1
|
Bogomolova AP, Katrukha IA. Troponins and Skeletal Muscle Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2083-2106. [PMID: 39865025 DOI: 10.1134/s0006297924120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be taken into account when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, Finland
| | - Ivan A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, Finland
| |
Collapse
|
2
|
Ji E, Pandey PR, Martindale JL, Yang X, Yang JH, Tsitsipatis D, Shin CH, Piao Y, Fan J, Mazan-Mamczarz K, Banskota N, De S, Gorospe M. FUS-Mediated Inhibition of Myogenesis Elicited by Suppressing TNNT1 Production. Mol Cell Biol 2024; 44:391-409. [PMID: 39133076 PMCID: PMC11376412 DOI: 10.1080/10985549.2024.2383296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Myogenesis is a highly orchestrated process whereby muscle precursor cells, myoblasts, develop into muscle fibers to form skeletal muscle during embryogenesis and regenerate adult muscle. Here, we studied the RNA-binding protein FUS (fused in sarcoma), which has been implicated in muscular and neuromuscular pathologies but is poorly characterized in myogenesis. Given that FUS levels declined in human and mouse models of skeletal myogenesis, and that silencing FUS enhanced myogenesis, we hypothesized that FUS might be a repressor of myogenic differentiation. Interestingly, overexpression of FUS delayed myogenesis, accompanied by slower production of muscle differentiation markers. To identify the mechanisms through which FUS inhibits myogenesis, we uncovered RNA targets of FUS by ribonucleoprotein immunoprecipitation (RIP) followed by RNA-sequencing (RNA-seq) analysis. Stringent selection of the bound transcripts uncovered Tnnt1 mRNA, encoding troponin T1 (TNNT1), as a major effector of FUS influence on myogenesis. We found that in myoblasts, FUS retained Tnnt1 mRNA in the nucleus, preventing TNNT1 expression; however, reduction of FUS during myogenesis or by silencing FUS released Tnnt1 mRNA for export to the cytoplasm, enabling TNNT1 translation and promoting myogenesis. We propose that FUS inhibits myogenesis by suppressing TNNT1 expression through a mechanism of nuclear Tnnt1 mRNA retention.
Collapse
Affiliation(s)
- Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Poonam R. Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| |
Collapse
|
3
|
Di Luca A, Bennato F, Ianni A, Martino C, Henry M, Meleady P, Martino G. Label-free liquid chromatography-mass spectrometry comparison of the breast muscle proteome profiles in two fast-growing broilers. Sci Rep 2024; 14:16886. [PMID: 39043903 PMCID: PMC11266551 DOI: 10.1038/s41598-024-67993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Poultry meat-production is increasing worldwide; leading to the selection of chickens for meat-production that show a fast growth. A label-free quantitative proteomic-approach and Western-blot were applied to investigate the dynamics of muscle protein under rapid growth conditions in two common fast-growing broiler genetic-lines (Ross 508 and AZ Extra Heavy Red-chicken). Muscle exudate from chicken Pectoralis major was used as substrate to unveil the proteome of these genetic-lines. Six-hundred forty-five proteins were identified in total from all samples, and after statistical-analysis 172 proteins were found to be differentially-expressed, clearly distinguishing the two chicken genetic-lines. Several of these differentially-expressed proteins were involved with the proteasome and glycolysis/gluconeogenesis-pathways. Changes in meat-quality traits were also observed, which were reflected in the proteomic-profile. Proteins involved in the ubiquitin-proteasome system were associated with the bigger muscle mass of Ross 508, while phosphoglucomutase 1 was associated with a possible higher capability of AZ Extra Heavy Red-chickens to cope with stressors. This pilot proteomic-approach applied on muscle exudate samples provided key evidence about the pathways and processes underlying these two chicken genetic-lines and their meat-quality parameters. We also identified potential biomarkers that could determine the peculiar production potentials (e.g. breast-growth) of these broilers-lines, which arise from differences in their genetic-backgrounds.
Collapse
Affiliation(s)
- Alessio Di Luca
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100, Teramo, Italy
| | - Francesca Bennato
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100, Teramo, Italy
| | - Andrea Ianni
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100, Teramo, Italy
| | - Camillo Martino
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Dublin, Ireland
| | - Giuseppe Martino
- Department of Bioscience and Technology for Food Agro-Food and Environmental Technology, University of Teramo, 64100, Teramo, Italy.
| |
Collapse
|
4
|
Sun Y, Li J, Zhang X, Wang N, Liu Y. RNA Sequencing Screens the Key Genes and Pathways in a Mouse Model of HFpEF. J Vasc Res 2024; 61:166-178. [PMID: 38880090 DOI: 10.1159/000539305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/02/2024] [Indexed: 06/18/2024] Open
Abstract
INTRODUCTION Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality but without available evidence-based therapies. It is essential to investigate changes in gene expression profiles in preclinical HFpEF animal models, with the aim of searching for novel therapeutic targets. METHODS Wild-type male C57BL/6J mice were administrated with a combination of high-fat diet (HFD) and inhibition of constitutive nitric oxide synthase using N-nitro-l-arginine methyl ester (l-NAME) for 5 and 7 weeks. RNA sequencing was conducted to detect gene expression profiles, and bioinformatic analysis was performed to identify the core genes, pathways, and biological processes involved. RESULTS A total of 1,347 genes were differentially expressed in the heart at week 5 and 7 post-intervention. Gene Ontology enrichment analysis indicated that these greatly changed genes were involved mainly in cell adhesion, neutrophil chemotaxis, cell communication, and other functions. Using hierarchical cluster analysis, these differentially expressed genes were classified into 16 profiles. Of these, three significant profiles were ultimately identified. Gene co-expression network analysis suggested troponin T type 1 (Tnnt1) directly regulated 31 neighboring genes and was considered to be at the core of the associated gene network. CONCLUSION The combined application of RNA sequencing, hierarchical cluster analysis, and gene network analysis identified Tnnt1 as the most important gene in the development of HFpEF.
Collapse
Affiliation(s)
- Yuxi Sun
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China,
| | - Jiaxin Li
- Heart Failure and Structural Cardiology Division, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinxin Zhang
- Heart Failure and Structural Cardiology Division, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Wang
- Heart Failure and Structural Cardiology Division, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Heart Failure and Structural Cardiology Division, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Yavaş C, Doğan M, Eröz R, Türegün K. A rare TNNT1 gene variant causing creatine kinase elevation in nemaline myopathy: c.271_273del (p.Lys91del). Genes Genomics 2024; 46:613-620. [PMID: 38363456 DOI: 10.1007/s13258-024-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Nemaline Myopathy (NM) is a rare genetic disorder that affects muscle function and is characterized by the presence of nemaline rods in muscle fibers. These rods are abnormal structures that interfere with muscle contraction and can cause muscle weakness, respiratory distress, and other complications. NM is caused by variants in several genes, including TNNT1, which encodes the protein troponin T1. NM is inherited in an autosomal recessive pattern. The prevalence of heterozygous TNNT1 variants has been reported to be 1/152,000, indicating that the disease is relatively rare. OBJECTIVE Investigation of TNNT1 gene variants that may cause cretin kinase elevation. METHODS Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and family segregation was done by Sanger sequencing. RESULTS In this study, we report a 5-year-old girl with a novel variant recessive congenital TNNT1 myopathy. The patient had a novel homozygous (c.271_273del) deletion in the TNNT1 gene that is associated with creatine kinase elevation, which is a marker of muscle damage. CONCLUSION This case expands the phenotypic spectrum of TNNT1 myopathy and highlights the importance of genetic testing and counseling for families affected by this rare disorder. In this study provides valuable insights into the genetic basis of NM and highlights the importance of early diagnosis and management for patients with this rare disorder. Further research is needed to better understand the pathophysiology of TNNT1 myopathy and to develop effective treatments for this debilitating condition.
Collapse
Affiliation(s)
- Cüneyd Yavaş
- Department of Molecular Biology and Genetics, Biruni University, Karanfil St. No:1H/12, Beylikduzu, Istanbul, 34100, Turkey.
| | - Mustafa Doğan
- Genetic Diseases Assessment Center, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Recep Eröz
- Department of Medical Genetics Medical Faculty, Aksaray University, Aksaray, Turkey
| | - Kübra Türegün
- Department of Biotechnology, Institute of Science and Technology, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Crist SB, Azzag K, Kiley J, Coleman I, Magli A, Perlingeiro RCR. The adult environment promotes the transcriptional maturation of human iPSC-derived muscle grafts. NPJ Regen Med 2024; 9:16. [PMID: 38575647 PMCID: PMC10994941 DOI: 10.1038/s41536-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Pluripotent stem cell (PSC)-based cell therapy is an attractive option for the treatment of multiple human disorders, including muscular dystrophies. While in vitro differentiating PSCs can generate large numbers of human lineage-specific tissue, multiple studies evidenced that these cell populations mostly display embryonic/fetal features. We previously demonstrated that transplantation of PSC-derived myogenic progenitors provides long-term engraftment and functional improvement in several dystrophic mouse models, but it remained unknown whether donor-derived myofibers mature to match adult tissue. Here, we transplanted iPAX7 myogenic progenitors into muscles of non-dystrophic and dystrophic mice and compared the transcriptional landscape of human grafts with respective in vitro-differentiated iPAX7 myotubes as well as human skeletal muscle biospecimens. Pairing bulk RNA sequencing with computational deconvolution of human reads, we were able to pinpoint key myogenic changes that occur during the in vitro-to-in vivo transition, confirm developmental maturity, and consequently evaluate their applicability for cell-based therapies.
Collapse
Affiliation(s)
- Sarah B Crist
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ilsa Coleman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alessandro Magli
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
- Sanofi, Genomic Medicine Unit, 225 2nd Ave, Waltham, MA, 02451, USA.
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Exon skipping caused by splicing mutation in TNNT1 nemaline myopathy. J Hum Genet 2023; 68:97-101. [PMID: 36446828 DOI: 10.1038/s10038-022-01096-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The TNNT1 gene encoding the slow skeletal muscle TnT has been identified as a causative gene for nemaline myopathy. TNNT1 nemaline myopathy is mainly characterized by neonatal-onset muscle weakness, pectus carinatum and respiratory insufficiency. Herein, we report on a Chinese girl with TNNT1 nemaline myopathy with mild clinical phenotypes without thoracic deformities or decreased respiratory function. Muscle biopsy showed moderate to marked type 1 fiber atrophy and nemaline rods. Next-generation sequencing identified the compound heterozygous c. 587dupA (p. D196Efs*41) and c. 387+5G>A mutations in the TNNT1 gene according to the transcript NM_003283.4. RNA sequencing revealed complete exon 9 skipping caused by the c. 387+5G>A mutation. Through quantitative PCR, we found that both the truncation c. 587dupA (p. D196Efs*41) and the splicing c. 387+5G>A mutations triggered nonsense-mediated mRNA decay (NMD). Western blotting showed the residual amount of the truncated TNNT1 protein by deletion of exon 9, which may ameliorate the disease to some extent.
Collapse
|
8
|
Nagendra AH, Najar MA, Bose B, Shenoy PS. High concentration of sodium fluoride in drinking water induce hypertrophy versus atrophy in mouse skeletal muscle via modulation of sarcomeric proteins. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128654. [PMID: 35286933 DOI: 10.1016/j.jhazmat.2022.128654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Fluoride at high doses is a well-known toxic agent for the musculoskeletal system, primarily in bone and cartilage cells. Research on fluoride toxicity concerning particularly on the skeletal muscle is scanty. We hypothesized that during skeletal fluorosis, along with bone, muscle is also affected, so we have evaluated the effects of Sodium fluoride (NaF) on mouse skeletal muscles. Sodium fluoride (80 ppm) was administered to 5-week-old C57BL6 mice drinking water for 15 and 60 days, respectively. We carried out histology, primary culture, molecular and proteomic analysis of fluoride administered mouse skeletal muscles. Results indicated an increase in the muscle mass (hypertrophy) in vivo and myotubes ex vivo by activating the IGF1/PI3/Akt/mTOR signalling pathway due to short term NaF exposure. The long-term exposure of mice to NaF caused loss of muscle proteins leading to muscle atrophy due to activation of the ubiquitin-proteasome pathway. Differentially expressed proteins were characterized and mapped using a proteomic approach. Moreover, the factors responsible for protein synthesis and PI3/Akt/mTOR pathway were upregulated, leading to muscle hypertrophy during the short term NaF exposure. Long term exposure to NaF resulted in down-regulation of metabolic pathways. Elevated myostatin resulted in the up-regulation of the muscle-specific E3 ligases-MuRF1, promoting the ubiquitination and proteasome-mediated degradation of critical sarcomeric proteins.
Collapse
Affiliation(s)
- Apoorva H Nagendra
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Mohd Altaf Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bipasha Bose
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - P Sudheer Shenoy
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
9
|
Holling T, Lisfeld J, Johannsen J, Matschke J, Song F, Altmeppen HC, Kutsche K. Autosomal dominantly inherited myopathy likely caused by the TNNT1 variant p.(Asp65Ala). Hum Mutat 2022; 43:1224-1233. [PMID: 35510366 DOI: 10.1002/humu.24397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/12/2022]
Abstract
Nemaline myopathies (NEM) are genetically and clinically heterogenous. Biallelic or monoallelic variants in TNNT1, encoding slow skeletal troponin T1 (TnT1), cause NEM. We report a 2-year-old patient and his mother carrying the heterozygous TNNT1 variant c.194A>C/p.(Asp65Ala) that occurred de novo in the mother. Both had muscle hypotrophy and muscle weakness. Muscle pathology in the proband's mother revealed slow twitch type 1 fiber hypotrophy and fast twitch type 2 fiber hypertrophy that was confirmed by a reduced ratio of slow skeletal myosin to fast skeletal myosin type 2a. RT-PCR and immunoblotting data demonstrated increased levels of high-molecular-weight TnT1 isoforms in skeletal muscle of the proband's mother that were also observed in some controls. In an overexpression system, complex formation of TnT1-D65A with tropomyosin 3 (TPM3) was enhanced. The previously reported TnT1-E104V and TnT1-L96P mutants showed reduced or no co-immunoprecipitation with TPM3. Our studies support pathogenicity of the TNNT1 p.(Asp65Ala) variant. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Johannsen
- Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Zambon AA, Abel F, Linnane B, O'Rourke D, Phadke R, Sewry CA, Sarkozy A, Manzur A, Muntoni F. Troponin-T type 1 (TNNT1)-related nemaline myopathy: unique respiratory phenotype and muscle pathology findings. Neuromuscul Disord 2022; 32:245-254. [DOI: 10.1016/j.nmd.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
11
|
TNNT1 myopathy with novel compound heterozygous mutations. Neuromuscul Disord 2021; 32:176-184. [DOI: 10.1016/j.nmd.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/10/2023]
|
12
|
Rasmussen M, Jin JP. Troponin Variants as Markers of Skeletal Muscle Health and Diseases. Front Physiol 2021; 12:747214. [PMID: 34733179 PMCID: PMC8559874 DOI: 10.3389/fphys.2021.747214] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ca2 +-regulated contractility is a key determinant of the quality of muscles. The sarcomeric myofilament proteins are essential players in the contraction of striated muscles. The troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated during development and aging, and in adaptation to exercise or disuse. TnT also evolved with various alternative splice forms as an added capacity of muscle functional diversity. Mutations of troponin subunits cause myopathies. Owing to their physiological and pathological importance, troponin variants can be used as specific markers to define muscle quality. In this focused review, we will explore the use of troponin variants as markers for the fiber contents, developmental and differentiation states, contractile functions, and physiological or pathophysiological adaptations of skeletal muscle. As protein structure defines function, profile of troponin variants illustrates how changes at the myofilament level confer functional qualities at the fiber level. Moreover, understanding of the role of troponin modifications and mutants in determining muscle contractility in age-related decline of muscle function and in myopathies informs an approach to improve human health.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Petrucci A, Primiano G, Savarese M, Sancricca C, Udd B, Servidei S. Novel TNNT1 mutation and mild nemaline myopathy phenotype in an Italian patient. Neuromuscul Disord 2021; 31:532-538. [PMID: 33832840 DOI: 10.1016/j.nmd.2021.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Mutations in the TNNT1 gene cause an infantile, lethal form of myopathy named "Amish" Nemaline Myopathy. Adult patients are very rarely described. We report a 49-year-old patient who presented a slowly progressive phenotype characterized by myalgia, exercise intolerance and dyspnea since infancy. In adult life she lapsed into a coma as a result of acute respiratory failure, with the need of tracheostomy, subsequently removed once her respiratory condition improved. Afterwards, non-invasive ventilation was started. Short stature, contractures, a small size posterior cranial fossa and osteonecrosis were additional clinical findings. Muscle MRI showed minor hypotrophy and degenerative changes of the muscles of the posterior thigh compartment and involvement of the paraspinal, medial gastrocnemius and soleus muscles with sparing of the gracilis muscle. Muscle biopsy revealed multiminicores and nemaline rods. Genetic analysis identified a new pathogenetic biallelic deletion c.786delG p.(Lys263Serfs*36) in exon 13 of TNNT1 gene. This case confirms that recessive mutations in TNNT1 gene can manifest mainly with respiratory failure in adult life.
Collapse
Affiliation(s)
- Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Diseases, Neuroscience Department, San Camillo-Forlanini Hospital, Rome, Italy
| | - Guido Primiano
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00168, Italy; Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Cristina Sancricca
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00168, Italy; Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland; Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Serenella Servidei
- UOC Neurofisiopatologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Rome 00168, Italy; Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
14
|
Ganse B, Bosutti A, Drey M, Degens H. Sixty days of head-down tilt bed rest with or without artificial gravity do not affect the neuromuscular secretome. Exp Cell Res 2020; 399:112463. [PMID: 33385417 DOI: 10.1016/j.yexcr.2020.112463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/13/2023]
Abstract
Artificial gravity is a potential countermeasure to attenuate effects of weightlessness during long-term spaceflight, including losses of muscle mass and function, possibly to some extent attributable to disturbed neuromuscular interaction. The 60-day AGBRESA bed-rest study was conducted with 24 participants (16 men, 8 women; 33 ± 9 years; 175 ± 9 cm; 74 ± 10 kg; 8 control group, 8 continuous (cAG) and 8 intermittent (iAG) centrifugation) to assess the impact of bed rest with or without daily 30-min continuous/intermittent centrifugation with 1G at the centre of mass. Fasting blood samples were collected before and on day 6, 20, 40 and 57 during 6° head-down tilt bed rest. Concentrations of circulating markers of muscle wasting (GDF-8/myostatin; slow skeletal muscle troponin T; prostaglandin E2), neurotrophic factors (BDNF; GDNF) and C-terminal Agrin Fragment (CAF) were determined by ELISAs. Creatine kinase activity was assessed by colorimetric enzyme assay. Repeated-measures ANOVAs were conducted with TIME as within-subject, and INTERVENTION and SEX as between-subject factors. The analyses revealed no significant effect of bed rest or sex on any of the parameters. Continuous or intermittent artificial gravity is a safe intervention that does not have a negative impact of the neuromuscular secretome.
Collapse
Affiliation(s)
- Bergita Ganse
- Manchester Metropolitan University, Research Centre for Musculoskeletal Science & Sports Medicine, Faculty of Science and Engineering, John Dalton Building, Manchester, United Kingdom.
| | | | - Michael Drey
- Department of Medicine IV, Geriatrics, University Hospital of LMU Munich, Munich, Germany
| | - Hans Degens
- Manchester Metropolitan University, Research Centre for Musculoskeletal Science & Sports Medicine, Faculty of Science and Engineering, John Dalton Building, Manchester, United Kingdom; Lithuanian Sports University, Institute of Sport Science and Innovations, Kaunas, Lithuania
| |
Collapse
|
15
|
Gao L, Kumar V, Vellichirammal NN, Park SY, Rudebush TL, Yu L, Son WM, Pekas EJ, Wafi AM, Hong J, Xiao P, Guda C, Wang HJ, Schultz HD, Zucker IH. Functional, proteomic and bioinformatic analyses of Nrf2- and Keap1- null skeletal muscle. J Physiol 2020; 598:5427-5451. [PMID: 32893883 PMCID: PMC7749628 DOI: 10.1113/jp280176] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Nrf2 is a master regulator of endogenous cellular defences, governing the expression of more than 200 cytoprotective proteins, including a panel of antioxidant enzymes. Nrf2 plays an important role in redox haemostasis of skeletal muscle in response to the increased generation of reactive oxygen species during contraction. Employing skeletal muscle-specific transgenic mouse models with unbiased-omic approaches, we uncovered new target proteins, downstream pathways and molecular networks of Nrf2 in skeletal muscle following Nrf2 or Keap1 deletion. Based on the findings, we proposed a two-way model to understand Nrf2 function: a tonic effect through a Keap1-independent mechanism under basal conditions and an induced effect through a Keap1-dependent mechanism in response to oxidative and other stresses. ABSTRACT Although Nrf2 has been recognized as a master regulator of cytoprotection, its functional significance remains to be completely defined. We hypothesized that proteomic/bioinformatic analyses from Nrf2-deficient or overexpressed skeletal muscle tissues will provide a broader spectrum of Nrf2 targets and downstream pathways than are currently known. To this end, we created two transgenic mouse models; the iMS-Nrf2flox/flox and iMS-Keap1flox/flox , employing which we demonstrated that selective deletion of skeletal muscle Nrf2 or Keap1 separately impaired or improved skeletal muscle function. Mass spectrometry revealed that Nrf2-KO changed expression of 114 proteins while Keap1-KO changed expression of 117 proteins with 10 proteins in common between the groups. Gene ontology analysis suggested that Nrf2 KO-changed proteins are involved in metabolism of oxidoreduction coenzymes, purine ribonucleoside triphosphate, ATP and propanoate, which are considered as the basal function of Nrf2, while Keap1 KO-changed proteins are involved in cellular detoxification, NADP metabolism, glutathione metabolism and the electron transport chain, which belong to the induced effect of Nrf2. Canonical pathway analysis suggested that Keap1-KO activated four pathways, whereas Nrf2-KO did not. Ingenuity pathway analysis further revealed that Nrf2-KO and Keap1-KO impacted different signal proteins and functions. Finally, we validated the proteomic and bioinformatics data by analysing glutathione metabolism and mitochondrial function. In conclusion, we found that Nrf2-targeted proteins are assigned to two groups: one mediates the tonic effects evoked by a low level of Nrf2 at basal condition; the other is responsible for the inducible effects evoked by a surge of Nrf2 that is dependent on a Keap1 mechanism.
Collapse
Affiliation(s)
- Lie Gao
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Vikas Kumar
- Mass Spectrometry & Proteomics Core, University of Nebraska Medical Center, Omaha, NE 68198
| | | | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182
| | - Tara L. Rudebush
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Li Yu
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Won-Mok Son
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182
| | - Ahmed M. Wafi
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Juan Hong
- Department of Anesthesiology; University of Nebraska Medical Center, Omaha, NE 68198
| | - Peng Xiao
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198
- Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198
| | - Han-Jun Wang
- Department of Anesthesiology; University of Nebraska Medical Center, Omaha, NE 68198
| | - Harold D. Schultz
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Irving H. Zucker
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
16
|
Pellerin D, Aykanat A, Ellezam B, Troiano EC, Karamchandani J, Dicaire MJ, Petitclerc M, Robertson R, Allard-Chamard X, Brunet D, Konersman CG, Mathieu J, Warman Chardon J, Gupta VA, Beggs AH, Brais B, Chrestian N. Novel Recessive TNNT1 Congenital Core-Rod Myopathy in French Canadians. Ann Neurol 2020; 87:568-583. [PMID: 31970803 DOI: 10.1002/ana.25685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recessive null variants of the slow skeletal muscle troponin T1 (TNNT1) gene are a rare cause of nemaline myopathy that is fatal in infancy due to respiratory insufficiency. Muscle biopsy shows rods and fiber type disproportion. We report on 4 French Canadians with a novel form of recessive congenital TNNT1 core-rod myopathy. METHODS Patients underwent full clinical characterization, lower limb magnetic resonance imaging (MRI), muscle biopsy, and genetic testing. A zebrafish loss-of-function model using morpholinos was created to assess the pathogenicity of the identified variant. Wild-type or mutated human TNNT1 mRNAs were coinjected with morpholinos to assess their abilities to rescue the morphant phenotype. RESULTS Three adults and 1 child shared a novel missense homozygous variant in the TNNT1 gene (NM_003283.6: c.287T > C; p.Leu96Pro). They developed from childhood very slowly progressive limb-girdle weakness with rigid spine and disabling contractures. They suffered from restrictive lung disease requiring noninvasive mechanical ventilation in 3 patients, as well as recurrent episodes of rhabdomyolysis triggered by infections, which were relieved by dantrolene in 1 patient. Older patients remained ambulatory into their 60s. MRI of the leg muscles showed fibrofatty infiltration predominating in the posterior thigh and the deep posterior leg compartments. Muscle biopsies showed multiminicores and lobulated fibers, rods in half the patients, and no fiber type disproportion. Wild-type TNNT1 mRNA rescued the zebrafish morphants, but mutant transcripts failed to do so. INTERPRETATION This study expands the phenotypic spectrum of TNNT1 myopathy and provides functional evidence for the pathogenicity of the newly identified missense mutation. ANN NEUROL 2020;87:568-583.
Collapse
Affiliation(s)
- David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Asli Aykanat
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Emily C Troiano
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-Josée Dicaire
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Marc Petitclerc
- Department of Neurology, Hôpital Hôtel-Dieu de Lévis, Lévis, Quebec, Canada
| | - Rebecca Robertson
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Xavier Allard-Chamard
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Denis Brunet
- Department of Neurology, Hôpital de l'Enfant Jésus, Université Laval, Quebec City, Quebec, Canada
| | | | - Jean Mathieu
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Neuromuscular Disease Clinic, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Jonquière, Quebec, Canada
| | - Jodi Warman Chardon
- Department of Neurosciences, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada.,Neuromuscular Disease Clinic, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Jonquière, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Nicolas Chrestian
- Department of Child Neurology, Centre Hospitalier de l'Université Laval et Centre Mère-Enfant Soleil, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
17
|
Oki K, Wei B, Feng HZ, Jin JP. The loss of slow skeletal muscle isoform of troponin T in spindle intrafusal fibres explains the pathophysiology of Amish nemaline myopathy. J Physiol 2019; 597:3999-4012. [PMID: 31148174 PMCID: PMC6675633 DOI: 10.1113/jp278119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS The pathogenic mechanism and the neuromuscular reflex-related phenotype (e.g. tremors accompanied by clonus) of Amish nemaline myopathy, as well as of other recessively inherited TNNT1 myopathies, remain to be clarified. The truncated slow skeletal muscle isoform of troponin T (ssTnT) encoded by the mutant TNNT1 gene is unable to incorporate into myofilaments and is degraded in muscle cells. By contrast to extrafusal muscle fibres, spindle intrafusal fibres of normal mice contain a significant level of cardiac TnT and a low molecular weight splice form of ssTnT. Intrafusal fibres of ssTnT-knockout mice have significantly increased cardiac TnT. Rotarod and balance beam tests have revealed abnormal neuromuscular co-ordination in ssTnT-knockout mice and a blunted response to a spindle sensitizer, succinylcholine. The loss of ssTnT and a compensatory increase of cardiac TnT in intrafusal nuclear bag fibres may increase myofilament Ca2+ -sensitivity and tension, impairing spindle function, thus identifying a novel mechanism for the development of targeted treatment. ABSTRACT A nonsense mutation at codon Glu180 of TNNT1 gene causes Amish nemaline myopathy (ANM), a recessively inherited disease with infantile lethality. TNNT1 encodes the slow skeletal muscle isoform of troponin T (ssTnT). The truncated ssTnT is unable to incorporate into myofilament and is degraded in muscle cells. The symptoms of ANM include muscle weakness, atrophy, contracture and tremors accompanied by clonus. An ssTnT-knockout (KO) mouse model recapitulates key features of ANM such as atrophy of extrafusal slow muscle fibres and increased fatigability. However, the neuromuscular reflex-related symptoms of ANM have not been explained. By isolating muscle spindles from ssTnT-KO and control mice aiming to examine the composition of myofilament proteins, we found that, in contrast to extrafusal fibres, intrafusal fibres contain a significant level of cardiac TnT and the low molecular weight splice form of ssTnT. Intrafusal fibres from ssTnT-KO mice have significantly increased cardiac TnT. Rotarod and balance beam tests revealed impaired neuromuscular co-ordination in ssTnT-KO mice, indicating abnormality in spindle functions. Unlike the wild-type control, the beam running ability of ssTnT-KO mice had a blunted response to a spindle sensitizer, succinylcholine. Immunohistochemistry detected ssTnT and cardiac TnT in nuclear bag fibres, whereas fast skeletal muscle TnT was detected in nuclear chain fibres, and cardiac α-myosin was present in one of the two nuclear bag fibres. The loss of ssTnT and a compensatory increase of cardiac TnT in nuclear bag fibres would increase myofilament Ca2+ -sensitivity and tension, thus affecting spindle activities. This mechanism provides an explanation for the pathophysiology of ANM, as well as a novel target for treatment.
Collapse
Affiliation(s)
| | | | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - J.-P. Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Fox MD, Carson VJ, Feng HZ, Lawlor MW, Gray JT, Brigatti KW, Jin JP, Strauss KA. TNNT1 nemaline myopathy: natural history and therapeutic frontier. Hum Mol Genet 2019; 27:3272-3282. [PMID: 29931346 DOI: 10.1093/hmg/ddy233] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/06/2018] [Indexed: 02/03/2023] Open
Abstract
We describe the natural history of 'Amish' nemaline myopathy (ANM), an infantile-onset, lethal disease linked to a pathogenic c.505G>T nonsense mutation of TNNT1, which encodes the slow fiber isoform of troponin T (TNNT1; a.k.a. TnT). The TNNT1 c.505G>T allele has a carrier frequency of 6.5% within Old Order Amish settlements of North America. We collected natural history data for 106 ANM patients born between 1923 and 2017. Over the last two decades, mean age of molecular diagnosis was 16 ± 27 days. TNNT1 c.505G>T homozygotes were normal weight at birth but failed to thrive by age 9 months. Presenting neonatal signs were axial hypotonia, hip and shoulder stiffness, and tremors, followed by progressive muscle weakness, atrophy and contractures. Affected children developed thoracic rigidity, pectus carinatum and restrictive lung disease during infancy, and all succumbed to respiratory failure by 6 years of age (median survival 18 months, range 0.2-66 months). Muscle histology from two affected children showed marked fiber size variation owing to both Type 1 myofiber smallness (hypotrophy) and Type 2 fiber hypertrophy, with evidence of nemaline rods, myofibrillar disarray and vacuolar pathology in both fiber types. The truncated slow TNNT1 (TnT) fragment (p.Glu180Ter) was undetectable in ANM muscle, reflecting its rapid proteolysis and clearance from sarcoplasm. Similar functional and histological phenotypes were observed in other human cohorts and two transgenic murine models (Tnnt1-/- and Tnnt1 c.505G>T). These findings have implications for emerging molecular therapies, including the suitably of TNNT1 gene replacement for newborns with ANM or other TNNT1-associated myopathies.
Collapse
Affiliation(s)
- Michael D Fox
- Clinic for Special Children, Strasburg, PA, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Diagnostic Referral Division, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | | | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - John T Gray
- Audentes Therapeutics, San Francisco, CA, USA
| | | | - J-P Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
19
|
Konersman CG, Freyermuth F, Winder TL, Lawlor MW, Lagier‐Tourenne C, Patel SB. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy. Mol Genet Genomic Med 2017; 5:678-691. [PMID: 29178646 PMCID: PMC5702563 DOI: 10.1002/mgg3.325] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Nemaline myopathy (NEM) is one of the three major forms of congenital myopathy and is characterized by diffuse muscle weakness, hypotonia, respiratory insufficiency, and the presence of nemaline rod structures on muscle biopsy. Mutations in troponin T1 (TNNT1) is 1 of 10 genes known to cause NEM. To date, only homozygous nonsense mutations or compound heterozygous truncating or internal deletion mutations in TNNT1 gene have been identified in NEM. This extended family is of historical importance as some members were reported in the 1960s as initial evidence that NEM is a hereditary disorder. METHODS Proband and extended family underwent Sanger sequencing for TNNT1. We performed RT-PCR and immunoblot on muscle to assess TNNT1 RNA expression and protein levels in proband and father. RESULTS We report a novel heterozygous missense mutation of TNNT1 c.311A>T (p.E104V) that segregated in an autosomal dominant fashion in a large family residing in the United States. Extensive sequencing of the other known genes for NEM failed to identify any other mutant alleles. Muscle biopsies revealed a characteristic pattern of nemaline rods and severe myofiber hypotrophy that was almost entirely restricted to the type 1 fiber population. CONCLUSION This novel mutation alters a residue that is highly conserved among vertebrates. This report highlights not only a family with autosomal dominant inheritance of NEM, but that this novel mutation likely acts via a dominant negative mechanism.
Collapse
Affiliation(s)
| | - Fernande Freyermuth
- MassGeneral Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusetts
- Broad Institute of Harvard University and MITCambridgeMassachusetts
| | - Thomas L. Winder
- Prevention GeneticsMarshfieldWisconsin
- Present address:
Invitae CorporationSan FranciscoCalifornia
| | - Michael W. Lawlor
- Division of Pediatric PathologyDepartment of Pathology and Laboratory Medicine and Neuroscience Research CenterMedical College of WisconsinMilwaukeeWisconsin
| | - Clotilde Lagier‐Tourenne
- MassGeneral Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusetts
- Broad Institute of Harvard University and MITCambridgeMassachusetts
| | - Shailendra B. Patel
- Division of EndocrinologyMetabolism and Clinical NutritionMedical College of Wisconsin, and Clement J. Zablocki VAMCMilwaukeeWisconsin
- Present address:
Division of Endocrinology, Diabetes and MetabolismUniversity of CincinnatiCincinnatiOhio
| |
Collapse
|