1
|
Poto R, Fusco W, Rinninella E, Cintoni M, Kaitsas F, Raoul P, Caruso C, Mele MC, Varricchi G, Gasbarrini A, Cammarota G, Ianiro G. The Role of Gut Microbiota and Leaky Gut in the Pathogenesis of Food Allergy. Nutrients 2023; 16:92. [PMID: 38201921 PMCID: PMC10780391 DOI: 10.3390/nu16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Food allergy (FA) is a growing public health concern, with an increasing prevalence in Western countries. Increasing evidence suggests that the balance of human gut microbiota and the integrity of our intestinal barrier may play roles in the development of FA. Environmental factors, including industrialization and consumption of highly processed food, can contribute to altering the gut microbiota and the intestinal barrier, increasing the susceptibility to allergic sensitization. Compositional and functional alterations to the gut microbiome have also been associated with FA. In addition, increased permeability of the gut barrier allows the translocation of allergenic molecules, triggering Th2 immune responses. Preclinical and clinical studies have highlighted the potential of probiotics, prebiotics, and postbiotics in the prevention and treatment of FA through enhancing gut barrier function and promoting the restoration of healthy gut microbiota. Finally, fecal microbiota transplantation (FMT) is now being explored as a promising therapeutic strategy to prevent FA in both experimental and clinical studies. In this review article, we aim to explore the complex interplay between intestinal permeability and gut microbiota in the development of FA, as well as depict potential therapeutic strategies.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
| | - Pauline Raoul
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Cristiano Caruso
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Drønen EK, Namork E, Dirven H, Nygaard UC. Suspected gut barrier disruptors and development of food allergy: Adjuvant effects and early immune responses. FRONTIERS IN ALLERGY 2022; 3:1029125. [PMID: 36483186 PMCID: PMC9723362 DOI: 10.3389/falgy.2022.1029125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 08/22/2023] Open
Abstract
Food allergy is an increasing public health challenge worldwide. It has recently been hypothesized that the increase in exposure to intestinal epithelial barrier-damaging biological and chemical agents contribute to this development. In animal models, exposure to adjuvants with a food allergen has been shown to promote sensitization and development of food allergy, and barrier disrupting capacities have been suggested to be one mechanism of adjuvant action. Here, we investigated how gut barrier disrupting compounds affected food allergy development in a mouse model of peanut allergy. Sensitization and clinical peanut allergy in C3H/HEOuJ mice were assessed after repeated oral exposure to peanut extract together with cholera toxin (CT; positive control), the mycotoxin deoxynivalenol (DON), house dust mite (HDM) or the pesticide glyphosate (GLY). In addition, we investigated early effects 4 to 48 h after a single exposure to the compounds by assessing markers of intestinal barrier permeability, alarmin production, intestinal epithelial responses, and local immune responses. CT and DON exerted adjuvant effects on peanut allergy development assessed as clinical anaphylaxis in mice. Early markers were affected only by DON, observed as increased IL-33 (interleukin 33) and thymic stromal lymphopoietin (TSLP) alarmin production in intestines and IL-33 receptor ST2 in serum. DON also induced an inflammatory immune response in lymph node cells stimulated with lipopolysaccharide (LPS). HDM and GLY did not clearly promote clinical food allergy and affected few of the early markers at the doses tested. In conclusion, oral exposure to CT and DON promoted development of clinical anaphylaxis in the peanut allergy mouse model. DON, but not CT, affected the early markers measured in this study, indicating that DON and CT have different modes of action at the early stages of peanut sensitization.
Collapse
Affiliation(s)
- Elena Klåpbakken Drønen
- Department for Chemical Toxicology, Division for Climate and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ellen Namork
- Department for Chemical Toxicology, Division for Climate and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Department for Chemical Toxicology, Division for Climate and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Unni Cecilie Nygaard
- Department for Chemical Toxicology, Division for Climate and Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Immunology, Division for Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
3
|
Zoabi Y, Levi-Schaffer F, Eliashar R. Allergic Rhinitis: Pathophysiology and Treatment Focusing on Mast Cells. Biomedicines 2022; 10:biomedicines10102486. [PMID: 36289748 PMCID: PMC9599528 DOI: 10.3390/biomedicines10102486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Allergic rhinitis (AR) is a common rhinopathy that affects up to 30% of the adult population. It is defined as an inflammation of the nasal mucosa, develops in allergic individuals, and is detected mostly by a positive skin-prick test. AR is characterized by a triad of nasal congestion, rhinorrhea, and sneezing. Mast cells (MCs) are innate immune system effector cells that play a pivotal role in innate immunity and modulating adaptive immunity, rendering them as key cells of allergic inflammation and thus of allergic diseases. MCs are typically located in body surfaces exposed to the external environment such as the nasal mucosa. Due to their location in the nasal mucosa, they are in the first line of defense against inhaled substances such as allergens. IgE-dependent activation of MCs in the nasal mucosa following exposure to allergens in a sensitized individual is a cardinal mechanism in the pathophysiology of AR. This review is a comprehensive summary of MCs' involvement in the development of AR symptoms and how classical AR medications, as well as emerging AR therapies, modulate MCs and MC-derived mediators involved in the development of AR.
Collapse
Affiliation(s)
- Yara Zoabi
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem 9112002, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem 9112002, Israel
| | - Ron Eliashar
- Department of Otolaryngology/HNS, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Correspondence: ; Tel.: +972-2-6776469; Fax: +972-2-6435090
| |
Collapse
|
4
|
Xiong D(JP, Martin JG, Lauzon AM. Airway smooth muscle function in asthma. Front Physiol 2022; 13:993406. [PMID: 36277199 PMCID: PMC9581182 DOI: 10.3389/fphys.2022.993406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Known to have affected around 340 million people across the world in 2018, asthma is a prevalent chronic inflammatory disease of the airways. The symptoms such as wheezing, dyspnea, chest tightness, and cough reflect episodes of reversible airway obstruction. Asthma is a heterogeneous disease that varies in clinical presentation, severity, and pathobiology, but consistently features airway hyperresponsiveness (AHR)—excessive airway narrowing due to an exaggerated response of the airways to various stimuli. Airway smooth muscle (ASM) is the major effector of exaggerated airway narrowing and AHR and many factors may contribute to its altered function in asthma. These include genetic predispositions, early life exposure to viruses, pollutants and allergens that lead to chronic exposure to inflammatory cells and mediators, altered innervation, airway structural cell remodeling, and airway mechanical stress. Early studies aiming to address the dysfunctional nature of ASM in the etiology and pathogenesis of asthma have been inconclusive due to the methodological limitations in assessing the intrapulmonary airways, the site of asthma. The study of the trachealis, although convenient, has been misleading as it has shown no alterations in asthma and it is not as exposed to inflammatory cells as intrapulmonary ASM. Furthermore, the cartilage rings offer protection against stress and strain of repeated contractions. More recent strategies that allow for the isolation of viable intrapulmonary ASM tissue reveal significant mechanical differences between asthmatic and non-asthmatic tissues. This review will thus summarize the latest techniques used to study ASM mechanics within its environment and in isolation, identify the potential causes of the discrepancy between the ASM of the extra- and intrapulmonary airways, and address future directions that may lead to an improved understanding of ASM hypercontractility in asthma.
Collapse
Affiliation(s)
- Dora (Jun Ping) Xiong
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Anne-Marie Lauzon,
| |
Collapse
|
5
|
Park JH, Ameri AH, Dempsey KE, Conrad DN, Kem M, Mino-Kenudson M, Demehri S. Nuclear IL-33/SMAD signaling axis promotes cancer development in chronic inflammation. EMBO J 2021; 40:e106151. [PMID: 33616251 DOI: 10.15252/embj.2020106151] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/27/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Interleukin (IL)-33 cytokine plays a critical role in allergic diseases and cancer. IL-33 also has a nuclear localization signal. However, the nuclear function of IL-33 and its impact on cancer is unknown. Here, we demonstrate that nuclear IL-33-mediated activation of SMAD signaling pathway in epithelial cells is essential for cancer development in chronic inflammation. Using RNA and ChIP sequencing, we found that nuclear IL-33 repressed the expression of an inhibitory SMAD, Smad6, by interacting with its transcription factor, RUNX2. IL-33 was highly expressed in the skin and pancreatic epithelial cells in chronic inflammation, leading to a markedly repressed Smad6 expression as well as dramatically upregulated p-SMAD2/3 and p-SMAD1/5 in the epithelial cells. Blocking TGF-β/SMAD signaling attenuated the IL-33-induced cell proliferation in vitro and inhibited IL-33-dependent epidermal hyperplasia and skin cancer development in vivo. IL-33 and SMAD signaling were upregulated in human skin cancer, pancreatitis, and pancreatitis-associated pancreatic cancer. Collectively, our findings reveal that nuclear IL-33/SMAD signaling is a cell-autonomous tumor-promoting axis in chronic inflammation, which can be targeted by small-molecule inhibitors for cancer treatment and prevention.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Amir H Ameri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlin E Dempsey
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle N Conrad
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marina Kem
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Efthimiou J, Poll C, Barnes PJ. Dual mechanism of action of T2 inhibitor therapies in virally induced exacerbations of asthma: evidence for a beneficial counter-regulation. Eur Respir J 2019; 54:13993003.02390-2018. [PMID: 31000674 DOI: 10.1183/13993003.02390-2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
Biological agents such as omalizumab and monoclonal antibodies (mAbs) that inhibit type 2 (T2) immunity significantly reduce exacerbations, which are mainly due to viral infections, when added to inhaled corticosteroids in patients with severe asthma. The mechanisms for the therapeutic benefit of T2 inhibitors in reducing virally induced exacerbations, however, remain to be fully elucidated. Pre-clinical and clinical evidence supports the existence of a close counter-regulation of the high-affinity IgE receptor and interferon (IFN) pathways, and a potential dual mechanism of action and therapeutic benefit for omalizumab and other T2 inhibitors that inhibit IgE activity, which may enhance the prevention and treatment of virally induced asthma exacerbations. Similar evidence regarding some novel T2 inhibitor therapies, including mAbs and small-molecule inhibitors, suggests that such a dual mechanism of action with enhancement of IFN production working through non-IgE pathways might also exist. The specific mechanisms for this dual effect could be related to the close counter-regulation between T2 and T1 immune pathways, and potential key underlying mechanisms are discussed. Further basic research and better understanding of these underlying counter-regulatory mechanisms could provide novel therapeutic targets for the prevention and treatment of virally induced asthma exacerbations, as well as T2- and non-T2-driven asthma. Future clinical research should examine the effects of T2 inhibitors on IFN responses and other T1 immune pathways, in addition to any effects on the frequency and severity of viral and other infections and related exacerbations in patients with asthma as a priority.
Collapse
Affiliation(s)
| | - Chris Poll
- Independent Respiratory Scientist, Cambridge, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
7
|
Chakraborty A, Boer JC, Selomulya C, Plebanski M, Royce SG. Insights into endotoxin-mediated lung inflammation and future treatment strategies. Expert Rev Respir Med 2018; 12:941-955. [PMID: 30221563 DOI: 10.1080/17476348.2018.1523009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Airway inflammatory disorders are prevalent diseases in need of better management and new therapeutics. Immunotherapies offer a solution to the problem of corticosteroid resistance. Areas covered: The current review focuses on lipopolysaccharide (Gram-negative bacterial endotoxin)-mediated inflammation in the lung and the animal models used to study related diseases. Endotoxin-induced lung pathology is usually initiated by antigen presenting cells (APC). We will discuss different subsets of APC including lung dendritic cells and macrophages, and their role in responding to endotoxin and environmental challenges. Expert commentary: The pharmacotherapeutic considerations to combat airway inflammation should cost-effectively improve quality of life with sustainable and safe strategies. Selectively targeting APCs in the lung offer the potential for a promising new strategy for the better management and treatment of inflammatory lung disease.
Collapse
Affiliation(s)
- Amlan Chakraborty
- a Department of Chemical Engineering , Monash University , Clayton , Australia.,b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Jennifer C Boer
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Cordelia Selomulya
- a Department of Chemical Engineering , Monash University , Clayton , Australia
| | - Magdalena Plebanski
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia.,c School of Health and Biomedical Sciences and Enabling Capability platforms, Biomedical and Health Innovation , RMIT University , Melbourne , Australia
| | - Simon G Royce
- d Central Clinical School , Monash University , Clayton , Victoria , Australia.,e Department of Pharmacology , Monash University , Clayton , Australia
| |
Collapse
|
8
|
De Grove KC, Provoost S, Braun H, Blomme EE, Teufelberger AR, Krysko O, Beyaert R, Brusselle GG, Joos GF, Maes T. IL-33 signalling contributes to pollutant-induced allergic airway inflammation. Clin Exp Allergy 2018; 48:1665-1675. [PMID: 30159930 DOI: 10.1111/cea.13261] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Clinical and experimental studies have identified a crucial role for IL-33 and its receptor ST2 in allergic asthma. Inhalation of traffic-related pollutants, such as diesel exhaust particles (DEP), facilitates the development of asthma and can cause exacerbations of asthma. However, it is unknown whether IL-33/ST2 signalling contributes to the enhancing effects of air pollutants on allergic airway responses. OBJECTIVE We aim to investigate the functional role of IL-33/ST2 signalling in DEP-enhanced allergic airway responses, using an established murine model. METHODS C57BL/6J mice were exposed to saline, DEP alone, house dust mite (HDM) alone or combined DEP+HDM. To inhibit IL-33 signalling, recombinant soluble ST2 (r-sST2) was given prophylactically (ie, during the whole experimental protocol) or therapeutically (ie, at the end of the experimental protocol). Airway hyperresponsiveness and the airway inflammatory responses were assessed in bronchoalveolar lavage fluid (BALF) and lung. RESULTS Combined exposure to DEP+HDM increased IL-33 and ST2 expression in lung, elevated inflammatory responses and bronchial hyperresponsiveness compared to saline, sole DEP or sole HDM exposure. Prophylactic interference with the IL-33/ST2 signalling pathway impaired the DEP-enhanced allergic airway inflammation in the BALF, whereas effects on lung inflammation and airway hyperresponsiveness were minimal. Treatment with r-sST2 at the end of the experimental protocol did not modulate the DEP-enhanced allergic airway responses. CONCLUSION Our data suggest that the IL-33/ST2 pathway contributes to the onset of DEP-enhanced allergic airway inflammation.
Collapse
Affiliation(s)
- Katrien C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Sharen Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Harald Braun
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Evy E Blomme
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Andrea R Teufelberger
- Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Olga Krysko
- Upper Airway Research Laboratory, Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Guy G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Guy F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
9
|
Haskó G, Antonioli L, Cronstein BN. Adenosine metabolism, immunity and joint health. Biochem Pharmacol 2018; 151:307-313. [PMID: 29427624 PMCID: PMC5899962 DOI: 10.1016/j.bcp.2018.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022]
Abstract
The purine nucleoside adenosine is a present in most body fluids where it regulates a wide variety of physiologic and pharmacologic processes. Adenosine mediates its effects through activating 4 G protein-coupled receptors expressed on the cell membrane: A1, A2A, A2B, and A3. The adenosine receptors are widely distributed in the body, and tissues with high expression include immune tissues, cartilage, bone, heart, and brain. Here we review the source and metabolism of adenosine and the role of adenosine in regulating immunity and cartilage biology.
Collapse
Affiliation(s)
- György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
10
|
Herbal Medicine Cordyceps sinensis Improves Health-Related Quality of Life in Moderate-to-Severe Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6134593. [PMID: 28050193 PMCID: PMC5165155 DOI: 10.1155/2016/6134593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/29/2016] [Accepted: 11/06/2016] [Indexed: 12/12/2022]
Abstract
Moderate-to-severe asthma has a substantial impact on the health-related quality of life (HR-QOL) of the patients. Cordyceps sinensis is a traditional Chinese medicine that is evaluated clinically for the treatment of many diseases, such as chronic allograft nephropathy, diabetic kidney disease, and lung fibrosis. In order to investigate the effects of Cordyceps sinensis on patients with moderate-to-severe persistent asthma, 120 subjects were randomized to receive Corbin capsule containing Cordyceps sinensis for 3 months (treatment group, n = 60), whereas the control group (n = 60) did not receive treatment with Corbin capsule. Inhaled corticosteroid and as-needed β-agonists were used in the treatment of both groups. HR-QOL was measured with the Juniper's Asthma Quality of Life Questionnaire (AQLQ). The incidence of asthma exacerbation, pulmonary function testing, and serum measurements of inflammatory mediators were also evaluated. The results showed that the treatment group indicated a significant increase in AQLQ scores and lung function compared with the control group. The expression levels of the inflammation markers IgE, ICAM-1, IL-4, and MMP-9 in the serum were decreased and IgG increased in the treatment group compared with the control group. Therefore, the conclusion was reached that a formulation of Cordyceps sinensis improved the HR-QOL, asthma symptoms, lung function, and inflammatory profile of the patients with moderate-to-severe asthma. This trial is registered with ChiCTR-IPC-16008730.
Collapse
|
11
|
Sattler C, Malrin R, Garcia G, Humbert M. [New drugs for severe asthma]. Presse Med 2016; 45:1043-1055. [PMID: 27836376 DOI: 10.1016/j.lpm.2016.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/05/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Asthma is a very frequent disease with complex and heterogenous immunological and clinical features. Daily inhaled steroids are the cornerstone of the current therapeutics sometimes associated with long-acting β2-agonist. This controller treatment is effective and allows to control asthma symptoms for the vast majority of the patients. Severe asthma is characterized by a poor level of control of symptoms, with recurrent exacerbations or a chronic airflow limitation despite an optimal management. Severe asthma remains a difficult diagnosis but we have now studies proving the clinical efficacy or promising data about monoclonal antibodies targeting IgE, IL-5, IL-4 or IL-13. Most of these monoclonal antibodies target the Th2 type eosinophilic inflammation without any treatment against non-eosinophilic or Th1 inflammation. Last, it will be essential to assess accurately the cost effectiveness of these expensive treatments, to identify and to qualify the target population for each molecule and to assess its financial impact for the community.
Collapse
Affiliation(s)
- Caroline Sattler
- Université Paris-Sud, université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France; AP-HP, hôpital Bicêtre, service de physiologie, explorations fonctionnelles respiratoires, 94270 Le Kremlin-Bicêtre, France; Hôpital Marie-Lannelongue, Inserm UMR_S 999, 92350 Le Plessis-Robinson, France
| | - Roxane Malrin
- Université Paris-Sud, université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France; AP-HP, hôpital Bicêtre, service de pneumologie, 94270 Le Kremlin-Bicêtre, France; Hôpital Marie-Lannelongue, Inserm UMR_S 999, 92350 Le Plessis-Robinson, France
| | - Gilles Garcia
- Université Paris-Sud, université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France; AP-HP, hôpital Bicêtre, service de physiologie, explorations fonctionnelles respiratoires, 94270 Le Kremlin-Bicêtre, France; Hôpital Marie-Lannelongue, Inserm UMR_S 999, 92350 Le Plessis-Robinson, France.
| | - Marc Humbert
- Université Paris-Sud, université Paris-Saclay, faculté de médecine, 94270 Le Kremlin-Bicêtre, France; AP-HP, hôpital Bicêtre, service de pneumologie, 94270 Le Kremlin-Bicêtre, France; Hôpital Marie-Lannelongue, Inserm UMR_S 999, 92350 Le Plessis-Robinson, France
| |
Collapse
|