1
|
Mnuskina S, Bauer J, Wirth-Hücking A, Schneidereit D, Nübler S, Ritter P, Cacciani N, Li M, Larsson L, Friedrich O. Single fibre cytoarchitecture in ventilator-induced diaphragm dysfunction (VIDD) assessed by quantitative morphometry second harmonic generation imaging: Positive effects of BGP-15 chaperone co-inducer and VBP-15 dissociative corticosteroid treatment. Front Physiol 2023; 14:1207802. [PMID: 37440999 PMCID: PMC10333583 DOI: 10.3389/fphys.2023.1207802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Ventilator-induced diaphragm dysfunction (VIDD) is a common sequela of intensive care unit (ICU) treatment requiring mechanical ventilation (MV) and neuromuscular blockade (NMBA). It is characterised by diaphragm weakness, prolonged respirator weaning and adverse outcomes. Dissociative glucocorticoids (e.g., vamorolone, VBP-15) and chaperone co-inducers (e.g., BGP-15) previously showed positive effects in an ICU-rat model. In limb muscle critical illness myopathy, preferential myosin loss prevails, while myofibrillar protein post-translational modifications are more dominant in VIDD. It is not known whether the marked decline in specific force (force normalised to cross-sectional area) is a pure consequence of altered contractility signaling or whether diaphragm weakness also has a structural correlate through sterical remodeling of myofibrillar cytoarchitecture, how quickly it develops, and to which extent VBP-15 or BGP-15 may specifically recover myofibrillar geometry. To address these questions, we performed label-free multiphoton Second Harmonic Generation (SHG) imaging followed by quantitative morphometry in single diaphragm muscle fibres from healthy rats subjected to five or 10 days of MV + NMBA to simulate ICU treatment without underlying confounding pathology (like sepsis). Rats received daily treatment of either Prednisolone, VBP-15, BGP-15 or none. Myosin-II SHG signal intensities, fibre diameters (FD) as well as the parameters of myofibrillar angular parallelism (cosine angle sum, CAS) and in-register of adjacent myofibrils (Vernier density, VD) were computed from SHG images. ICU treatment caused a decline in FD at day 10 as well as a significant decline in CAS and VD from day 5. Vamorolone effectively recovered FD at day 10, while BGP-15 was more effective at day 5. BGP-15 was more effective than VBP-15 in recovering CAS at day 10 although not to control levels. In-register VD levels were restored at day 10 by both compounds. Our study is the first to provide quantitative insights into VIDD-related myofibrillar remodeling unravelled by SHG imaging, suggesting that both VBP-15 and BGP-15 can effectively ameliorate the structure-related dysfunction in VIDD.
Collapse
Affiliation(s)
- Sofia Mnuskina
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Julian Bauer
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anette Wirth-Hücking
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Schneidereit
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Nübler
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Paul Ritter
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meishan Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Clinical Neurophysiology, Karolinska Institutet, Stockholm, Sweden
- Viron Molecular Medicine Institute, Boston, MA, United States
| | - Oliver Friedrich
- Department of Chemical and Biological Engineering (CBI), Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- School of Medical Sciences, University of New South Wales, Kensington Campus, Sydney, NSW, Australia
| |
Collapse
|
3
|
Lyu Q, Wen Y, Zhang X, Addinsall AB, Cacciani N, Larsson L. Multi-omics reveals age-related differences in the diaphragm response to mechanical ventilation: a pilot study. Skelet Muscle 2021; 11:11. [PMID: 33941271 PMCID: PMC8089133 DOI: 10.1186/s13395-021-00267-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Old age is associated with a significantly increased mortality in COVID-19 patients exposed to long-term controlled mechanical ventilation (CMV) and suggested to be due to the hyperinflammatory response associated with the viral infection. However, our understanding of age-related differences in the response to CMV in the absence of a viral infection remains insufficient. METHODS Young (7-8 months) and old (28-32 months) F344 BN hybrid rats were exposed to the ICU condition for 5 days, i.e., complete immobilization, mechanical ventilation, and extensive monitoring. Transcriptomic (RNA-Seq) and proteomics (Proximity Extension Assay) analyses of the diaphragm and proteomics analysis of plasma were conducted to investigate the molecular differences between young and old rats exposed to the ICU condition. RESULTS According to multi-omics analyses, significant differences were observed in the diaphragm between young and old rats in response to 5 days CMV and immobilization. In young rats, metabolic pathways were primarily downregulated in response to immobilization (post-synaptic blockade of neuromuscular transmission). In old rats, on the other hand, dramatic immune and inflammatory responses were observed, i.e., an upregulation of specific related pathways such as "IL-17 signaling pathway", along with a higher level of inflammatory factors and cytokine/chemokine in plasma. CONCLUSIONS The dramatically increased mortality in old ICU patients with COVID-19-associated hyperinflammation and cytokine storm need not only reflect the viral infection but may also be associated with the ventilator induced diaphragm dysfunction (VIDD) and hyperinflammatory responses induced by long-term CMV per se. Although mechanical ventilation is a life-saving intervention in COVID-19 ICU patients, CMV should be cautiously used especially in old age and other means of respiratory support may be considered, such as negative pressure ventilation.
Collapse
Affiliation(s)
- Qiong Lyu
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
- Department of General Practice, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
| | - Alex B Addinsall
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
| | - Nicola Cacciani
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden.
- Department of Clinical Neuroscience, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
7
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 PMCID: PMC6442923 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 856] [Impact Index Per Article: 142.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|