1
|
Qin C, Feng Y, Yin Z, Wang C, Yin R, Li Y, Chen K, Tao T, Zhang K, Jiang Y, Gui J. The PIEZO1/miR-155-5p/GDF6/SMAD2/3 signaling axis is involved in inducing the occurrence and progression of osteoarthritis under excessive mechanical stress. Cell Signal 2024; 118:111142. [PMID: 38508350 DOI: 10.1016/j.cellsig.2024.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To elucidate the molecular mechanism of overloading-induced osteoarthritis (OA) and to find a novel therapeutic target. METHODS We utilized human cartilage specimens, mouse chondrocytes, a destabilization of the medial meniscus (DMM) mouse model, and a mouse hindlimb weight-bearing model to validate the role of overloading on chondrocyte senescence and OA development. Then, we observed the effect of PIEZO1-miR-155-5p-GDF6-SMAD2/3 signaling axis on the preservation of joint metabolic homeostasis under overloading in vivo, in vitro and ex vivo by qPCR, Western blot, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, immunofluorescence, SA-β-gal staining, CCK8 assay, et al. Finally, we verified the therapeutic effects of intra-articular injection of miR-155-5p inhibitor or recombinant GDF6 on the murine overloading-induced OA models. RESULTS Chondrocytes sensesed the mechanical overloading through PIEZO1 and up-regulated miR-155-5p expression. MiR-155-5p mimics could copy the effects of overloading-induced chondrocyte senescence and OA. Additionally, miR-155-5p could suppress the mRNA expression of Gdf6-Smad2/3 in various tissues within the joint. Overloading could disrupt joint metabolic homeostasis by downregulating the expression of anabolism indicators and upregulating the expression of catabolism indicators in the chondrocytes and synoviocytes, while miR-155-5p inhibition or GDF6 supplementation could exert an antagonistic effect by preserving the joint homeostasis. Finally, in the in vivo overloading models, intra-articular injection of miR-155-5p inhibitor or recombinant GDF6 could significantly mitigate the severity of impending OA and lessened the progression of existing OA. CONCLUSION GDF6 overexpression or miR-155-5p inhibition could attenuate overloading-induced chondrocyte senescence and OA through the PIEZO1-miR-155-5p-GDF6-SMAD2/3 signaling pathway. Our study provides a new therapeutic target for the treatment of overloading-induced OA.
Collapse
Affiliation(s)
- Chaoren Qin
- Nanjing First Hospital, Nanjing Medical University, China
| | - Yan Feng
- Nanjing First Hospital, Nanjing Medical University, China
| | - Zhaowei Yin
- Nanjing First Hospital, Nanjing Medical University, China
| | | | - Rui Yin
- Nanjing First Hospital, Nanjing Medical University, China
| | - Yang Li
- Nanjing First Hospital, Nanjing Medical University, China
| | - Kai Chen
- Nanjing First Hospital, Nanjing Medical University, China
| | - Tianqi Tao
- Nanjing First Hospital, Nanjing Medical University, China
| | - Kaibin Zhang
- Nanjing First Hospital, Nanjing Medical University, China
| | - Yiqiu Jiang
- Nanjing First Hospital, Nanjing Medical University, China
| | - Jianchao Gui
- Nanjing First Hospital, Nanjing Medical University, China..
| |
Collapse
|
2
|
Saitta S, Carioni M, Mukherjee S, Schönlieb CB, Redaelli A. Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 246:108057. [PMID: 38335865 DOI: 10.1016/j.cmpb.2024.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND AND OBJECTIVE 4D flow magnetic resonance imaging provides time-resolved blood flow velocity measurements, but suffers from limitations in spatio-temporal resolution and noise. In this study, we investigated the use of sinusoidal representation networks (SIRENs) to improve denoising and super-resolution of velocity fields measured by 4D flow MRI in the thoracic aorta. METHODS Efficient training of SIRENs in 4D was achieved by sampling voxel coordinates and enforcing the no-slip condition at the vessel wall. A set of synthetic measurements were generated from computational fluid dynamics simulations, reproducing different noise levels. The influence of SIREN architecture was systematically investigated, and the performance of our method was compared to existing approaches for 4D flow denoising and super-resolution. RESULTS Compared to existing techniques, a SIREN with 300 neurons per layer and 20 layers achieved lower errors (up to 50% lower vector normalized root mean square error, 42% lower magnitude normalized root mean square error, and 15% lower direction error) in velocity and wall shear stress fields. Applied to real 4D flow velocity measurements in a patient-specific aortic aneurysm, our method produced denoised and super-resolved velocity fields while maintaining accurate macroscopic flow measurements. CONCLUSIONS This study demonstrates the feasibility of using SIRENs for complex blood flow velocity representation from clinical 4D flow, with quick execution and straightforward implementation.
Collapse
Affiliation(s)
- Simone Saitta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Marcello Carioni
- Department of Applied Mathematics, University of Twente, 7500AE Enschede, the Netherlands
| | - Subhadip Mukherjee
- Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology (IIT) Kharagpur, India
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
3
|
Trenti C, Fedak PWM, White JA, Garcia J, Dyverfeldt P. Oscillatory shear stress is elevated in patients with bicuspid aortic valve and aortic regurgitation: a 4D flow cardiovascular magnetic resonance cross-sectional study. Eur Heart J Cardiovasc Imaging 2024; 25:404-412. [PMID: 37878753 PMCID: PMC10883729 DOI: 10.1093/ehjci/jead283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
AIMS Patients with bicuspid aortic valve (BAV) and aortic regurgitation have higher rate of aortic complications compared with patients with BAV and stenosis, as well as BAV without valvular disease. Aortic regurgitation alters blood haemodynamics not only in systole but also during diastole. We therefore sought to investigate wall shear stress (WSS) during the whole cardiac cycle in BAV with aortic regurgitation. METHODS AND RESULTS Fifty-seven subjects that underwent 4D flow cardiovascular magnetic resonance imaging were included: 13 patients with BAVs without valve disease, 14 BAVs with aortic regurgitation, 15 BAVs with aortic stenosis, and 22 normal controls with tricuspid aortic valve. Peak and time averaged WSS in systole and diastole and the oscillatory shear index (OSI) in the ascending aorta were computed. Student's t-tests were used to compare values between the four groups where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. BAVs with regurgitation had similar peak and time averaged WSS compared with the patients with BAV without valve disease and with stenosis, and no regions of elevated WSS were found. BAV with aortic regurgitation had twice as high OSI as the other groups (P ≤ 0.001), and mainly in the outer mid-to-distal ascending aorta. CONCLUSION OSI uniquely characterizes altered WSS patterns in BAVs with aortic regurgitation, and thus could be a haemodynamic marker specific for this specific group that is at higher risk of aortic complications. Future longitudinal studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Chiara Trenti
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| | - Paul W M Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
| | - James A White
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, 4448 Front St SE, Calgary, AB T3M 1M4, Canada
| | - Julio Garcia
- Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, 4448 Front St SE, Calgary, AB T3M 1M4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB T3B 6A8, Canada
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Universitetssjukhuset, 581 83 Linköping, Sweden
| |
Collapse
|
4
|
Ebrahimkhani M, Johnson EMI, Sodhi A, Robinson JD, Rigsby CK, Allen BD, Markl M. A Deep Learning Approach to Using Wearable Seismocardiography (SCG) for Diagnosing Aortic Valve Stenosis and Predicting Aortic Hemodynamics Obtained by 4D Flow MRI. Ann Biomed Eng 2023; 51:2802-2811. [PMID: 37573264 DOI: 10.1007/s10439-023-03342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
In this paper, we explored the use of deep learning for the prediction of aortic flow metrics obtained using 4-dimensional (4D) flow magnetic resonance imaging (MRI) using wearable seismocardiography (SCG) devices. 4D flow MRI provides a comprehensive assessment of cardiovascular hemodynamics, but it is costly and time-consuming. We hypothesized that deep learning could be used to identify pathological changes in blood flow, such as elevated peak systolic velocity ([Formula: see text]) in patients with heart valve diseases, from SCG signals. We also investigated the ability of this deep learning technique to differentiate between patients diagnosed with aortic valve stenosis (AS), non-AS patients with a bicuspid aortic valve (BAV), non-AS patients with a mechanical aortic valve (MAV), and healthy subjects with a normal tricuspid aortic valve (TAV). In a study of 77 subjects who underwent same-day 4D flow MRI and SCG, we found that the [Formula: see text] values obtained using deep learning and SCGs were in good agreement with those obtained by 4D flow MRI. Additionally, subjects with non-AS TAV, non-AS BAV, non-AS MAV, and AS could be classified with ROC-AUC (area under the receiver operating characteristic curves) values of 92%, 95%, 81%, and 83%, respectively. This suggests that SCG obtained using low-cost wearable electronics may be used as a supplement to 4D flow MRI exams or as a screening tool for aortic valve disease.
Collapse
Affiliation(s)
- Mahmoud Ebrahimkhani
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ethan M I Johnson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Aparna Sodhi
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
| | - Joshua D Robinson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cynthia K Rigsby
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradly D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
5
|
Kalogerakos PD, Pirentis A, Papaharilaou Y, Skiadas C, Karantanas A, Mojibian H, Marketou M, Kochiadakis G, Elefteriades JA, Lazopoulos G. Significant unfavorable geometrical changes in ascending aorta despite stable diameter at follow-up. Hellenic J Cardiol 2023:S1109-9666(23)00198-7. [PMID: 37931701 DOI: 10.1016/j.hjc.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/25/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The clinical importance of following-up the ascending aortic diameter lies on the fundamental presumption that wall pathology eventually manifests as change in shape. However, the diameter describes the vessel locally, and the 55mm criterion fails to prevent most dissections. We hypothesized that geometric changes across the ascending aorta are not necessarily imprinted on its diameter; i.e. the maximum diameter correlates weakly and insignificantly with elongation, surface stretching, engorgement, and tortuosity. METHODS Two databases were interrogated for patients who had undergone at least 2 ECG-gated CT scans. The absence of motion artifacts permitted the generation of exact copies of the ascending aorta which then underwent three-dimensional analysis producing objective and accurate measurements of the centreline length, surface, volume, and tortuosity. The correlations of these global variables with the diameter were explored. RESULTS Twenty-two patients, 13 male and 9 females, were included. The mean age at the first and last scan was 63.7 and 67.1y, respectively. The mean diameter increase was approximately 1mm/y. There were no dissections, while 7 patients underwent preemptive surgery. The yearly change rate of the global variables, normalized to height if applicable, showed statistically insignificant, weak or negligible correlation with diameter increments at follow-up. Most characteristically, a patient's aorta maintained its diameter, while undergoing 1mm/y elongation, 151mm2/(y∙m) stretching, 2366mm3/(y∙m) engorgement, and 0.02/y tortuosity. CONCLUSIONS Maximum diameter provides a local description for the ascending aorta and cannot fully portray the pathological process across this vessel. Following-up the diameter is not suggestive of length, surface, volume and tortuosity changes.
Collapse
Affiliation(s)
- Paris Dimitrios Kalogerakos
- Cardiac Surgery Division, General University Hospital of Heraklion, Crete, Greece; Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | - Christos Skiadas
- Department of Radiology, General University Hospital of Heraklion, Crete, Greece
| | - Apostolos Karantanas
- Department of Radiology, General University Hospital of Heraklion, Crete, Greece
| | - Hamid Mojibian
- Department of Diagnostic Imaging, Yale University School of Medicine, New Haven, CT, USA; Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Marketou
- Department of Cardiology, General University Hospital of Heraklion, Crete, Greece
| | - George Kochiadakis
- Department of Cardiology, General University Hospital of Heraklion, Crete, Greece
| | - John Alex Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - George Lazopoulos
- Cardiac Surgery Division, General University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
6
|
Salmasi MY, Pirola S, Asimakopoulos G, Nienaber C, Athanasiou T. Risk prediction for thoracic aortic dissection: Is it time to go with the flow? J Thorac Cardiovasc Surg 2023; 166:1034-1042. [PMID: 35672182 DOI: 10.1016/j.jtcvs.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Affiliation(s)
- M Yousuf Salmasi
- Department of Surgery, Imperial College London, London, United Kingdom.
| | - Selene Pirola
- BHF Centre of Research Excellence, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - George Asimakopoulos
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Christoph Nienaber
- Department of Cardiology, Royal Brompton and Harefield Trust, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Rodríguez-Palomares JF, Dux-Santoy L, Guala A, Galian-Gay L, Evangelista A. Mechanisms of Aortic Dilation in Patients With Bicuspid Aortic Valve: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:448-464. [PMID: 37495282 DOI: 10.1016/j.jacc.2022.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 07/28/2023]
Abstract
Bicuspid aortic valve is the most common congenital heart disease and exposes patients to an increased risk of aortic dilation and dissection. Aortic dilation is a slow, silent process, leading to a greater risk of aortic dissection. The prevention of adverse events together with optimization of the frequency of the required lifelong imaging surveillance are important for both clinicians and patients and motivated extensive research to shed light on the physiopathologic processes involved in bicuspid aortic valve aortopathy. Two main research hypotheses have been consolidated in the last decade: one supports a genetic basis for the increased prevalence of dilation, in particular for the aortic root, and the second supports the damaging impact on the aortic wall of altered flow dynamics associated with these structurally abnormal valves, particularly significant in the ascending aorta. Current opinion tends to rule out mutually excluding causative mechanisms, recognizing both as important and potentially clinically relevant.
Collapse
Affiliation(s)
- Jose F Rodríguez-Palomares
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | - Andrea Guala
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Galian-Gay
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Arturo Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Departament of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| |
Collapse
|
8
|
Castelvecchio S, Frigelli M, Sturla F, Milani V, Pappalardo OA, Citarella M, Menicanti L, Votta E. Elucidating the mechanisms underlying left ventricular function recovery in patients with ischemic heart failure undergoing surgical remodeling: A 3-dimensional ultrasound analysis. J Thorac Cardiovasc Surg 2023; 165:1418-1429.e4. [PMID: 33781593 DOI: 10.1016/j.jtcvs.2021.02.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The study objective was to elucidate the mechanisms of left ventricle functional recovery in terms of endocardial contractility and synchronicity after surgical ventricular reconstruction. METHODS Real-time 3-dimensional transthoracic echocardiography was performed on 20 patients with anterior left ventricle remodeling and ischemic heart failure before surgical ventricular reconstruction and at 6-month follow-up, and on 15 healthy controls matched by age and body surface area. Real-time 3-dimensional transthoracic echocardiography datasets were analyzed through TomTec software (4D LV-Analysis; TomTec Imaging Systems GmbH, Unterschleissheim, Germany): Left ventricle volumes, ejection fraction, and global longitudinal strain were computed; the time-dependent endocardial surface yielded by 3-dimensional speckle-tracking echocardiography was postprocessed through in-house software to quantify local systolic minimum principal strain as a measure of fiber shortening and mechanical dispersion as a measure of fiber synchronicity. RESULTS Compared with controls, patients with heart failure before surgical ventricular reconstruction showed lower ejection fraction (P < .0001) and significantly impaired mechanical dispersion (P < .0001) and minimum principal strain (P < .0001); the latter worsened progressively from left ventricle base to apex. After surgical ventricular reconstruction, global longitudinal strain improved from -6.7% to -11.3% (P < .0001); mechanical dispersion decreased in every left ventricle region (P ≤ .017) and mostly in the basal region, where computed mechanical dispersion values were comparable to physiologic values (P ≥ .046); minimum principal strain improved mostly in the basal region, changing from -16.6% to -22.3% (P = .0027). CONCLUSIONS At 6-month follow-up, surgical ventricular reconstruction was associated with significant recovery in global left ventricle function, improved mechanical dispersion indicating a more synchronous left ventricle contraction, and improved left ventricle fiber shortening mostly in the basal region, suggesting the major role of the remote myocardium in enhancing left ventricle functional recovery.
Collapse
Affiliation(s)
| | - Matteo Frigelli
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Valentina Milani
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Omar A Pappalardo
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Michele Citarella
- Cardiac Surgery Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Lorenzo Menicanti
- Cardiac Surgery Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Emiliano Votta
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
9
|
Qin JJ, Obeidy P, Gok M, Gholipour A, Grieve SM. 4D-flow MRI derived wall shear stress for the risk stratification of bicuspid aortic valve aortopathy: A systematic review. Front Cardiovasc Med 2023; 9:1075833. [PMID: 36698944 PMCID: PMC9869052 DOI: 10.3389/fcvm.2022.1075833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Purpose Current intervention guidelines for bicuspid aortic valve (BAV) associated ascending aorta (AAo) dilatation are suboptimal predictors of clinical outcome. There is growing interest in identifying better biomarkers such as wall shear stress (WSS) to help risk stratify BAV aortopathy. The aim of the systematic review is to synthesize existing evidence of the relationship between WSS and aortopathy in the BAV population. Methods A comprehensive literature search of available major databases was performed in May 2022 to include studies that used four-dimensional flow cardiac magnetic resonance (4D-flow) MRI to quantify WSS in the AAo in adult BAV populations. Summary results and statistical analysis were provided for key numerical results. A narrative summary was provided to assess similarities between studies. Results A total of 26 studies that satisfied selection criteria and quality assessment were included in the review. The presence of BAV resulted in significantly elevated WSS magnitude and circumferential WSS, but not axial WSS. The presence of aortic stenosis had additional impact on WSS and flow alterations. BAV phenotypes were associated with different WSS distributions and flow profiles. Altered protein expression in the AAo wall associated with WSS supported the contribution of altered hemodynamics to aortopathy in addition to genetic factors. Conclusion WSS has the potential to be a valid biomarker for BAV aortopathy. Future work would benefit from larger study cohorts with longitudinal evaluations to further characterize WSS association with aortopathy, mortality, and morbidities. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022337077, identifier CRD42022337077.
Collapse
Affiliation(s)
- Jiaxing Jason Qin
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Peyman Obeidy
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mustafa Gok
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,Department of Radiology, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Alireza Gholipour
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Stuart M. Grieve
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia,Sydney Medical School and School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,*Correspondence: Stuart M. Grieve,
| |
Collapse
|
10
|
Fatehi Hassanabad A, King MA, Di Martino E, Fedak PWM, Garcia J. Clinical implications of the biomechanics of bicuspid aortic valve and bicuspid aortopathy. Front Cardiovasc Med 2022; 9:922353. [PMID: 36035900 PMCID: PMC9411999 DOI: 10.3389/fcvm.2022.922353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022] Open
Abstract
Bicuspid aortic valve (BAV), which affects up to 2% of the general population, results from the abnormal fusion of the cusps of the aortic valve. Patients with BAV are at a higher risk for developing aortic dilatation, a condition known as bicuspid aortopathy, which is associated with potentially life-threatening sequelae such as aortic dissection and aortic rupture. Although BAV biomechanics have been shown to contribute to aortopathy, their precise impact is yet to be delineated. Herein, we present the latest literature related to BAV biomechanics. We present the most recent definitions and classifications for BAV. We also summarize the current evidence pertaining to the mechanisms that drive bicuspid aortopathy. We highlight how aberrant flow patterns can contribute to the development of aortic dilatation. Finally, we discuss the role cardiac magnetic resonance imaging can have in assessing and managing patient with BAV and bicuspid aortopathy.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Melissa A. King
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Elena Di Martino
- Department of Civil Engineering, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
- Centre for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Julio Garcia
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Julio Garcia
| |
Collapse
|
11
|
Tasca G, Sturla F, Jaworek M, Giese D, Menicanti L, Vismara R, Lombardi M, Redaelli A. In vitro four-dimensional flow magnetic resonance analysis of the effect of pericardial valve design on aortic flow. J Med Eng Technol 2022; 46:209-219. [DOI: 10.1080/03091902.2022.2026505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Giordano Tasca
- Cardiac Surgery Department, Heart Health Center, King Saud Medical City, Riyadh, Kingdom of Saudi Arabia
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Michal Jaworek
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Lorenzo Menicanti
- Cardiac Surgery Department, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Riccardo Vismara
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
12
|
Vedel C, Rode L, Bundgaard H, Iversen K, Jørgensen FS, Petersen OB, Sillesen AS, Sundberg K, Vejlstrup N, Zingenberg H, Tabor A, Ekelund CK. Prenatal cardiac biometry and flow assessment in fetuses with bicuspid aortic valve at 20 weeks' gestation: multicenter cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:846-852. [PMID: 33998082 DOI: 10.1002/uog.23670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate prenatal changes in cardiac biometric and flow parameters in fetuses with bicuspid aortic valve (BAV) diagnosed neonatally compared with controls with normal cardiac anatomy. METHODS This analysis was conducted as part of the Copenhagen Baby Heart Study, a multicenter cohort study of 25 556 neonates that underwent second-trimester anomaly scan at 18 + 0 to 22 + 6 weeks' gestation and neonatal echocardiography within 4 weeks after birth, in Copenhagen University Hospital Herlev, Hvidovre Hospital and Rigshospitalet in greater Copenhagen, between April 2016 and October 2018. From February 2017 (Rigshospitalet) and September 2017 (Herlev and Hvidovre hospitals), the protocol for second-trimester screening of the heart was extended to include evaluation of the four-chamber view, with assessment of flow across the atrioventricular valves, sagittal view of the aortic arch and midumbilical artery and ductus venosus pulsatility indices. All images were evaluated by two investigators, and cardiac biometric and flow parameters were measured and compared between cases with BAV and controls. All cases with neonatal BAV were assessed by a specialist. Maternal characteristics and first- and second-trimester biomarkers were also compared between the two groups. RESULTS Fifty-five infants with BAV and 8316 controls with normal cardiac anatomy were identified during the study period and assessed using the extended prenatal cardiac imaging protocol. There were three times as many mothers who smoked before pregnancy in the group with BAV as in the control group (9.1% vs 2.7%; P = 0.003). All other baseline characteristics were similar between the two groups. Fetuses with BAV, compared with controls, had a significantly larger diameter of the aorta at the level of the aortic valve (3.1 mm vs 3.0 mm (mean difference, 0.12 mm (95% CI, 0.03-0.21 mm))) and the pulmonary artery at the level of the pulmonary valve (4.1 mm vs 3.9 mm (mean difference, 0.15 mm (95% CI, 0.03-0.28 mm))). Following conversion of the diameter measurements of the aorta and pulmonary artery to Z-scores and Bonferroni correction, the differences between the two groups were no longer statistically significant. Pregnancy-associated plasma protein-A (PAPP-A) multiples of the median (MoM) was significantly lower in the BAV group than in the control group (0.85 vs 1.03; P = 0.04). CONCLUSIONS Our findings suggest that fetuses with BAV may have a larger aortic diameter at the level of the aortic valve, measured in the left-ventricular-outflow-tract view, and a larger pulmonary artery diameter at the level of the pulmonary valve, measured in the three-vessel view, at 20 weeks' gestation. Moreover, we found an association of maternal smoking and low PAPP-A MoM with BAV. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- C Vedel
- Center of Fetal Medicine and Pregnancy, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
| | - L Rode
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - H Bundgaard
- University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - K Iversen
- University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - F S Jørgensen
- University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
- Fetal Medicine Unit, Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - O B Petersen
- Center of Fetal Medicine and Pregnancy, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
| | - A-S Sillesen
- Department of Cardiology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - K Sundberg
- Center of Fetal Medicine and Pregnancy, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - N Vejlstrup
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - H Zingenberg
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - A Tabor
- Center of Fetal Medicine and Pregnancy, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
| | - C K Ekelund
- Center of Fetal Medicine and Pregnancy, Department of Obstetrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
| |
Collapse
|
13
|
Rigatelli G, Chiastra C, Pennati G, Dubini G, Migliavacca F, Zuin M. Applications of computational fluid dynamics to congenital heart diseases: a practical review for cardiovascular professionals. Expert Rev Cardiovasc Ther 2021; 19:907-916. [PMID: 34704881 DOI: 10.1080/14779072.2021.1999229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The increased survival rate of patients with congenital heart disease (CHD) has made it likely that 70%-95% of infants with CHDs surviving into adulthood often require careful follow-up and (repeat) interventions. Patients with CHDs often have abnormal blood flow patterns, due to both primary cardiac defect and the consequent surgical or endovascular repair. AREA COVERED Computational fluid dynamics (CFD) alone or coupled with advanced imaging tools can assess blood flow patterns of CHDs to both understand their pathophysiology and anticipate the results of surgical or interventional repair. EXPERT OPINION CFD is a mathematical technique that quantifies and describes the characteristics of fluid flow using the laws of physics. Through dedicated software based on virtual reconstruction and simulation and patients' real data coming from computed tomography, magnetic resonance imaging, and 3/4 D-ultrasound, reconstruction of models of circulation of most CHD can be accomplished. CFD can provide insights about the pathophysiology of coronary artery anomalies, interatrial shunts, coarctation of the aorta and aortic bicuspid valve, tetralogy of Fallot and univentricular heart, with the capability in some cases of simulating different types of surgical or interventional repair and tailoring the treatment on the basis of these findings.
Collapse
Affiliation(s)
- Gianluca Rigatelli
- Cardiovascular Diagnosis and Endoluminal Interventions Unit, Rovigo General Hospital, Rovigo, Italy
| | - Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Giancarlo Pennati
- Laboratory of Biological Structure Mechanics (Labs), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milan, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (Labs), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (Labs), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milan, Italy
| | - Marco Zuin
- Section of Internal and Cardiopulmonary Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Guala A, Dux-Santoy L, Teixido-Tura G, Ruiz-Muñoz A, Galian-Gay L, Servato ML, Valente F, Gutiérrez L, González-Alujas T, Johnson KM, Wieben O, Casas-Masnou G, Sao Avilés A, Fernandez-Galera R, Ferreira-Gonzalez I, Evangelista A, Rodríguez-Palomares JF. Wall Shear Stress Predicts Aortic Dilation in Patients With Bicuspid Aortic Valve. JACC Cardiovasc Imaging 2021; 15:46-56. [PMID: 34801463 DOI: 10.1016/j.jcmg.2021.09.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This study sought to assess the predictive value of wall shear stress (WSS) for colocalized ascending aorta (AAo) growth rate (GR) in patients with bicuspid aortic valve (BAV). BACKGROUND BAV is associated with AAo dilation, but there is limited knowledge about possible predictors of aortic dilation in BAV patients with BAV. An increased WSS has been related to aortic wall damage in patients with BAV, but no previous prospective study tested its predictive value for dilation rate. Recently, a registration-based technique for the semiautomatic mapping of aortic GR has been presented and validated. METHODS Forty-seven patients with BAV free from valvular dysfunction prospectively underwent 4-dimensional flow cardiac magnetic resonance to compute WSS and subsequent follow-up with 2 electrocardiogram-gated high-resolution contrast-enhanced computed tomography angiograms for GR assessment. RESULTS During a median follow-up duration of 43 months, mid AAo GR was 0.24 mm/year. WSS and its circumferential component showed statistically significant association with mid AAo GR in bivariate (P = 0.049 and P = 0.014, respectively) and in multivariate analysis corrected for stroke volume and either baseline AAo diameter (P = 0.046 and P = 0.014, respectively) or z-score (P = 0.036 and P = 0.012, respectively). GR mapping further detailed that GR was heterogeneous in the AAo and that circumferential WSS, but not WSS magnitude, showed statistically significant positive associations with GR in the regions with the fastest growth. CONCLUSIONS 4D flow cardiac magnetic resonance-derived WSS and, in particular, its circumferential component predict progressive dilation of the ascending aorta in patients with BAV. Thus, the assessment of WSS may be considered in the follow-up of these patients.
Collapse
Affiliation(s)
- Andrea Guala
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Gisela Teixido-Tura
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Aroa Ruiz-Muñoz
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Galian-Gay
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Maria Luz Servato
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Filipa Valente
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Laura Gutiérrez
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Kevin M Johnson
- Departments of Medical Physics and Radiology, University of Wisconsin, Wisconsin, USA
| | - Oliver Wieben
- Departments of Medical Physics and Radiology, University of Wisconsin, Wisconsin, USA
| | | | | | | | - Ignacio Ferreira-Gonzalez
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain; CIBER-ESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Arturo Evangelista
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain; Instituto del Corazón, Quirónsalud-Teknon, Barcelona, Spain
| | - Jose F Rodríguez-Palomares
- Vall d'Hebron Institut de Recerca, Barcelona, Spain; Biomedical Research Networking Center on Cardiovascular Diseases, Instituto de Salud Carlos III, Madrid, Spain; Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
15
|
Saitta S, Guo B, Pirola S, Menichini C, Guo D, Shan Y, Dong Z, Xu XY, Fu W. Qualitative and Quantitative Assessments of Blood Flow on Tears in Type B Aortic Dissection With Different Morphologies. Front Bioeng Biotechnol 2021; 9:742985. [PMID: 34692660 PMCID: PMC8531216 DOI: 10.3389/fbioe.2021.742985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: The interactions between aortic morphology and hemodynamics play a key role in determining type B aortic dissection (TBAD) progression and remodeling. The study aimed to provide qualitative and quantitative hemodynamic assessment in four different TBAD morphologies based on 4D flow MRI analysis. Materials and Methods: Four patients with different TBAD morphologies underwent CT and 4D flow MRI scans. Qualitative blood flow evaluation was performed by visualizing velocity streamlines and flow directionality near the tears. Quantitative analysis included flow rate, velocity and reverse flow index (RFI) measurements. Statistical analysis was performed to evaluate hemodynamic differences between the true lumen (TL) and false lumen (FL) of patients. Results: Qualitative analysis revealed blood flow splitting near the primary entry tears (PETs), often causing the formation of vortices in the FL. All patients exhibited clear hemodynamic differences between TL and FL, with the TL generally showing higher velocities and flow rates, and lower RFIs. Average velocity magnitude measurements were significantly different for Patient 1 (t = 5.61, p = 0.001), Patient 2 (t = 3.09, p = 0.02) and Patient 4 (t = 2.81, p = 0.03). At follow-up, Patient three suffered from left renal ischemia because of FL collapse. This patient presented a complex morphology with two FLs and marked flow differences between TL and FLs. In Patient 4, left renal artery malperfusion was observed at the 32-months follow-up, due to FL thrombosis growing after PET repair. Conclusion: The study demonstrates the clinical feasibility of using 4D flow MRI in the context of TBAD. Detailed patient-specific hemodynamics assessment before treatment may provide useful insights to better understand this pathology in the future.
Collapse
Affiliation(s)
- Simone Saitta
- Department of Chemical Engineering, Imperial College London, London, United Kingdom.,Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Baolei Guo
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Claudia Menichini
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Daqiao Guo
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Yan Shan
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Vessel structural stress mediates aortic media degeneration in bicuspid aortopathy: New insights based on patient-specific fluid-structure interaction analysis. J Biomech 2021; 129:110805. [PMID: 34678623 DOI: 10.1016/j.jbiomech.2021.110805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
This study aimed to assess the relationship between local mechanical stimuli and regional aortic tissue degeneration using fluid-structure interaction (FSI) analysis in patients with bicuspid aortic valve (BAV) disease. Nine patients underwent ascending aortic replacement were recruited. Tissues were collected to evaluate the pathology features in four regions, greater curvature (GC-region), posterior (P-region), anterior (A-region), and lesser curvature (LC-region). FSI analysis was performed to quantify vessel structural stress (VSS) and flow-induced parameters, including wall shear stress (WSS), oscillatory shear index (OSI), and particle relative residence time (RRT). The correlation between these biomechanical metrics and tissue degeneration was analyzed. Elastin in the medial layer and media thickness were thinnest and the gap between fibers was biggest in the GC-region, followed by the P-region and A-region, while the elastin and media thickness were thickest and the gap smallest in the LC-region. The collagen deposition followed a pattern with the biggest in the GC-region and least in the LC-region. There is a strong negative correlation between mean or peak VSS and elastin thickness in the arterial wall in the GC-region (r = -0.917; p = 0.001 and r = -0.899; p = 0.001), A-region (r = -0.748; p = 0.020 and r = -0.700; p = 0.036) and P-region (r = -0.773; p = 0.014 and r = -0.769; p = 0.015), and between mean VSS and fiber distance in the A-region (r = -0.702, p = 0.035). Moreover, strong negative correlation between mean or peak VSS and media thickness was also observed. No correlation was found between WSS, OSI, and RRT and aortic tissue degeneration in these four regions. These findings indicate that increased VSS correlated with local elastin degradation and aortic media degeneration, implying that it could be a potential biomechanical parameter for a refined risk stratification for patients with BAV.
Collapse
|
17
|
Barral M, El-Sanharawi I, Dohan A, Sebuhyan M, Guedon A, Delarue A, Boutigny A, Mohamedi N, Magnan B, Kemel S, Ketfi C, Kubis N, Bisdorff-Bresson A, Pocard M, Bonnin P. Blood Flow and Shear Stress Allow Monitoring of Progression and Prognosis of Tumor Diseases. Front Physiol 2021; 12:693052. [PMID: 34413786 PMCID: PMC8369886 DOI: 10.3389/fphys.2021.693052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
In the presence of tumor angiogenesis, blood flow must increase, leading to an elevation of blood flow velocities (BFVels) and wall shear stress (WSS) in upstream native arteries. An adaptive arterial remodeling is stimulated, whose purpose lies in the enlargement of the arterial inner diameter, aiming for normalization of BFVels and WSS. Remodeling engages delayed processes that are efficient only several weeks/months after initiation, independent from those governing expansion of the neovascular network. Therefore, during tumor expansion, there is a time interval during which elevation of BFVels and WSS could reflect disease progression. Conversely, during the period of stability, BFVels and WSS drop back to normal values due to the achievement of remodeling processes. Ovarian peritoneal carcinomatosis (OPC), pseudomyxoma peritonei (PMP), and superficial arteriovenous malformations (AVMs) are diseases characterized by the development of abnormal vascular networks developed on native ones. In OPC and PMP, preoperative blood flow in the superior mesenteric artery (SMA) correlated with the per-operative peritoneal carcinomatosis index (OPC: n = 21, R = 0.79, p < 0.0001, PMP: n = 66, R = 0.63, p < 0.0001). Moreover, 1 year after surgery, WSS in the SMA helped in distinguishing patients with PMP from those without disease progression [ROC-curve analysis, AUC = 0.978 (0.902-0.999), p < 0.0001, sensitivity: 100.0%, specificity: 93.5%, cutoff: 12.1 dynes/cm2]. Similarly, WSS in the ipsilateral afferent arteries close to the lesion distinguished stable from progressive AVM [ROC-curve analysis, AUC: 0.988, (0.919-1.000), p < 0.0001, sensitivity: 93.5%, specificity: 95.7%; cutoff: 26.5 dynes/cm2]. Blood flow volume is indicative of the tumor burden in OPC and PMP, and WSS represents an early sensitive and specific vascular marker of disease progression in PMP and AVM.
Collapse
Affiliation(s)
- Matthias Barral
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France
| | - Imane El-Sanharawi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Anthony Dohan
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France
| | - Maxime Sebuhyan
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Alexis Guedon
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Audrey Delarue
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Alexandre Boutigny
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| | - Nassim Mohamedi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Benjamin Magnan
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Salim Kemel
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Chahinez Ketfi
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France
| | - Nathalie Kubis
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| | - Annouk Bisdorff-Bresson
- AP-HP, Université de Paris, Hôpital Lariboisière, Neuroradiologie, Centre Constitutif des Malformations Artério Veineuses Superficielles de l'Enfant et de l'Adulte, Paris, France
| | - Marc Pocard
- INSERM UMR1275, Université de Paris, Hôpital Lariboisière, Paris, France.,AP-HP, Sorbonne-Université, Hôpital Pitié-Salpêtrière, Chirurgie Digestive et Cancérologique, Paris, France
| | - Philippe Bonnin
- AP-HP, Université de Paris, Hôpital Lariboisière, Physiologie Clinique - Explorations Fonctionnelles, Paris, France.,INSERM UMR1148 - LVTS, Université de Paris, Hôpital Bichat, Paris, France
| |
Collapse
|
18
|
Campisi S, Jayendiran R, Condemi F, Viallon M, Croisille P, Avril S. Significance of Hemodynamics Biomarkers, Tissue Biomechanics and Numerical Simulations in the Pathogenesis of Ascending Thoracic Aortic Aneurysms. Curr Pharm Des 2021; 27:1890-1898. [PMID: 33319666 DOI: 10.2174/1381612826999201214231648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Guidelines for the treatment of aortic wall diseases are based on measurements of maximum aortic diameter. However, aortic rupture or dissections do occur for small aortic diameters. Growing scientific evidence underlines the importance of biomechanics and hemodynamics in aortic disease development and progression. Wall shear stress (WWS) is an important hemodynamics marker that depends on aortic wall morphology and on the aortic valve function. WSS could be helpful to interpret aortic wall remodeling and define personalized risk criteria. The complementarity of Computational Fluid Dynamics and 4D Magnetic Resonance Imaging as tools for WSS assessment is a promising reality. The potentiality of these innovative technologies will provide maps or atlases of hemodynamics biomarkers to predict aortic tissue dysfunction. Ongoing efforts should focus on the correlation between these non-invasive imaging biomarkers and clinico-pathologic situations for the implementation of personalized medicine in current clinical practice.
Collapse
Affiliation(s)
- Salvatore Campisi
- Department of Cardiovascular Surgery; University Hospistal of Saint Etienne, France
| | - Raja Jayendiran
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Francesca Condemi
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Magalie Viallon
- Department of Radiology, University Hospital of Saint Etienne, France
| | - Pierre Croisille
- Department of Radiology, University Hospital of Saint Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| |
Collapse
|
19
|
Wang J, Deng W, Lv Q, Li Y, Liu T, Xie M. Aortic Dilatation in Patients With Bicuspid Aortic Valve. Front Physiol 2021; 12:615175. [PMID: 34295254 PMCID: PMC8290129 DOI: 10.3389/fphys.2021.615175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac abnormality. BAV aortic dilatation is associated with an increased risk of adverse aortic events and represents a potentially lethal disease and hence a considerable medical burden. BAV with aortic dilatation warrants frequent monitoring, and elective surgical intervention is the only effective method to prevent dissection or rupture. The predictive value of the aortic diameter is known to be limited. The aortic diameter is presently still the main reference standard for surgical intervention owing to the lack of a comprehensive understanding of BAV aortopathy progression. This article provides a brief comprehensive review of the current knowledge on BAV aortopathy regarding clinical definitions, epidemiology, natural course, and pathophysiology, as well as hemodynamic and clinically significant aspects on the basis of the limited data available.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
20
|
Kazik HB, Kandail HS, LaDisa JF, Lincoln J. Molecular and Mechanical Mechanisms of Calcification Pathology Induced by Bicuspid Aortic Valve Abnormalities. Front Cardiovasc Med 2021; 8:677977. [PMID: 34124206 PMCID: PMC8187581 DOI: 10.3389/fcvm.2021.677977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bicuspid aortic valve (BAV) is a congenital defect affecting 1-2% of the general population that is distinguished from the normal tricuspid aortic valve (TAV) by the existence of two, rather than three, functional leaflets (or cusps). BAV presents in different morphologic phenotypes based on the configuration of cusp fusion. The most common phenotypes are Type 1 (containing one raphe), where fusion between right coronary and left coronary cusps (BAV R/L) is the most common configuration followed by fusion between right coronary and non-coronary cusps (BAV R/NC). While anatomically different, BAV R/L and BAV R/NC configurations are both associated with abnormal hemodynamic and biomechanical environments. The natural history of BAV has shown that it is not necessarily the primary structural malformation that enforces the need for treatment in young adults, but the secondary onset of premature calcification in ~50% of BAV patients, that can lead to aortic stenosis. While an underlying genetic basis is a major pathogenic contributor of the structural malformation, recent studies have implemented computational models, cardiac imaging studies, and bench-top methods to reveal BAV-associated hemodynamic and biomechanical alterations that likely contribute to secondary complications. Contributions to the field, however, lack support for a direct link between the external valvular environment and calcific aortic valve disease in the setting of BAV R/L and R/NC BAV. Here we review the literature of BAV hemodynamics and biomechanics and discuss its previously proposed contribution to calcification. We also offer means to improve upon previous studies in order to further characterize BAV and its secondary complications.
Collapse
Affiliation(s)
- Hail B. Kazik
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - John F. LaDisa
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Section of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, United States
| | - Joy Lincoln
- Section of Pediatric Cardiology, The Herma Heart Institute, Children's Wisconsin, Milwaukee, WI, United States
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Casciaro ME, Pascaner AF, Guilenea FN, Alcibar J, Gencer U, Soulat G, Mousseaux E, Craiem D. 4D flow MRI: impact of region of interest size, angulation and spatial resolution on aortic flow assessment. Physiol Meas 2021; 42. [PMID: 33567412 DOI: 10.1088/1361-6579/abe525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Objectives.In cardiovascular magnetic resonance, the 3D time-resolved phase-contrast technique, also known as 4D flow, is gaining increasing attention due to applications that exploit three-directional velocity encoding throughout the cardiac cycle. Blood flow volume assessment usually requires an expert to draw regions of interest (ROI) around the vessel cross section, whereas the errors involved in this estimation have not been thoroughly investigated. Our objective is to quantify the influence of ROI sizing, angulation and spatial resolution of the reconstructed plane employed in blood flow measurements using 4D flow.Approach.Three circular ROIs were drawn around the ascending, arch and descending aorta of healthy volunteers (n= 27) and patients with a dilated ascending aorta or bicuspid valve (n= 37). We applied systematic changes of ROI diameter (up to ±10%), tilt angle (up to ±25°) and spatial resolution (from 0.25 to 2 mm) of the reconstructed oblique planes, calculating the effects on net, forward and backward blood flow volumes.Main results.Patients had a larger ascending aorta than healthy volunteers with similar ages and male sex proportion (60 ± 15 y.o. vs 58 ± 16 y.o. and 84% vs 70%, respectively). Higher forward and backward flow volumes were observed in the ascending aorta and the aortic arch of the patients with respect to controls (p< 0.001), whereas net volumes were similar: 74.0 ± 20.8 ml versus 75.7 ± 21.8 ml (p= 0.37), respectively. The ascending aorta was the most sensitive to ROI modifications. Changes of ±10% in the ROI diameter and ±25° in tilt angles produced flow volume differences of up to 9 ml (10%) and 18 ml (15%) in controls and patients, respectively. Modifying the reconstructed planes spatial resolution produced flow volume changes below 2 ml.Significance.Since the setting of the ROI size and plane angle could produce errors that represent up to 20% of the forward and/or backward aortic flow volume, a good standardization for vessel segmentation and plane positioning is desirable.
Collapse
Affiliation(s)
- M E Casciaro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - A F Pascaner
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - F N Guilenea
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - J Alcibar
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| | - U Gencer
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - G Soulat
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - E Mousseaux
- Cardiovascular Imaging Unit, Hôpital Européen Georges Pompidou, INSERM U970, Paris, France
| | - D Craiem
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, CP 1078 Buenos Aires, Argentina
| |
Collapse
|
22
|
Portelli SS, Hambly BD, Jeremy RW, Robertson EN. Oxidative stress in genetically triggered thoracic aortic aneurysm: role in pathogenesis and therapeutic opportunities. Redox Rep 2021; 26:45-52. [PMID: 33715602 PMCID: PMC7971305 DOI: 10.1080/13510002.2021.1899473] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The primary objective of this review was to explore the contribution of oxidative stress to the pathogenesis of genetically-triggered thoracic aortic aneurysm (TAA). Genetically-triggered TAAs manifest substantial variability in onset, progression, and risk of aortic dissection, posing a significant clinical management challenge. There is a need for non-invasive biomarkers that predict the natural course of TAA and therapeutics that prevent aneurysm progression. Methods: An online systematic search was conducted within PubMed, MEDLINE, Scopus and ScienceDirect databases using keywords including: oxidative stress, ROS, nitrosative stress, genetically triggered thoracic aortic aneurysm, aortic dilatation, aortic dissection, Marfan syndrome, Bicuspid Aortic Valve, familial TAAD, Loeys Dietz syndrome, and Ehlers Danlos syndrome. Results: There is extensive evidence of oxidative stress and ROS imbalance in genetically triggered TAA. Sources of ROS imbalance are variable but include dysregulation of redox mediators leading to either insufficient ROS removal or increased ROS production. Therapeutic exploitation of redox mediators is being explored in other cardiovascular conditions, with potential application to TAA warranting further investigation. Conclusion: Oxidative stress occurs in genetically triggered TAA, but the precise contribution of ROS to pathogenesis remains incompletely understood. Further research is required to define causative pathological relationships in order to develop therapeutic options.
Collapse
Affiliation(s)
- Stefanie S Portelli
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Brett D Hambly
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Richmond W Jeremy
- Cardiology Department, Royal Prince Alfred Hospital, Sydney, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
23
|
Salmasi MY, Pirola S, Sasidharan S, Fisichella SM, Redaelli A, Jarral OA, O'Regan DP, Oo AY, Moore JE, Xu XY, Athanasiou T. High Wall Shear Stress can Predict Wall Degradation in Ascending Aortic Aneurysms: An Integrated Biomechanics Study. Front Bioeng Biotechnol 2021; 9:750656. [PMID: 34733832 PMCID: PMC8558434 DOI: 10.3389/fbioe.2021.750656] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/24/2021] [Indexed: 01/16/2023] Open
Abstract
Background: Blood flow patterns can alter material properties of ascending thoracic aortic aneurysms (ATAA) via vascular wall remodeling. This study examines the relationship between wall shear stress (WSS) obtained from image-based computational modelling with tissue-derived mechanical and microstructural properties of the ATAA wall using segmental analysis. Methods: Ten patients undergoing surgery for ATAA were recruited. Exclusions: bicuspid aortopathy, connective tissue disease. All patients had pre-operative 4-dimensional flow magnetic resonance imaging (4D-MRI), allowing for patient-specific computational fluid dynamics (CFD) analysis and anatomically precise WSS mapping of ATAA regions (6-12 segments per patient). ATAA samples were obtained from surgery and subjected to region-specific tensile and peel testing (matched to WSS segments). Computational pathology was used to characterize elastin/collagen abundance and smooth muscle cell (SMC) count. Results: Elevated values of WSS were predictive of: reduced wall thickness [coef -0.0489, 95% CI (-0.0905, -0.00727), p = 0.022] and dissection energy function (longitudinal) [-15,0, 95% CI (-33.00, -2.98), p = 0.048]. High WSS values also predicted higher ultimate tensile strength [coef 0.136, 95% CI (0 0.001, 0.270), p = 0.048]. Additionally, elevated WSS also predicted a reduction in elastin levels [coef -0.276, 95% (CI -0.531, -0.020), p = 0.035] and lower SMC count ([oef -6.19, 95% CI (-11.41, -0.98), p = 0.021]. WSS was found to have no effect on collagen abundance or circumferential mechanical properties. Conclusions: Our study suggests an association between elevated WSS values and aortic wall degradation in ATAA disease. Further studies might help identify threshold values to predict acute aortic events.
Collapse
Affiliation(s)
- M Yousuf Salmasi
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Selene Pirola
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Sumesh Sasidharan
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Serena M Fisichella
- Department of Chemical Engineering, Imperial College London, London, United Kingdom.,Politecnico di Milano, Milan, Italy
| | | | - Omar A Jarral
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Aung Ye Oo
- Barts Heart Centre, London, United Kingdom
| | - James E Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Xiao Yun Xu
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Redaelli A, Votta E. Cardiovascular patient-specific modeling: Where are we now and what does the future look like? APL Bioeng 2020; 4:040401. [PMID: 33195957 DOI: 10.1063/5.0031452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | |
Collapse
|
25
|
Edlin J, Youssefi P, Bilkhu R, Figueroa CA, Morgan R, Nowell J, Jahangiri M. Haemodynamic assessment of bicuspid aortic valve aortopathy: a systematic review of the current literature. Eur J Cardiothorac Surg 2020; 55:610-617. [PMID: 30239633 DOI: 10.1093/ejcts/ezy312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 11/12/2022] Open
Abstract
Both genetic and haemodynamic theories explain the aetiology, progression and optimal management of bicuspid aortic valve aortopathy. In recent years, the haemodynamic theory has been explored with the help of magnetic resonance imaging and computational fluid dynamics. The objective of this review was to summarize the findings of these investigations with focus on the blood flow pattern and associated variables, including flow eccentricity, helicity, flow displacement, cusp opening angle, systolic flow angle, wall shear stress (WSS) and oscillatory shear index. A structured literature review was performed from January 1990 to January 2018 and revealed the following 3 main findings: (i) the bicuspid aortic valve is associated with flow eccentricity and helicity in the ascending aorta compared to healthy and diseased tricuspid aortic valve, (ii) flow displacement is easier to obtain than WSS and has been shown to correlate with valve morphology and type of aortopathy and (iii) the stenotic bicuspid aortic valve is associated with elevated WSS along the greater curvature of the ascending aorta, where aortic dilatation and aortic wall thinning are commonly found. We conclude that new haemodynamic variables should complement ascending aorta diameter as an indicator for disease progression and the type and timing of intervention. WSS describes the force that blood flow exerts on the vessel wall as a function of viscosity and geometry of the vessel, making it a potentially more reliable marker of disease progression.
Collapse
Affiliation(s)
- Joy Edlin
- Department of Cardiothoracic Surgery, St George's Hospital, London, UK
| | - Pouya Youssefi
- Department of Cardiothoracic Surgery, St George's Hospital, London, UK
| | - Rajdeep Bilkhu
- Department of Cardiothoracic Surgery, St George's Hospital, London, UK
| | - Carlos Alberto Figueroa
- Department of Biomedical Engineering, King's College London, London, UK.,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert Morgan
- Department of Radiology, St George's Hospital, London, UK
| | - Justin Nowell
- Department of Cardiothoracic Surgery, St George's Hospital, London, UK
| | - Marjan Jahangiri
- Department of Cardiothoracic Surgery, St George's Hospital, London, UK
| |
Collapse
|
26
|
Emendi M, Sturla F, Ghosh RP, Bianchi M, Piatti F, Pluchinotta FR, Giese D, Lombardi M, Redaelli A, Bluestein D. Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid-Structure Interaction Approach. Ann Biomed Eng 2020; 49:627-641. [PMID: 32804291 DOI: 10.1007/s10439-020-02571-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Congenital bicuspid aortic valve (BAV) consists of two fused cusps and represents a major risk factor for calcific valvular stenosis. Herein, a fully coupled fluid-structure interaction (FSI) BAV model was developed from patient-specific magnetic resonance imaging (MRI) and compared against in vivo 4-dimensional flow MRI (4D Flow). FSI simulation compared well with 4D Flow, confirming direction and magnitude of the flow jet impinging onto the aortic wall as well as location and extension of secondary flows and vortices developing at systole: the systolic flow jet originating from an elliptical 1.6 cm2 orifice reached a peak velocity of 252.2 cm/s, 0.6% lower than 4D Flow, progressively impinging on the ascending aorta convexity. The FSI model predicted a peak flow rate of 22.4 L/min, 6.7% higher than 4D Flow, and provided BAV leaflets mechanical and flow-induced shear stresses, not directly attainable from MRI. At systole, the ventricular side of the non-fused leaflet revealed the highest wall shear stress (WSS) average magnitude, up to 14.6 Pa along the free margin, with WSS progressively decreasing towards the belly. During diastole, the aortic side of the fused leaflet exhibited the highest diastolic maximum principal stress, up to 322 kPa within the attachment region. Systematic comparison with ground-truth non-invasive MRI can improve the computational model ability to reproduce native BAV hemodynamics and biomechanical response more realistically, and shed light on their role in BAV patients' risk for developing complications; this approach may further contribute to the validation of advanced FSI simulations designed to assess BAV biomechanics.
Collapse
Affiliation(s)
- Monica Emendi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Francesco Sturla
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Ram P Ghosh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Matteo Bianchi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Filippo Piatti
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesca R Pluchinotta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Pediatric and Adult Congenital Heart Disease, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Massimo Lombardi
- Multimodality Cardiac Imaging, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
27
|
El Sanharawi I, Barral M, Lenck S, Dillinger JG, Salvan D, Mangin G, Cogo A, Bailliart O, Levy BI, Kubis N, Bisdorff-Bresson A, Bonnin P. Wall Shear Stress in the Feeding Native Conduit Arteries of Superficial Arteriovenous Malformations of the Lower Face is a Reliable Marker of Disease Progression. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2020; 41:428-438. [PMID: 30321881 DOI: 10.1055/a-0729-2728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE To assess the prognostic value of the wall shear stress (WSS) measured in the feeding native arteries upstream from facial superficial arteriovenous malformations (sAVMs). Reliable prognostic criteria are needed to distinguish progressive from stable sAVMs and thus support the indication for an aggressive or a conservative management to avoid severe facial disfigurement. MATERIALS AND METHODS We prospectively included 25 patients with untreated facial sAVMs, 15 patients with surgically resected sAVMs and 15 controls. All had undergone Doppler ultrasound examination (DUS) with measurements of inner diameters, blood flow velocities, computation of blood flow and WSS of the feeding arteries. Based on the absence or presence of progression in clinical and imaging examinations 6 months after, we discriminated untreated patients as stable or progressive. RESULTS WSS in the ipsilateral external carotid artery was higher in progressive compared to stable sAVMs (15.8 ± 3.3dynes/cm² vs. 9.6 ± 2.0dynes/cm², mean±SD, p < 0.0001) with a cut-off of 11.5dynes/cm² (sensitivity: 92 %, specificity: 92 %, AUC: 0.955, [95 %CI: 0.789-0.998], p = 0.0001). WSS in the ipsilateral facial artery was also higher in progressive compared to stable sAVMs (50.7 ± 14.5dynes/cm² vs. 25.2 ± 7.1dynes/cm², p < 0.0001) with a cut-off of 34.0dynes/cm² (sensitivity: 100 %, specificity: 92 %, AUC: 0.974, [95 %CI: 0.819-1.000], p = 0.0001). The hemodynamic data of operated patients were not different from those of the control group. CONCLUSION WSS measured in the feeding arteries of an sAVM may be a simple reliable criterion to distinguish stable from progressive sAVMs. This value should be considered to guide the therapeutic strategy as well as the long-term follow-up of patients with facial sAVMs.
Collapse
Affiliation(s)
- Imane El Sanharawi
- APHP, Clinical Physiology - Functional Investigations, Lariboisiere Hospital, Paris, France
| | | | - Stéphanie Lenck
- APHP, Neuroradiology, center for arteriovenous malformations in children and adults, Lariboisiere Hospital, Paris, France
| | | | - Didier Salvan
- APHP, Otorhinolaryngology and maxillofacial surgery, Lariboisiere Hospital, Paris, France
| | | | - Adrien Cogo
- UMR965, CART, INSERM, Lariboisiere Hospital, Paris, France
| | - Olivier Bailliart
- APHP, Clinical Physiology - Functional Investigations, Lariboisiere Hospital, Paris, France
| | - Bernard I Levy
- Lariboisiere Hospital, Vessel and Blood Institut, Paris, France
| | - Nathalie Kubis
- APHP, Clinical Physiology - Functional Investigations, Lariboisiere Hospital, Paris, France
| | - Annouk Bisdorff-Bresson
- APHP, Neuroradiology, center for arteriovenous malformations in children and adults, Lariboisiere Hospital, Paris, France
| | - Philippe Bonnin
- APHP, Clinical Physiology - Functional Investigations, Lariboisiere Hospital, Paris, France
| |
Collapse
|
28
|
Lee S, Kim YJ, Jung JW, Choi JY, Park HK, Shin YR, Choi BW. Evaluation of Flow Pattern in the Ascending Aorta in Patients with Repaired Tetralogy of Fallot Using Four-Dimensional Flow Magnetic Resonance Imaging. Korean J Radiol 2020; 20:1334-1341. [PMID: 31464112 PMCID: PMC6715567 DOI: 10.3348/kjr.2019.0096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/10/2019] [Indexed: 01/13/2023] Open
Abstract
Objective To evaluate flow pattern characteristics in the ascending aorta (AA) with four-dimensional (4D)-flow MRI and to determine predictors of aortic dilatation late after tetralogy of Fallot (TOF) repair. Materials and Methods This study included 44 patients with repaired TOF (25 males and 19 females; mean age, 28.9 ± 8.4 years) and 11 volunteers (10 males and 1 female, mean age, 33.7 ± 8.8 years) who had undergone 4D-flow MRI. The aortic diameters, velocity, wall shear stress (WSS), flow jet angle (FJA), and flow displacement (FD) at the level of the sinotubular junction (STJ) and mid-AA were compared between the repaired TOF and volunteer groups. The hemodynamic and clinical parameters were also compared between the aortic dilatation and non-dilatation subgroups in the repaired TOF group. Results The diameters of the sinus of Valsalva, STJ, and AA were significantly higher in the repaired TOF group than in the volunteer group (p = 0.002, p < 0.001, and p = 0.013, respectively). The FJAs at the STJ and AA were significantly greater in the repaired TOF group (p < 0.001 and p = 0.003, respectively), while velocities and WSS parameters were significantly lower. FD showed no statistically significant difference (p = 0.817). In subgroup analysis, age at TOF repair was significantly higher (p = 0.039) and FJA at the level of the AA significantly greater (p = 0.003) and mean WSS were significantly lower (p = 0.039) in the aortic dilatation group. FD were higher in the aortic dilatation group without statistical significance (p = 0.217). Conclusion Patients with repaired TOF have an increased FJA, dilated AA, and secondarily decreased WSS. In addition to known risk factors, flow eccentricity may affect aortic dilatation in patients with repaired TOF.
Collapse
Affiliation(s)
- Suji Lee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Jin Kim
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Jo Won Jung
- Division of Pediatric Cardiology, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Young Choi
- Division of Pediatric Cardiology, Severance Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Han Ki Park
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Rim Shin
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Wook Choi
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Lo Presti F, Guzzardi DG, Bancone C, Fedak PWM, Della Corte A. The science of BAV aortopathy. Prog Cardiovasc Dis 2020; 63:465-474. [PMID: 32599028 DOI: 10.1016/j.pcad.2020.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
The aortopathy associated with bicuspid aortic valve (BAV) is an epidemiologically relevant source of chronic and acute aortic disease (aneurysm and dissection). However, its pathogenesis is still the object of scientific uncertainties and debates. Indeed, the mechanisms determining the diseases of the ascending aorta in BAV patients are most likely complex and multifactorial, i.e. resulting from variable modes of interplay between genetic and hemodynamic factors. Although few scientific studies have so far taken into adequate account this complexity, leaving the precise sequence of pathogenetic events still undiscovered, the accumulated evidence from previous research approaches have at least brought about important insights. While genetic studies have so far identified variants relevant to either valve malformation or aortic complications (including those in the genes NOTCH1, TGFBR2, ACTA2, GATA5, NKX2.5, SMAD6, ROBO4), however each explaining not more than 5% of the study population, other investigations have thoroughly described both the flow features, with consequent forces acting on the arterial wall (including skewed flow jet direction, rotational flow, wall shear stress), and the main changes in the molecular and cellular wall structure (including extracellular matrix degradation, smooth muscle cell changes, oxidative stress, unbalance of TGF-β signaling, aberrant endothelial-to-mesenchymal transition). All of this evidence, together with the recognition of the diverse phenotypes that the aortopathy can assume in BAV patients, holding possible prognostic significance, is reviewed in this chapter. The complex and multifaceted body of knowledge resulting from clinical and basic science studies on BAV aortopathy has the potential to importantly influence modes of clinical management of this disease in the near future.
Collapse
Affiliation(s)
- Federica Lo Presti
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - David G Guzzardi
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Ciro Bancone
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
30
|
de Oliveira DMC, Abdullah N, Green NC, Espino DM. Biomechanical Assessment of Bicuspid Aortic Valve Phenotypes: A Fluid-Structure Interaction Modelling Approach. Cardiovasc Eng Technol 2020; 11:431-447. [PMID: 32519086 DOI: 10.1007/s13239-020-00469-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Bicuspid aortic valve (BAV) is a congenital heart malformation with phenotypic heterogeneity. There is no prior computational study that assesses the haemodynamic and valve mechanics associated with BAV type 2 against a healthy tricuspid aortic valve (TAV) and other BAV categories. METHODS A proof-of-concept study incorporating three-dimensional fluid-structure interaction (FSI) models with idealised geometries (one TAV and six BAVs, namely type 0 with lateral and anterior-posterior orientations, type 1 with R-L, N-R and N-L leaflet fusion and type 2) has been developed. Transient physiological boundary conditions have been applied and simulations were run using an Arbitrary Lagrangian-Eulerian formulation. RESULTS Our results showed the presence of abnormal haemodynamics in the aorta and abnormal valve mechanics: type 0 BAVs yielded the best haemodynamical and mechanical outcomes, but cusp stress distribution varied with valve orifice orientation, which can be linked to different cusp calcification location onset; type 1 BAVs gave rise to similar haemodynamics and valve mechanics, regardless of raphe position, but this position altered the location of abnormal haemodynamic features; finally, type 2 BAV constricted the majority of blood flow, exhibiting the most damaging haemodynamic and mechanical repercussions when compared to other BAV phenotypes. CONCLUSION The findings of this proof-of-concept work suggest that there are specific differences across haemodynamics and valve mechanics associated with BAV phenotypes, which may be critical to subsequent processes associated with their pathophysiology processes.
Collapse
Affiliation(s)
- Diana M C de Oliveira
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Nazirul Abdullah
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Naomi C Green
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel M Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
31
|
Warmerdam EG, Magni F, Leiner T, Doevendans PA, Sieswerda GT, van Wijk SW, Breur HM, Driesen BW, Grotenhuis HB, Takken T. Echocardiography and MRI parameters associated with exercise capacity in patients after the arterial switch operation. J Cardiol 2020; 76:280-286. [PMID: 32402667 DOI: 10.1016/j.jjcc.2020.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/30/2019] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND The arterial switch operation (ASO) for transposition of the great arteries has excellent survival, but a substantial number of patients suffer from a reduced exercise capacity. The goal of this study was to identify imaging parameters associated with a reduced exercise capacity in patients after ASO. METHODS A retrospective analysis was performed of ASO patients who underwent cardiopulmonary exercise testing (CPET) between 2007 and 2017. Reduced exercise performance was defined as a reduced workload peak (Wpeak) with Z-score <-2 or a peak oxygen uptake indexed for weight (VO2peak/kg) with Z-score <-2. Data on echocardiography and cardiac magnetic resonance performed within 1 year of the CPET were collected for comparison. RESULTS A total of 81 ASO patients (age 17±7 years) were included. Reduced exercise performance was found in 22 patients (27%) as expressed by either a reduced Wpeak and/or a reduced VO2peak/kg. Main pulmonary artery gradient and tricuspid regurgitation gradient by echocardiography were found to be associated with reduced Wpeak (p=0.031; p=0.020, respectively). The main pulmonary artery gradient and tricuspid regurgitation gradient by echocardiography were found to be associated with reduced VO2peak/kg (p=0.009; p=0.019, respectively). No left ventricular parameters were found to be associated with abnormal exercise performance. CONCLUSION This study demonstrates that ASO patients frequently experience reduced exercise capacity. Echocardiographic evidence of main pulmonary artery stenosis and increased right ventricular pressure were associated with reduced exercise capacity, and are therefore key to monitor during serial follow-up of ASO patients.
Collapse
Affiliation(s)
| | | | - Tim Leiner
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- University Medical Center Utrecht, Utrecht, The Netherlands; Central Military Hospital, Utrecht, The Netherlands; Netherlands Heart Institute, Utrecht, The Netherlands
| | | | | | - Hans M Breur
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart W Driesen
- University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Tim Takken
- University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Shar JA, Liu J, Atkins SK, Sucosky P. Letter by Shar et al Regarding Article, “Low and Oscillatory Wall Shear Stress Is Not Related to Aortic Dilation in Patients With Bicuspid Aortic Valve: A Time-Resolved 3-Dimensional Phase-Contrast Magnetic Resonance Imaging Study”. Arterioscler Thromb Vasc Biol 2020; 40:e114-e115. [DOI: 10.1161/atvbaha.120.314049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jason A. Shar
- From the Department of Mechanical and Materials Engineering, Wright State University, Russ Engineering Center, Dayton, OH (J.A.S., J.L., P.S.)
| | - Janet Liu
- From the Department of Mechanical and Materials Engineering, Wright State University, Russ Engineering Center, Dayton, OH (J.A.S., J.L., P.S.)
| | - Samantha K. Atkins
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (S.K.A.)
| | - Philippe Sucosky
- From the Department of Mechanical and Materials Engineering, Wright State University, Russ Engineering Center, Dayton, OH (J.A.S., J.L., P.S.)
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Bicuspid aortic valve (BAV) results from fusion of two adjacent aortic valve cusps, and is associated with dilatation of the aorta, known as BAV-associated aortopathy, or bicuspid aortopathy. Bicuspid aortopathy is progressive, increasing the risk of life-threatening clinical events, such as aortic dissection. Regular monitoring and timely intervention with prophylactic surgical resection of the proximal aorta is recommended. RECENT FINDINGS Aortopathy is heterogeneous among patients. Studies have shown that different flow patterns lead to specific phenotypes of aortopathy. Although not uniform, BAV morphology affects flow patterns. Recent work has demonstrated the role of wall shear stress (WSS) in driving aortopathy, and it is suggested that individualized WSS 'heat maps' can be used for clinically monitoring patients with BAV. WSS has the potential to be an imaging biomarker for directing resection timing, surgical strategies, and postsurgical follow-up care. SUMMARY Finding and validating noninvasive hemodynamic biomarkers of aortic risk to assist in the management of BAV patients is of clinical importance. Herein, we will review the latest findings pertaining to the utility of WSS as a specific biomarker of risk for BAV patients with aortopathy.
Collapse
|
34
|
Warmerdam E, Krings GJ, Leiner T, Grotenhuis HB. Three-dimensional and four-dimensional flow assessment in congenital heart disease. Heart 2019; 106:421-426. [PMID: 31857355 DOI: 10.1136/heartjnl-2019-315797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
Congenital heart disease (CHD) is the most common form of congenital defects, with an incidence of 8 per 1000 births. Due to major advances in diagnostics, perioperative care and surgical techniques, the survival rate of patients with CHD has improved dramatically. Conversely, although 70%-95% of infants with CHD survive into adulthood, the rate of long-term morbidity, which often requires (repeat) intervention, has increased. Recently, the role of altered haemodynamics in cardiac development and CHD has become a subject of interest. Patients with CHD often have abnormal blood flow patterns, either due to the primary cardiac defect or as a consequence of the surgical intervention(s). Research suggests that these abnormal blood flow patterns may contribute to diminished cardiac and vascular function. Serial assessment of haemodynamic parameters in patients with CHD may allow for improved understanding of the often complex haemodynamics in these patients and thereby potentially guide the timing and nature of interventions with the aim of preventing progression of cardiovascular deterioration. In this article we will discuss two novel non-invasive four-dimensional (4D) techniques to evaluate cardiovascular haemodynamics: 4D-flow cardiac magnetic resonance and computational fluid dynamics. This review focuses on the additional value of these two modalities in the evaluation of patients with CHD with abnormal flow patterns, who could benefit from advanced haemodynamic evaluation: patients with coarctation of the aorta, bicuspid aortic valve, tetralogy of Fallot and patients after Fontan palliation.
Collapse
Affiliation(s)
- Evangeline Warmerdam
- Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Pediatric Cardiology, Wilhelmina Children's Hospital University Medical Center, Utrecht, The Netherlands
| | - Gregor J Krings
- Pediatric Cardiology, Wilhelmina Children's Hospital University Medical Center, Utrecht, The Netherlands
| | - Tim Leiner
- Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heynric B Grotenhuis
- Pediatric Cardiology, Wilhelmina Children's Hospital University Medical Center, Utrecht, The Netherlands .,Pediatric Cardiology, Universitair Medisch Centrum Utrecht - Locatie Wilhelmina Kinderziekenhuis, Utrecht, The Netherlands
| |
Collapse
|
35
|
Dux-Santoy L, Guala A, Sotelo J, Uribe S, Teixidó-Turà G, Ruiz-Muñoz A, Hurtado DE, Valente F, Galian-Gay L, Gutiérrez L, González-Alujas T, Johnson KM, Wieben O, Ferreira I, Evangelista A, Rodríguez-Palomares JF. Low and Oscillatory Wall Shear Stress Is Not Related to Aortic Dilation in Patients With Bicuspid Aortic Valve: A Time-Resolved 3-Dimensional Phase-Contrast Magnetic Resonance Imaging Study. Arterioscler Thromb Vasc Biol 2019; 40:e10-e20. [PMID: 31801375 PMCID: PMC7771642 DOI: 10.1161/atvbaha.119.313636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: To assess the relationship between regional wall shear stress (WSS) and oscillatory shear index (OSI) and aortic dilation in patients with bicuspid aortic valve (BAV). Approach and Results: Forty-six consecutive patients with BAV (63% with right-left-coronary-cusp fusion, aortic diameter ≤ 45 mm and no severe valvular disease) and 44 healthy volunteers were studied by time-resolved 3-dimensional phase-contrast magnetic resonance imaging. WSS and OSI were quantified at different levels of the ascending aorta and the aortic arch, and regional WSS and OSI maps were obtained. Seventy percent of BAV had ascending aorta dilation. Compared with healthy volunteers, patients with BAV had increased WSS and decreased OSI in most of the ascending aorta and the aortic arch. In both BAV and healthy volunteers, regions of high WSS matched regions of low OSI and vice versa. No regions of both low WSS and high OSI were identified in BAV compared with healthy volunteers. Patients with BAV with dilated compared with nondilated aorta presented low and oscillatory WSS in the aortic arch, but not in the ascending aorta where dilation is more prevalent. Furthermore, no regions of concomitant low WSS and high OSI were identified when BAV were compared according to leaflet fusion pattern, despite the well-known differences in regional dilation prevalence. Conclusions: Regions with low WSS and high OSI do not match those with the highest prevalence of dilation in patients with BAV, thus providing no evidence to support the low and oscillatory shear stress theory in the pathogenesis of proximal aorta dilation in the presence of BAV.
Collapse
Affiliation(s)
- Lydia Dux-Santoy
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Andrea Guala
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Julio Sotelo
- Biomedical Imaging Center (J.S., S.U.), Pontificia Universidad Católica de Chile, Santiago.,Department of Electrical Engineering, School of Engineering (J.S.), Pontificia Universidad Católica de Chile, Santiago.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile (J.S., S.U., D.E.H.)
| | - Sergio Uribe
- Biomedical Imaging Center (J.S., S.U.), Pontificia Universidad Católica de Chile, Santiago.,Department of Radiology, School of Medicine (S.U.), Pontificia Universidad Católica de Chile, Santiago.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile (J.S., S.U., D.E.H.)
| | - Gisela Teixidó-Turà
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Aroa Ruiz-Muñoz
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Daniel E Hurtado
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences (D.E.H.), Pontificia Universidad Católica de Chile, Santiago.,Department of Structural and Geotechnical Engineering, Schools of Engineering (D.E.H.), Pontificia Universidad Católica de Chile, Santiago.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile (J.S., S.U., D.E.H.)
| | - Filipa Valente
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Laura Galian-Gay
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Laura Gutiérrez
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Teresa González-Alujas
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Kevin M Johnson
- Department of Medical Physics (K.M.J., O.W.), University of Wisconsin-Madison.,Department of Radiology (K.M.J., O.W.), University of Wisconsin-Madison
| | - Oliver Wieben
- Department of Medical Physics (K.M.J., O.W.), University of Wisconsin-Madison.,Department of Radiology (K.M.J., O.W.), University of Wisconsin-Madison
| | - Ignacio Ferreira
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - Arturo Evangelista
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| | - José F Rodríguez-Palomares
- From the Department of Cardiology, CIBERCV, Universitat Autònoma de Barcelona, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d´Hebron, Barcelona, Spain (L.D.-S., A.G., G.T.-.T., A.R.-M., F.V., L.G.-.G., L.G., T.G.-A., I.F., A.E., J.F.R.P.)
| |
Collapse
|
36
|
De Rubeis G, Galea N, Ceravolo I, Dacquino GM, Carbone I, Catalano C, Francone M. Aortic valvular imaging with cardiovascular magnetic resonance: seeking for comprehensiveness. Br J Radiol 2019; 92:20170868. [PMID: 30277407 PMCID: PMC6732913 DOI: 10.1259/bjr.20170868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 09/05/2018] [Accepted: 09/23/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) has an emerging role in aortic valve disease evaluation, becoming an all-in-one technique. CMR evaluation of the anatomy and flow through the aortic valve has a higher reproducibility than echocardiography. Its unique ability of in vivo myocardial tissue characterization, significantly improves the risk stratification and management of patients. In addition, CMR is equivalent to cardiac CT angiography for trans-aortic valvular implantation and surgical aortic valve replacement planning; on the other hand, its role in the evaluation of ventricular function improving and post-treatment complications is undisputed. This review encompasses the existing literature regarding the role of CMR in aortic valve disease, exploring all the aspects of the disease, from diagnosis to prognosis.
Collapse
Affiliation(s)
- Gianluca De Rubeis
- Department of Radiological, Oncological and Pathological Sciences,"Sapienza” University of Rome, Rome, Italy
| | | | - Isabella Ceravolo
- Department of Radiological, Oncological and Pathological Sciences,"Sapienza” University of Rome, Rome, Italy
| | - Gian Marco Dacquino
- Department of Radiological, Oncological and Pathological Sciences,"Sapienza” University of Rome, Rome, Italy
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences,"Sapienza” University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences,"Sapienza” University of Rome, Rome, Italy
| | - Marco Francone
- Department of Radiological, Oncological and Pathological Sciences,"Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
37
|
Della Corte A, Michelena HI, Citarella A, Votta E, Piatti F, Lo Presti F, Ashurov R, Cipollaro M, Forte A. Risk Stratification in Bicuspid Aortic Valve Aortopathy: Emerging Evidence and Future Perspectives. Curr Probl Cardiol 2019; 46:100428. [PMID: 31296418 DOI: 10.1016/j.cpcardiol.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
The current management of aortic dilatation associated with congenital bicuspid aortic valve (bicuspid aortic valve aortopathy) is based on dimensional parameters (diameter of the aneurysm, growth of the diameter over time) and few other criteria. The disease is however heterogeneous in terms of natural and clinical history and risk of acute complications, ie aortic dissection. Dimensional criteria are now admitted to have limited value as predictors of such complications. Thus, novel principles for risk stratification have been recently investigated, including phenotypic criteria, flow-related metrics, and circulating biomarkers. A systematization of the typical anatomoclinical forms that the aortopathy can assume has led to the identification of the more severe root phenotype, associated with higher risk of progression of the aneurysm and possible higher aortic dissection risk. Four-dimensional-flow magnetic resonance imaging studies are searching for potentially clinically significant metrics of flow derangement, based on the recognized association of local abnormal shear stress with wall pathology. Other research initiatives are addressing the question whether circulating molecules could predict the presence or, more importantly, the future development of aortopathy. The present review summarizes the latest progresses in the knowledge on risk stratification of bicuspid aortic valve aortopathy, focusing on critical aspects and debated points.
Collapse
|
38
|
Biomechanical assessment of aortic valve stenosis: Advantages and limitations. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2019. [DOI: 10.1016/j.medntd.2019.100009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
39
|
Galea N, Piatti F, Sturla F, Weinsaft JW, Lau C, Chirichilli I, Carbone I, Votta E, Catalano C, De Paulis R, Girardi LN, Redaelli A, Gaudino M. Novel insights by 4D Flow imaging on aortic flow physiology after valve-sparing root replacement with or without neosinuses. Interact Cardiovasc Thorac Surg 2019; 26:957-964. [PMID: 29401262 DOI: 10.1093/icvts/ivx431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/09/2017] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES This study was undertaken to evaluate the flow dynamics in the aortic root after valve-sparing root replacement with and without neosinuses of Valsalva reconstruction, by exploiting the capability of 4D Flow imaging to measure in vivo blood velocity fields and 3D geometric flow patterns. METHODS Ten patients who underwent valve-sparing root replacement utilizing grafts with neosinuses or straight tube grafts (5 cases each) were evaluated by 4D Flow imaging at a mean of 46.5 months after surgery. We used in-house processing tools to quantify relevant bulk flow variables (flow rate, stroke volume, peak velocity and mean velocity), wall shear stresses and the amount of flow rotation characterizing the region enclosed by the graft and the aortic valve leaflets. RESULTS Despite bulk flows with similar peak velocities, flow rates and stroke volumes (P = 0.31-1.00), the neosinuses graft was associated with a lower mean velocity (P < 0.03) and magnitude of wall shear stress along the axial direction of the vessel wall (P < 0.05) at the proximal root level but remained comparable along the circumferential direction (P = 0.22-1.0) to the straight tube graft. Flow rotation was evidently and systematically higher in the neosinuses grafts, characterized by streamline rotations higher than 270°, nearly triple that of tubular grafts (10.3 ÷ 14.0% of all aortic streamline vs 2.2 ÷ 5.7%, P = 0.008). CONCLUSIONS Recreation of the sinuses of Valsalva during valve-sparing root replacement is associated with significantly lower wall shear stress and organized vortical flows at the level of the sinus that are not evident using the straight tube graft. These findings need confirmation in larger studies and could have important implications in terms of aortic valve durability.
Collapse
Affiliation(s)
- Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Filippo Piatti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Jonathan W Weinsaft
- Departments of Medicine (Cardiology), Weill Cornell Medicine, New York, NY, USA
| | - Christopher Lau
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Ilaria Chirichilli
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Leonard N Girardi
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
40
|
Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve? Clin Sci (Lond) 2019; 133:805-819. [PMID: 30991346 DOI: 10.1042/cs20181092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved process by which cytoplasmatic elements are sequestered in vesicles and degraded after their fusion with lysosomes, thus recycling the precursor molecules. The autophagy-mediated removal of redundant/harmful/damaged organelles and biomolecules plays not only a replenishing function, but protects against stressful conditions through an adaptive mechanism. Autophagy, known to play a role in several pathological conditions, is now gaining increasing attention also in the perspective of the identification of the pathogenetic mechanisms at the basis of ascending thoracic aortic aneurysm (TAA), a localized or diffused dilatation of the aorta with an abnormal widening greater than 50 percent of the vessel's normal diameter. TAA is less frequent than abdominal aortic aneurysm (AAA), but is encountered with a higher percentage in patients with congenital heart disease or known genetic syndromes. Several biological aspects of TAA pathophysiology remain to be elucitated and therapeutic needs are still widely unmet. One of the most controversial and epidemiologically important forms of TAA is that associated with the congenital bicuspid malformation of the aortic valve (BAV). Dysregulated autophagy in response, for example, to wall shear stress alterations, has been demonstrated to affect the phenotype of vascular cells relevant to aortopathy, with potential consequences on signaling, remodeling, and angiogenesis. The most recent findings and hypotheses concerning the multiple aspects of autophagy and of its dysregulation are summarized, both in general and in the context of the different vascular cell types and of TAA progression, with particular reference to BAV-related aortopathy.
Collapse
|
41
|
Goudot G, Mirault T, Bruneval P, Soulat G, Pernot M, Messas E. Aortic Wall Elastic Properties in Case of Bicuspid Aortic Valve. Front Physiol 2019; 10:299. [PMID: 31024329 PMCID: PMC6467952 DOI: 10.3389/fphys.2019.00299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Purpose of the Review Bicuspid aortic valve (BAV) is associated with a significant risk of development of aneurysm and dissection of the ascending thoracic aorta. Development of what is called BAV associated aortopathy is particularly heterogeneous with an uncertain prognosis and with no prognostic biomarkers except for the aortic diameter. This situation leads to an important variability of the therapeutic strategy of this aortopathy. By reviewing the literature on aortic stiffness in the case of BAV, we aimed at evaluating its potential prognostic role in the development of aortic dilatation. Recent Findings Studies evaluating aortic stiffness, with ultrasound or magnetic resonance imaging, converge toward the description of an increased segmental aortic stiffness in BAV patients regardless of age, diameter or aortic level, from the root to the arch. Even though there is a lack of longitudinal studies evaluating the progression of aortic dilatation, new data have recently shown the potential prognostic role of the maximal rate of systolic distension of the aortic wall with magnetic resonance imaging. Summary Although the use of aortic distensibility calculation is a simple evaluation of stiffness that could be easily transposed in daily practice, its interpretation remains uncertain. New arterial stiffening indicators seem more promising but need a stronger validation.
Collapse
Affiliation(s)
- Guillaume Goudot
- INSERM U1273, ESPCI Paris, CNRS FRE 2031, Physics for Medicine Paris, PSL Research University, Paris, France
| | - Tristan Mirault
- Centre de Référence des Maladies Vasculaires Rares, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.,INSERM U970 PARCC, Paris Descartes University - Sorbonne Paris Cité University, Paris, France
| | - Patrick Bruneval
- Centre de Référence des Maladies Vasculaires Rares, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.,Service d'Anatomie Pathologique, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Gilles Soulat
- Service de Radiologie Cardiovasculaire, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Mathieu Pernot
- INSERM U1273, ESPCI Paris, CNRS FRE 2031, Physics for Medicine Paris, PSL Research University, Paris, France
| | - Emmanuel Messas
- Centre de Référence des Maladies Vasculaires Rares, Hôpital Européen Georges-Pompidou, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.,INSERM U970 PARCC, Paris Descartes University - Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
42
|
Gaudino M, Piatti F, Lau C, Sturla F, Weinsaft JW, Weltert L, Votta E, Galea N, Chirichilli I, Di Franco A, Francone M, Catalano C, Redaelli A, Girardi LN, De Paulis R. Aortic flow after valve sparing root replacement with or without neosinuses reconstruction. J Thorac Cardiovasc Surg 2019; 157:455-465. [DOI: 10.1016/j.jtcvs.2018.06.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/13/2018] [Accepted: 06/24/2018] [Indexed: 01/16/2023]
|
43
|
Peterson JC, Chughtai M, Wisse LJ, Gittenberger-de Groot AC, Feng Q, Goumans MJTH, VanMunsteren JC, Jongbloed MRM, DeRuiter MC. Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field. Dis Model Mech 2018; 11:dmm.034637. [PMID: 30242109 PMCID: PMC6215433 DOI: 10.1242/dmm.034637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
The bicuspid aortic valve (BAV), a valve with two instead of three aortic leaflets, belongs to the most prevalent congenital heart diseases in the world, occurring in 0.5-2% of the general population. We aimed to understand how changes in early cellular contributions result in BAV formation and impact cardiovascular outflow tract development. Detailed 3D reconstructions, immunohistochemistry and morphometrics determined that, during valvulogenesis, the non-coronary leaflet separates from the parietal outflow tract cushion instead of originating from an intercalated cushion. Nos3-/- mice develop a BAV without a raphe as a result of incomplete separation of the parietal outflow tract cushion into the right and non-coronary leaflet. Genetic lineage tracing of endothelial, second heart field and neural crest cells revealed altered deposition of neural crest cells and second heart field cells within the parietal outflow tract cushion of Nos3-/- embryos. The abnormal cell lineage distributions also affected the positioning of the aortic and pulmonary valves at the orifice level. The results demonstrate that the development of the right and non-coronary leaflets are closely related. A small deviation in the distribution of neural crest and second heart field populations affects normal valve formation and results in the predominant right-non-type BAV in Nos3-/- mice.
Collapse
Affiliation(s)
- Joshua C Peterson
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Mary Chughtai
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Lambertus J Wisse
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Qingping Feng
- Dept. Physiology and Pharmacology, Schulich Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Marie-José T H Goumans
- Dept. Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - J Conny VanMunsteren
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique R M Jongbloed
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.,Dept. Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marco C DeRuiter
- Dept. Anatomy and Embryology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
44
|
Liu J, Shar JA, Sucosky P. Wall Shear Stress Directional Abnormalities in BAV Aortas: Toward a New Hemodynamic Predictor of Aortopathy? Front Physiol 2018; 9:993. [PMID: 30154723 PMCID: PMC6102585 DOI: 10.3389/fphys.2018.00993] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
The bicuspid aortic valve (BAV) generates wall shear stress (WSS) abnormalities in the ascending aorta (AA) that may be responsible for the high prevalence of aortopathy in BAV patients. While previous studies have analyzed the magnitude and oscillatory characteristics of the total or streamwise WSS in BAV AAs, the assessment of the circumferential component is lacking despite its expected significance in this highly helical flow environment. This gap may have hampered the identification of a robust hemodynamic predictor of BAV aortopathy. The objective of this study was to perform a global and component-specific assessment of WSS magnitude, oscillatory and directional characteristics in BAV AAs. The WSS environments were computed in the proximal and middle convexity of tricuspid aortic valve (TAV) and BAV AAs using our previous valve-aorta fluid-structure interaction (FSI) models. Component-specific WSS characteristics were investigated in terms of temporal shear magnitude (TSM) and oscillatory shear index (OSI). WSS directionality was quantified in terms of mean WSS vector magnitude and angle, and angular dispersion index (Dα). Local WSS magnitude and multidirectionality were captured in a new shear magnitude and directionality index (SMDI) calculated as the product of the mean WSS magnitude and Dα. BAVs subjected the AA to circumferential TSM overloads (2.4-fold increase vs. TAV). TAV and BAV AAs exhibited a unidirectional circumferential WSS (OSI < 0.04) and an increasingly unidirectional longitudinal WSS between the proximal (OSI > 0.21) and middle (OSI < 0.07) sections. BAVs generated mean WSS vectors skewed toward the anterior wall and WSS angular distributions exhibiting decreased uniformity in the proximal AA (0.27-point increase in Dα vs. TAV). SMDI was elevated in all BAV AAs but peaked in the proximal LR-BAV AA (3.6-fold increase vs. TAV) and in the middle RN-BAV AA (1.6-fold increase vs. TAV). This analysis demonstrates the significance of the circumferential WSS component and the existence of substantial WSS directional abnormalities in BAV AAs. SMDI abnormality distributions in BAV AAs follow the morphotype-dependent occurrence of dilation in BAV AAs, suggesting the predictive potential of this metric for BAV aortopathy.
Collapse
Affiliation(s)
- Janet Liu
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Jason A Shar
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| | - Philippe Sucosky
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, United States
| |
Collapse
|
45
|
Galea N, Piatti F, Lau C, Sturla F, Weltert L, Carbone I, De Paulis R, Gaudino M, Girardi LN. 4D flow characterization of aortic blood flow after valve sparing root reimplantation procedure. J Vis Surg 2018; 4:95. [PMID: 29963384 DOI: 10.21037/jovs.2018.03.17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/15/2018] [Indexed: 11/06/2022]
Abstract
Valve-sparing aortic root replacement (VSRR) with reimplantation technique is an effective alternative for young patients with dilated roots and preserved cusps, which avoids the risks of lifelong anticoagulation or valve degeneration. New grafts with anatomically-shaped sinuses have been developed in order to preserve aortic root physiology, which could decrease complication rates and improve durability. However, controversy remains regarding the effect of recreation of the sinuses of Valsalva during VSRR on long-term outcomes. The novel 4D flow technique, exploiting its unique ability to combine anatomical evaluation of the root with fluid-dynamic assessment of aortic flow, enables integrated analysis of the close interaction between graft design, valvular morphology and three-dimensional (3D) flow characteristics. Early experimental studies have shown how graft shape affects the aortic root flow pattern, formation of vortexes and helicity of downstream flow; however, the clinical significance of these findings is yet to be clarified. Various and still unexplored knowledge can be obtained from the qualitative and quantitative analysis of these complex datasets, that could shed more light on which is the best among myriad surgical techniques and grafts adopted in VSRR. The extraordinary potential 4D flow imaging opens new boundless horizons in the perspective of an increasingly patient-tailored surgical planning.
Collapse
Affiliation(s)
- Nicola Galea
- Department of Experimental Medicine, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy.,Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Filippo Piatti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Christopher Lau
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, USA
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.,3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Luca Weltert
- Department of Cardiac Surgery, European Hospital, Rome, Italy
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, USA
| | - Leonard N Girardi
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, USA
| | | |
Collapse
|
46
|
Pirola S, Jarral OA, O'Regan DP, Asimakopoulos G, Anderson JR, Pepper JR, Athanasiou T, Xu XY. Computational study of aortic hemodynamics for patients with an abnormal aortic valve: The importance of secondary flow at the ascending aorta inlet. APL Bioeng 2018; 2:026101. [PMID: 31069298 PMCID: PMC6481743 DOI: 10.1063/1.5011960] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/06/2018] [Indexed: 12/05/2022] Open
Abstract
Blood flow in the aorta is helical, but most computational studies ignore the presence of secondary flow components at the ascending aorta (AAo) inlet. The aim of this study is to ascertain the importance of inlet boundary conditions (BCs) in computational analysis of flow patterns in the thoracic aorta based on patient-specific images, with a particular focus on patients with an abnormal aortic valve. Two cases were studied: one presenting a severe aortic valve stenosis and the other with a mechanical valve. For both aorta models, three inlet BCs were compared; these included the flat profile and 1D through-plane velocity and 3D phase-contrast magnetic resonance imaging derived velocity profiles, with the latter being used for benchmarking. Our results showed that peak and mean velocities at the proximal end of the ascending aorta were underestimated by up to 41% when the secondary flow components were neglected. The results for helical flow descriptors highlighted the strong influence of secondary velocities on the helical flow structure in the AAo. Differences in all wall shear stress (WSS)-derived indices were much more pronounced in the AAo and aortic arch (AA) than in the descending aorta (DAo). Overall, this study demonstrates that using 3D velocity profiles as inlet BC is essential for patient-specific analysis of hemodynamics and WSS in the AAo and AA in the presence of an abnormal aortic valve. However, predicted flow in the DAo is less sensitive to the secondary velocities imposed at the inlet; hence, the 1D through-plane profile could be a sufficient inlet BC for studies focusing on distal regions of the thoracic aorta.
Collapse
Affiliation(s)
- S Pirola
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - O A Jarral
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London W2 1NY, United Kingdom
| | - D P O'Regan
- Institute of Clinical Science, Imperial College London, Hammersmith Hospital, London W12 0HS, United Kingdom
| | - G Asimakopoulos
- Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, United Kingdom
| | - J R Anderson
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, Du Cane Road, London W12 0HS, United Kingdom
| | - J R Pepper
- Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP, United Kingdom
| | - T Athanasiou
- Department of Surgery and Cancer, Imperial College London, St. Mary's Hospital, London W2 1NY, United Kingdom
| | - X Y Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
47
|
Masutani EM, Contijoch F, Kyubwa E, Cheng J, Alley MT, Vasanawala S, Hsiao A. Volumetric segmentation-free method for rapid visualization of vascular wall shear stress using 4D flow MRI. Magn Reson Med 2018. [PMID: 29516632 DOI: 10.1002/mrm.27159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To develop a rapid segmentation-free method to visualize and compute wall shear stress (WSS) throughout the aorta using 4D Flow MRI data. WSS is the drag force-per-area the vessel endothelium exerts on luminal blood; abnormal levels of WSS are associated with cardiovascular pathologies. Previous methods for computing WSS are bottlenecked by labor-intensive manual segmentation of vessel boundaries. A rapid automated segmentation-free method for computing WSS is presented. THEORY AND METHODS Shear stress is the dot-product of the viscous stress tensor and the inward normal vector. The inward normal vectors are approximated as the gradient of fluid speed at every voxel. Subsequently, a 4D map of shear stress is computed as the partial derivatives of velocity with respect to the inward normal vectors. We highlight the shear stress near the wall by fusing visualization with edge-emphasized anatomical data. RESULTS As a proof-of-concept, four cases with aortic pathologies are presented. Visualization allows for rapid localization of pathologic WSS. Subsequent analysis of these pathological regions enables quantification of WSS. Average WSS during peak systole measures approximately 50-60 cPa in nonpathological regions of the aorta and is elevated in regions of stenosis, coarctation, and dissection. WSS is reduced in regions of aneurysm. CONCLUSION A volumetric technique for calculation and visualization of WSS from 4D Flow MRI data is presented. Traditional labor-intensive methods for WSS rely on explicit manual segmentation of vessel boundaries before visualization. This automated volumetric strategy for visualization and quantification of WSS may facilitate its clinical translation.
Collapse
Affiliation(s)
- Evan M Masutani
- Medical Scientist Training Program, University of California, San Diego, La Jolla, California.,Department of Medicine, University of California, San Diego, La Jolla, California
| | - Francisco Contijoch
- Department of Bioengineering, University of California, San Diego, La Jolla, California.,Department of Radiology, University of California, San Diego, La Jolla, California
| | - Espoir Kyubwa
- Medical Scientist Training Program, University of California, San Diego, La Jolla, California.,Department of Medicine, University of California, San Diego, La Jolla, California
| | - Joseph Cheng
- Department of Radiology, Stanford University, Stanford, California
| | - Marcus T Alley
- Department of Radiology, Stanford University, Stanford, California
| | | | - Albert Hsiao
- Department of Radiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
48
|
Galla JD. The shea(e)r stress of it all. J Thorac Cardiovasc Surg 2018; 155:2287-2288. [PMID: 29501232 DOI: 10.1016/j.jtcvs.2018.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Affiliation(s)
- Jan D Galla
- Englewood Cardiac Surgery Associates, Englewood Hospital Medical Center, Englewood, NJ.
| |
Collapse
|
49
|
Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module. J Biomech 2018; 68:14-23. [PMID: 29279196 DOI: 10.1016/j.jbiomech.2017.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 11/21/2022]
Abstract
The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices.
Collapse
|