome sequencing projects, designing novel proteins, using biological circuitry analysis to construct bacterial strains that are better producers of materials for industrial use, and developing methods to tweak biochemical pathways for increasing yields of food crops.
Collapse
|
5
|
Zanzoni A, Ribeiro DM, Brun C. Understanding protein multifunctionality: from short linear motifs to cellular functions. Cell Mol Life Sci 2019; 76:4407-4412. [PMID: 31432235 PMCID: PMC11105236 DOI: 10.1007/s00018-019-03273-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
Moonlighting proteins perform multiple unrelated functions without any change in polypeptide sequence. They can coordinate cellular activities, serving as switches between pathways and helping to respond to changes in the cellular environment. Therefore, regulation of the multiple protein activities, in space and time, is likely to be important for the homeostasis of biological systems. Some moonlighting proteins may perform their multiple functions simultaneously while others alternate between functions due to certain triggers. The switch of the moonlighting protein's functions can be regulated by several distinct factors, including the binding of other molecules such as proteins. We here review the approaches used to identify moonlighting proteins and existing repositories. We particularly emphasise the role played by short linear motifs and PTMs as regulatory switches of moonlighting functions.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France
| | - Diogo M Ribeiro
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France
| | - Christine Brun
- Aix Marseille Univ, INSERM, TAGC, UMR_S1090, Marseille, France.
- CNRS, Marseille, France.
| |
Collapse
|
6
|
Franco-Serrano L, Huerta M, Hernández S, Cedano J, Perez-Pons J, Piñol J, Mozo-Villarias A, Amela I, Querol E. Multifunctional Proteins: Involvement in Human Diseases and Targets of Current Drugs. Protein J 2018; 37:444-453. [PMID: 30123928 PMCID: PMC6132618 DOI: 10.1007/s10930-018-9790-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multifunctionality or multitasking is the capability of some proteins to execute two or more biochemical functions. The objective of this work is to explore the relationship between multifunctional proteins, human diseases and drug targeting. The analysis of the proportion of multitasking proteins from the MultitaskProtDB-II database shows that 78% of the proteins analyzed are involved in human diseases. This percentage is much higher than the 17.9% found in human proteins in general. A similar analysis using drug target databases shows that 48% of these analyzed human multitasking proteins are targets of current drugs, while only 9.8% of the human proteins present in UniProt are specified as drug targets. In almost 50% of these proteins, both the canonical and moonlighting functions are related to the molecular basis of the disease. A procedure to identify multifunctional proteins from disease databases and a method to structurally map the canonical and moonlighting functions of the protein have also been proposed here. Both of the previous percentages suggest that multitasking is not a rare phenomenon in proteins causing human diseases, and that their detailed study might explain some collateral drug effects.
Collapse
Affiliation(s)
- Luis Franco-Serrano
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Mario Huerta
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Sergio Hernández
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Cedano
- Laboratorio de Inmunología, Universidad de la República Regional Norte-Salto, Rivera 1350, 50000, Salto, Uruguay
| | - JosepAntoni Perez-Pons
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaume Piñol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Angel Mozo-Villarias
- Departament de Medicina Experimental and Institut de Recerca Biomèdica, Universitat de Lleida, 25198, Lleida, Spain
| | - Isaac Amela
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Enrique Querol
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
Protein Moonlighting Revealed by Noncatalytic Phenotypes of Yeast Enzymes. Genetics 2017; 208:419-431. [PMID: 29127264 DOI: 10.1534/genetics.117.300377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022] Open
Abstract
A single gene can partake in several biological processes, and therefore gene deletions can lead to different-sometimes unexpected-phenotypes. However, it is not always clear whether such pleiotropy reflects the loss of a unique molecular activity involved in different processes or the loss of a multifunctional protein. Here, using Saccharomyces cerevisiae metabolism as a model, we systematically test the null hypothesis that enzyme phenotypes depend on a single annotated molecular function, namely their catalysis. We screened a set of carefully selected genes by quantifying the contribution of catalysis to gene deletion phenotypes under different environmental conditions. While most phenotypes were explained by loss of catalysis, slow growth was readily rescued by a catalytically inactive protein in about one-third of the enzymes tested. Such noncatalytic phenotypes were frequent in the Alt1 and Bat2 transaminases and in the isoleucine/valine biosynthetic enzymes Ilv1 and Ilv2, suggesting novel "moonlighting" activities in these proteins. Furthermore, differential genetic interaction profiles of gene deletion and catalytic mutants indicated that ILV1 is functionally associated with regulatory processes, specifically to chromatin modification. Our systematic study shows that gene loss phenotypes and their genetic interactions are frequently not driven by the loss of an annotated catalytic function, underscoring the moonlighting nature of cellular metabolism.
Collapse
|
8
|
Gao Z, Niu X, Zhang Q, Chen H, Gao A, Qi S, Xiang R, Belting M, Zhang S. Mitochondria chaperone GRP75 moonlighting as a cell cycle controller to derail endocytosis provides an opportunity for nanomicrosphere intracellular delivery. Oncotarget 2017; 8:58536-58552. [PMID: 28938577 PMCID: PMC5601673 DOI: 10.18632/oncotarget.17234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Understanding how cancer cells regulate endocytosis during the cell cycle could lead us to capitalize this event pharmacologically. Although certain endocytosis pathways are attenuated during mitosis, the endocytosis shift and regulation during the cell cycle have not been well clarified. The conventional concept of glucose-regulated proteins (GRPs) as protein folding chaperones was updated by discoveries that translocated GRPs assume moonlighting functions that modify the immune response, regulate viral release, and control intracellular trafficking. In this study, GRP75, a mitochondria matrix chaperone, was discovered to be highly expressed in mitotic cancer cells. Using synchronized cell models and the GRP75 gene knockdown and ectopic overexpression strategy, we showed that: (1) clathrin-mediated endocytosis (CME) was inhibited whereas clathrin-independent endocytosis (CIE) was unchanged or even up-regulated in the cell cycle M-phase; (2) GRP75 inhibited CME but promoted CIE in the M-phase, which is largely due to its high expression in cancer cell mitochondria; (3) GRP75 targeting by its small molecular inhibitor MKT-077 enhanced cell cycle G1 phase-privileged CME, which provides an opportunity for intracellular delivery of nanomicrospheres sized from 40 nm to 100 nm. Together, our results revealed that GRP75 moonlights as a cell cycle controller and endocytosis regulator in cancer cells, and thus has potential as a novel interference target for nanoparticle drugs delivery into dormant cancer cells.
Collapse
Affiliation(s)
- Zhihui Gao
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Xiuran Niu
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Qing Zhang
- Department of Clinical Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Hang Chen
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Aiai Gao
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Shanshan Qi
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden
| | - Sihe Zhang
- Department of Biochemistry & Cell Biology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Affiliation(s)
- Charles E Chapple
- Inserm, UMR1090 TAGC, Marseille, France.,Aix-Marseille Université, UMR_S1090 TAGC, Marseille, France
| | - Christine Brun
- Inserm, UMR1090 TAGC, Marseille, France.,Aix-Marseille Université, UMR_S1090 TAGC, Marseille, France.,CNRS, Marseille, France
| |
Collapse
|
10
|
Levati E, Sartini S, Bolchi A, Ottonello S, Montanini B. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme. Sci Rep 2016; 6:25165. [PMID: 27121330 PMCID: PMC4848566 DOI: 10.1038/srep25165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/11/2016] [Indexed: 01/18/2023] Open
Abstract
Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant.
Collapse
Affiliation(s)
- Elisabetta Levati
- Biochemistry and Molecular Biology Unit, Laboratory of Functional Genomics and Protein Engineering, Department of Life Sciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Sara Sartini
- Biochemistry and Molecular Biology Unit, Laboratory of Functional Genomics and Protein Engineering, Department of Life Sciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Angelo Bolchi
- Biochemistry and Molecular Biology Unit, Laboratory of Functional Genomics and Protein Engineering, Department of Life Sciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Simone Ottonello
- Biochemistry and Molecular Biology Unit, Laboratory of Functional Genomics and Protein Engineering, Department of Life Sciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Barbara Montanini
- Biochemistry and Molecular Biology Unit, Laboratory of Functional Genomics and Protein Engineering, Department of Life Sciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
11
|
Chapple CE, Herrmann C, Brun C. PrOnto database : GO term functional dissimilarity inferred from biological data. Front Genet 2015; 6:200. [PMID: 26089836 PMCID: PMC4452890 DOI: 10.3389/fgene.2015.00200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
Moonlighting proteins are defined by their involvement in multiple, unrelated functions. The computational prediction of such proteins requires a formal method of assessing the similarity of cellular processes, for example, by identifying dissimilar Gene Ontology terms. While many measures of Gene Ontology term similarity exist, most depend on abstract mathematical analyses of the structure of the GO tree and do not necessarily represent the underlying biology. Here, we propose two metrics of GO term functional dissimilarity derived from biological information, one based on the protein annotations and the other on the interactions between proteins. They have been collected in the PrOnto database, a novel tool which can be of particular use for the identification of moonlighting proteins. The database can be queried via an web-based interface which is freely available at http://tagc.univ-mrs.fr/pronto.
Collapse
Affiliation(s)
- Charles E Chapple
- Inserm, UMR_S1090 TAGC Marseille, France ; Aix-Marseille Université, UMR_S1090 TAGC Marseille, France
| | - Carl Herrmann
- Inserm, UMR_S1090 TAGC Marseille, France ; Aix-Marseille Université, UMR_S1090 TAGC Marseille, France
| | - Christine Brun
- Inserm, UMR_S1090 TAGC Marseille, France ; Aix-Marseille Université, UMR_S1090 TAGC Marseille, France ; Centre National de la Recherche Scientifique Marseille, France
| |
Collapse
|