1
|
Roberts MD, Ruple BA, Godwin JS, McIntosh MC, Chen SY, Kontos NJ, Agyin-Birikorang A, Michel M, Plotkin DL, Mattingly ML, Mobley B, Ziegenfuss TN, Fruge AD, Kavazis AN. A novel deep proteomic approach in human skeletal muscle unveils distinct molecular signatures affected by aging and resistance training. Aging (Albany NY) 2024; 16:6631-6651. [PMID: 38643460 PMCID: PMC11087122 DOI: 10.18632/aging.205751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
The skeletal muscle proteome alterations to aging and resistance training have been reported in prior studies. However, conventional proteomics in skeletal muscle typically yields wide protein abundance ranges that mask the detection of lowly expressed proteins. Thus, we adopted a novel deep proteomics approach whereby myofibril (MyoF) and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS). Specifically, we investigated MyoF and non-MyoF proteomic profiles of the vastus lateralis muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6). Additionally, MA muscle was analyzed following eight weeks of resistance training (RT, 2d/week). Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteomes were evident between age cohorts, and most differentially expressed non-MyoF proteins (447/543) were more enriched in MA versus Y. Biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. RT in MA participants only altered ~0.3% of MyoF and ~1.0% of non-MyoF proteomes. In summary, aging and RT predominantly affect non-contractile proteins in skeletal muscle. Additionally, marginal proteome adaptations with RT suggest more rigorous training may stimulate more robust effects or that RT, regardless of age, subtly alters basal state skeletal muscle protein abundances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Max Michel
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | | | - Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | - Andrew D. Fruge
- College of Nursing, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
2
|
Roberts MD, Ruple BA, Godwin JS, McIntosh MC, Chen SY, Kontos NJ, Agyin-Birikorang A, Max Michel J, Plotkin DL, Mattingly ML, Brooks Mobley C, Ziegenfuss TN, Fruge AD, Kavazis AN. A novel deep proteomic approach in human skeletal muscle unveils distinct molecular signatures affected by aging and resistance training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543459. [PMID: 37333259 PMCID: PMC10274632 DOI: 10.1101/2023.06.02.543459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We examined the myofibrillar (MyoF) and non-myofibrillar (non-MyoF) proteomic profiles of the vastus lateralis (VL) muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6), and MA following eight weeks of knee extensor resistance training (RT, 2d/week). Shotgun/bottom-up proteomics in skeletal muscle typically yields wide protein abundance ranges that mask lowly expressed proteins. Thus, we adopted a novel approach whereby the MyoF and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS) analysis. A total of 10,866 proteins (4,421 MyoF and 6,445 non-MyoF) were identified. Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteome were evident between age cohorts. Further, most of these age-related non-MyoF proteins (447/543) were more enriched in MA versus Y. Several biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including (but not limited to) increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. Non-MyoF proteins associated with splicing and proteostasis were further interrogated, and in agreement with bioinformatics, alternative protein variants, spliceosome-associated proteins (snRNPs), and proteolysis-related targets were more abundant in MA versus Y. RT in MA non-significantly increased VL muscle cross-sectional area (+6.5%, p=0.066) and significantly increased knee extensor strength (+8.7%, p=0.048). However, RT modestly altered the MyoF (~0.3%, 11 upregulated and two downregulated proteins) and non-MyoF proteomes (~1.0%, 56 upregulated and eight downregulated proteins, p<0.01). Further, RT did not affect predicted biological processes in either fraction. Although participant numbers were limited, these preliminary results using a novel deep proteomic approach in skeletal muscle suggest that aging and RT predominantly affects protein abundances in the non-contractile protein pool. However, the marginal proteome adaptations occurring with RT suggest either: a) this may be an aging-associated phenomenon, b) more rigorous RT may stimulate more robust effects, or c) RT, regardless of age, subtly affects skeletal muscle protein abundances in the basal state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J. Max Michel
- School of Kinesiology, Auburn University, Auburn, AL USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Dunlap KR, Steiner JL, Hickner RC, Chase PB, Gordon BS. The duration of glucocorticoid treatment alters the anabolic response to high-force muscle contractions. J Appl Physiol (1985) 2023; 135:183-195. [PMID: 37289956 PMCID: PMC10312323 DOI: 10.1152/japplphysiol.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Glucocorticoids induce a myopathy that includes loss of muscle mass and strength. Resistance exercise may reverse the muscle loss because it induces an anabolic response characterized by increases in muscle protein synthesis and potentially suppressing protein breakdown. Whether resistance exercise induces an anabolic response in glucocorticoid myopathic muscle is unknown, which is a problem because long-term glucocorticoid exposure alters the expression of genes that may prevent an anabolic response by limiting activation of pathways such as the mechanistic target of rapamycin in complex 1 (mTORC1). The purpose of this study was to assess whether high-force contractions initiate an anabolic response in glucocorticoid myopathic muscle. The anabolic response was analyzed by treating female mice with dexamethasone (DEX) for 7 days or 15 days. After treatment, the left tibialis anterior muscle of all mice was contracted via electrical stimulation of the sciatic nerve. Muscles were harvested 4 h after contractions. Rates of muscle protein synthesis were estimated using the SUnSET method. After 7 days of treatment, high-force contractions increased protein synthesis and mTORC1 signaling in both groups. After 15 days of treatment, high-force contractions activated mTORC1 signaling equally in both groups, but protein synthesis was only increased in control mice. The failure to increase protein synthesis may be because baseline synthetic rates were elevated in DEX-treated mice. The LC3 II/I ratio marker of autophagy was decreased by contractions regardless of treatment duration. These data show duration of glucocorticoid treatment alters the anabolic response to high-force contractions.NEW & NOTEWORTHY Glucocorticoid myopathy is the most common, toxic, noninflammatory myopathy. Our work shows that high-force contractions increase protein synthesis in skeletal muscle following short-term glucocorticoid treatment. However, longer duration glucocorticoid treatment results in anabolic resistance to high-force contractions despite activation of the mechanistic target of rapamycin in complex 1 (mTORC1) signaling pathway. This work defines potential limits for high-force contractions to activate the processes that would restore lost muscle mass in glucocorticoid myopathic patients.
Collapse
Affiliation(s)
- Kirsten R Dunlap
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L Steiner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States
| | - Bradley S Gordon
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
4
|
Jones RG, Dimet-Wiley A, Haghani A, da Silva FM, Brightwell CR, Lim S, Khadgi S, Wen Y, Dungan CM, Brooke RT, Greene NP, Peterson CA, McCarthy JJ, Horvath S, Watowich SJ, Fry CS, Murach KA. A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle. J Physiol 2023; 601:763-782. [PMID: 36533424 PMCID: PMC9987218 DOI: 10.1113/jp283836] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
Collapse
Affiliation(s)
- Ronald G. Jones
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | | | - Amin Haghani
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Francielly Morena da Silva
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Camille R. Brightwell
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Seongkyun Lim
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Sabin Khadgi
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
| | - Yuan Wen
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | - Cory M. Dungan
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
| | | | - Nicholas P. Greene
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cachexia Research Laboratory, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| | - Charlotte A. Peterson
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Physical Therapy, Lexington, KY, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - John J. McCarthy
- Altos Labs, San Diego, CA, USA
- University of Kentucky, Department of Physiology, Lexington, KY, USA
| | - Steve Horvath
- University of California Los Angeles, Department of Human Genetics, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Stanley J. Watowich
- Ridgeline Therapeutics, Houston, TX, USA
- University of Texas Medical Branch, Department of Biochemistry and Molecular Biology, Galveston, TX, USA
| | - Christopher S. Fry
- University of Kentucky Center for Muscle Biology, Lexington, KY, USA
- University of Kentucky, Department of Athletic Training and Clinical Nutrition, Lexington, KY, USA
| | - Kevin A. Murach
- University of Arkansas, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, Fayetteville, AR, USA
- University of Arkansas, Cell and Molecular Biology Graduate Program, Fayetteville, AR, USA
| |
Collapse
|
5
|
Woodward K, Shirokikh NE. Translational control in cell ageing: an update. Biochem Soc Trans 2021; 49:2853-2869. [PMID: 34913471 PMCID: PMC8786278 DOI: 10.1042/bst20210844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
Cellular ageing is one of the main drivers of organismal ageing and holds keys towards improving the longevity and quality of the extended life. Elucidating mechanisms underlying the emergence of the aged cells as well as their altered responses to the environment will help understanding the evolutionarily defined longevity preferences across species with different strategies of survival. Much is understood about the role of alterations in the DNA, including many epigenetic modifications such as methylation, in relation to the aged cell phenotype. While transcriptomes of the aged cells are beginning to be better-characterised, their translational responses remain under active investigation. Many of the translationally controlled homeostatic pathways are centred around mitigation of DNA damage, cell stress response and regulation of the proliferative potential of the cells, and thus are critical for the aged cell function. Translation profiling-type studies have boosted the opportunities in discovering the function of protein biosynthesis control and are starting to be applied to the aged cells. Here, we provide a summary of the current knowledge about translational mechanisms considered to be commonly altered in the aged cells, including the integrated stress response-, mechanistic target of Rapamycin- and elongation factor 2 kinase-mediated pathways. We enlist and discuss findings of the recent works that use broad profiling-type approaches to investigate the age-related translational pathways. We outline the limitations of the methods and the remaining unknowns in the established ageing-associated translation mechanisms, and flag translational mechanisms with high prospective importance in ageing, for future studies.
Collapse
Affiliation(s)
- Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| | - Nikolay E. Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Park C, Ji SY, Lee H, Choi SH, Kwon CY, Kim SY, Lee ET, Choo ST, Kim GY, Choi YH, Kim MR. Mori Ramulus Suppresses Hydrogen Peroxide-Induced Oxidative Damage in Murine Myoblast C2C12 Cells through Activation of AMPK. Int J Mol Sci 2021; 22:ijms222111729. [PMID: 34769159 PMCID: PMC8583786 DOI: 10.3390/ijms222111729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Mori Ramulus, the dried twigs of Morus alba L., has been attracting attention for its potent antioxidant activity, but its role in muscle cells has not yet been elucidated. The purpose of this study was to evaluate the protective effect of aqueous extracts of Mori Ramulus (AEMR) against oxidative stress caused by hydrogen peroxide (H2O2) in C2C12 mouse myoblasts, and in dexamethasone (DEX)-induced muscle atrophied models. Our results showed that AEMR rescued H2O2-induced cell viability loss and the collapse of the mitochondria membrane potential. AEMR was also able to activate AMP-activated protein kinase (AMPK) in H2O2-treated C2C12 cells, whereas compound C, a pharmacological inhibitor of AMPK, blocked the protective effects of AEMR. In addition, H2O2-triggered DNA damage was markedly attenuated in the presence of AEMR, which was associated with the inhibition of reactive oxygen species (ROS) generation. Further studies showed that AEMR inhibited cytochrome c release from mitochondria into the cytoplasm, and Bcl-2 suppression and Bax activation induced by H2O2. Furthermore, AEMR diminished H2O2-induced activation of caspase-3, which was associated with the ability of AEMR to block the degradation of poly (ADP-ribose) polymerase, thereby attenuating H2O2-induced apoptosis. However, compound C greatly abolished the protective effect of AEMR against H2O2-induced C2C12 cell apoptosis, including the restoration of mitochondrial dysfunction. Taken together, these results demonstrate that AEMR could protect C2C12 myoblasts from oxidative damage by maintaining mitochondrial function while eliminating ROS, at least with activation of the AMPK signaling pathway. In addition, oral administration of AEMR alleviated gastrocnemius and soleus muscle loss in DEX-induced muscle atrophied rats. Our findings support that AEMR might be a promising therapeutic candidate for treating oxidative stress-mediated myoblast injury and muscle atrophy.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Seon Yeong Ji
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Hyesook Lee
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang 50141, Korea;
| | - Chan-Young Kwon
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Dong-Eui University, Busan 47340, Korea;
| | - So Young Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
| | - Eun Tag Lee
- Agricultural Corporation, Ebiche Co., Ltd., Yeongcheon 38819, Korea; (E.T.L.); (S.T.C.)
| | - Sung Tae Choo
- Agricultural Corporation, Ebiche Co., Ltd., Yeongcheon 38819, Korea; (E.T.L.); (S.T.C.)
| | - Gi-Young Kim
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (S.Y.J.); (H.L.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
- Correspondence: (Y.H.C.); (M.R.K.); Tel.: +82-51-890-3319 (Y.H.C.); +82-53-770-2241 (M.R.K.)
| | - Mi Ryeo Kim
- Department of Pharmacology, College of Korean Medicine, Daegu Haany University, Daegu 42158, Korea;
- Correspondence: (Y.H.C.); (M.R.K.); Tel.: +82-51-890-3319 (Y.H.C.); +82-53-770-2241 (M.R.K.)
| |
Collapse
|
7
|
Ruple BA, Godwin JS, Mesquita PHC, Osburn SC, Sexton CL, Smith MA, Ogletree JC, Goodlett MD, Edison JL, Ferrando AA, Fruge AD, Kavazis AN, Young KC, Roberts MD. Myofibril and Mitochondrial Area Changes in Type I and II Fibers Following 10 Weeks of Resistance Training in Previously Untrained Men. Front Physiol 2021; 12:728683. [PMID: 34630147 PMCID: PMC8497692 DOI: 10.3389/fphys.2021.728683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Resistance training increases muscle fiber hypertrophy, but the morphological adaptations that occur within muscle fibers remain largely unresolved. Fifteen males with minimal training experience (24±4years, 23.9±3.1kg/m2 body mass index) performed 10weeks of conventional, full-body resistance training (2× weekly). Body composition, the radiological density of the vastus lateralis muscle using peripheral quantitative computed tomography (pQCT), and vastus lateralis muscle biopsies were obtained 1week prior to and 72h following the last training bout. Quantification of myofibril and mitochondrial areas in type I (positive for MyHC I) and II (positive for MyHC IIa/IIx) fibers was performed using immunohistochemistry (IHC) techniques. Relative myosin heavy chain and actin protein abundances per wet muscle weight as well as citrate synthase (CS) activity assays were also obtained on tissue lysates. Training increased whole-body lean mass, mid-thigh muscle cross-sectional area, mean and type II fiber cross-sectional areas (fCSA), and maximal strength values for leg press, bench press, and deadlift (p<0.05). The intracellular area occupied by myofibrils in type I or II fibers was not altered with training, suggesting a proportional expansion of myofibrils with fCSA increases. However, our histological analysis was unable to differentiate whether increases in myofibril number or girth occurred. Relative myosin heavy chain and actin protein abundances also did not change with training. IHC indicated training increased mitochondrial areas in both fiber types (p=0.018), albeit CS activity levels remained unaltered with training suggesting a discordance between these assays. Interestingly, although pQCT-derived muscle density increased with training (p=0.036), suggestive of myofibril packing, a positive association existed between training-induced changes in this metric and changes in mean fiber myofibril area (r=0.600, p=0.018). To summarize, our data imply that shorter-term resistance training promotes a proportional expansion of the area occupied by myofibrils and a disproportional expansion of the area occupied by mitochondria in type I and II fibers. Additionally, IHC and biochemical techniques should be viewed independently from one another given the lack of agreement between the variables assessed herein. Finally, the pQCT may be a viable tool to non-invasively track morphological changes (specifically myofibril density) in muscle tissue.
Collapse
Affiliation(s)
- Bradley A Ruple
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Joshua S Godwin
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Morgan A Smith
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Michael D Goodlett
- Athletics Department, Auburn University, Auburn, AL, United States.,Department of Geriatrics, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | - Joseph L Edison
- Athletics Department, Auburn University, Auburn, AL, United States.,Department of Geriatrics, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | - Arny A Ferrando
- Department of Geriatrics, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Andrew D Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, United States
| | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Geriatrics, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Geriatrics, Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
8
|
Li FH, Sun L, Wu DS, Gao HE, Min Z. Proteomics-based identification of different training adaptations of aged skeletal muscle following long-term high-intensity interval and moderate-intensity continuous training in aged rats. Aging (Albany NY) 2020; 11:4159-4182. [PMID: 31241467 DOI: 10.18632/aging.102044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/17/2019] [Indexed: 11/25/2022]
Abstract
Aging-associated loss of skeletal muscle mass and force increases the risk of falls, impairs mobility, and leads to a reduced quality of life. High-intensity interval training (HIIT) is superior to moderate-intensity continuous training (MICT) for improving morphological and metabolic adaptations of skeletal muscle in older adults, but the underlying mechanism is unknown. Aged female rats underwent HIIT and MICT for 8 months, and their differential impacts on skeletal muscle proteome were investigated. HIIT resulted in a larger improvement in grip strength and fiber cross-sectional area, with similar increases in inclined plane performance and time to exhaustion. Proteomic analysis showed that common training adaptations of both protocols included changes to muscle contraction, focal adhesion signaling, mitochondrial function, apoptosis and regeneration, and anti-oxidation, whereas protein processing in the endoplasmic reticulum and adipocytokine signaling were specifically altered in the MICT and HIIT groups, respectively. Immunoblotting showed that upregulation of the adiponectin/AMPK signaling pathway may be associated with improvements in autophagy, oxidative stress, mitochondrial function, and apoptosis in aged skeletal muscle following HIIT. Thus, understanding the molecular differences in training adaptations from these two exercise modalities may aid in combatting sarcopenia.
Collapse
Affiliation(s)
- Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Lei Sun
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Da-Shuai Wu
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Hao-En Gao
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Zhu Min
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Multifaceted deregulation of gene expression and protein synthesis with age. Proc Natl Acad Sci U S A 2020; 117:15581-15590. [PMID: 32576685 DOI: 10.1073/pnas.2001788117] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis represents a major metabolic activity of the cell. However, how it is affected by aging and how this in turn impacts cell function remains largely unexplored. To address this question, herein we characterized age-related changes in both the transcriptome and translatome of mouse tissues over the entire life span. We showed that the transcriptome changes govern those in the translatome and are associated with altered expression of genes involved in inflammation, extracellular matrix, and lipid metabolism. We also identified genes that may serve as candidate biomarkers of aging. At the translational level, we uncovered sustained down-regulation of a set of 5'-terminal oligopyrimidine (5'-TOP) transcripts encoding protein synthesis and ribosome biogenesis machinery and regulated by the mTOR pathway. For many of them, ribosome occupancy dropped twofold or even more. Moreover, with age, ribosome coverage gradually decreased in the vicinity of start codons and increased near stop codons, revealing complex age-related changes in the translation process. Taken together, our results reveal systematic and multidimensional deregulation of protein synthesis, showing how this major cellular process declines with age.
Collapse
|
10
|
Rocha LC, Pimentel Neto J, de Sant'Ana JS, Jacob CDS, Barbosa GK, Krause Neto W, Watanabe IS, Ciena AP. Repercussions on sarcomeres of the myotendinous junction and the myofibrillar type adaptations in response to different trainings on vertical ladder. Microsc Res Tech 2020; 83:1190-1197. [PMID: 32500573 DOI: 10.1002/jemt.23510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
Abstract
The myofibrillary types establish to the skeletal muscle functional and adaptive properties that influence the sarcomeric arrangement during muscle contraction and may have repercussions on an important related force transmission region of the locomotor apparatus, the myotendinous junction (MTJ). This study aimed to describe changes in myofibrillary type and sarcomeric lengths in the belly muscle and MTJ of the soleus and plantaris muscles associated with training protocols in vertical ladder. Thirty adults male Wistar rats were divided into three groups (n = 10): Control (CTR), No-load Training (NLT), and Load Training (LT). Morphoquantitative analysis of different fibers types and sarcomere lengths were performed in distinct regions of plantaris and soleus muscles. In the plantaris muscle with both trainings, there was an increase in the cross-sectional area (CSA) in Type I and II fibers (p < .0001) while sarcomeric lengths revealed greater lengths in the proximal and distal sarcomeres of NLT, although in the LT we found greater lengths in the belly and MTJ sarcomeres. The soleus muscle showed an increase in CSA muscle fiber only in the NLT (p < .0001) and revealed alterations in belly and MTJ sarcomere lengths with training. We concluded that plantaris muscle has an adaptive effect directly associated with training load, with hypertrophy in both trainings and sarcomere length inverse from belly and MTJ, in LT associated with increased force generation and transmission at the MTJ, although soleus muscle has a lower adaptive response to training stimuli with variation in the belly and distal sarcomere of the MTJ.
Collapse
Affiliation(s)
- Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Jossei Soares de Sant'Ana
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, Brazil
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences-III, University of São Paulo (USP), São Paulo, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
11
|
Vann CG, Osburn SC, Mumford PW, Roberson PA, Fox CD, Sexton CL, Johnson MR, Johnson JS, Shake J, Moore JH, Millevoi K, Beck DT, Badisa VLD, Mwashote BM, Ibeanusi V, Singh RK, Roberts MD. Skeletal Muscle Protein Composition Adaptations to 10 Weeks of High-Load Resistance Training in Previously-Trained Males. Front Physiol 2020; 11:259. [PMID: 32292355 PMCID: PMC7135893 DOI: 10.3389/fphys.2020.00259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/06/2020] [Indexed: 01/14/2023] Open
Abstract
While high-load resistance training increases muscle hypertrophy, the intramuscular protein responses to this form of training remains largely unknown. In the current study, recreationally resistance-trained college-aged males (N = 15; mean ± SD: 23 ± 3 years old, 6 ± 5 years training) performed full-body, low-volume, high-load [68–90% of one repetition maximum (1RM)] resistance training over 10 weeks. Back squat strength testing, body composition testing, and a vastus lateralis biopsy were performed before (PRE) and 72 h after the 10-week training program (POST). Fiber type-specific cross-sectional area (fCSA), myofibrillar protein concentrations, sarcoplasmic protein concentrations, myosin heavy chain and actin protein abundances, and muscle tissue percent fluid were analyzed. The abundances of individual sarcoplasmic proteins in 10 of the 15 participants were also assessed using proteomics. Significant increases (p < 0.05) in type II fCSA and back squat strength occurred with training, although whole-body fat-free mass paradoxically decreased (p = 0.026). No changes in sarcoplasmic protein concentrations or muscle tissue percent fluid were observed. Myosin heavy chain protein abundance trended downward (−2.9 ± 5.8%, p = 0.069) and actin protein abundance decreased (−3.2 ± 5.3%, p = 0.034) with training. Proteomics indicated only 13 sarcoplasmic proteins were altered with training (12 up-regulated, 1 down-regulated, p < 0.05). Bioinformatics indicated no signaling pathways were affected, and proteins involved with metabolism (e.g., ATP-PCr, glycolysis, TCA cycle, or beta-oxidation) were not affected. These data comprehensively describe intramuscular protein adaptations that occur following 10 weeks of high-load resistance training. Although previous data from our laboratory suggests high-volume resistance training enhances the ATP-PCr and glycolytic pathways, we observed different changes in metabolism-related proteins in the current study with high-load training.
Collapse
Affiliation(s)
| | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Joel S Johnson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Jacob Shake
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Kevin Millevoi
- Department of Exercise Science, LaGrange College, LaGrange, GA, United States
| | - Darren T Beck
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Edward Via College of Osteopathic Medicine Auburn, Auburn, AL, United States
| | - Veera L D Badisa
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Benjamin M Mwashote
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Victor Ibeanusi
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Rakesh K Singh
- Translational Science Laboratory, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Edward Via College of Osteopathic Medicine Auburn, Auburn, AL, United States
| |
Collapse
|
12
|
Roberts MD, Young KC, Fox CD, Vann CG, Roberson PA, Osburn SC, Moore JH, Mumford PW, Romero MA, Beck DT, Haun CT, Badisa VLD, Mwashote BM, Ibeanusi V, Kavazis AN. An optimized procedure for isolation of rodent and human skeletal muscle sarcoplasmic and myofibrillar proteins. J Biol Methods 2020; 7:e127. [PMID: 32201709 PMCID: PMC7081056 DOI: 10.14440/jbm.2020.307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022] Open
Abstract
Several published protocols exist for isolating contractile or myofibrillar (MF) proteins from skeletal muscle, however, achieving complete resuspension of the myofibril pellet can be technically challenging. We performed several previously published MF isolation methods with the intent of determining which method was most suitable for MF protein isolation and solubilization. Here, we provide an optimized protocol to isolate sarcoplasmic and solubilized MF protein fractions from mammalian skeletal muscle suitable for several downstream assays.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, AL 36849, USA
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, AL 36849, USA
| | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | - Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | | | - Darren T Beck
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, AL 36849, USA
| | | | - Veera L D Badisa
- School of the Environment, Florida A&M University, Tallahassee, FL 32307, USA
| | - Benjamin M Mwashote
- School of the Environment, Florida A&M University, Tallahassee, FL 32307, USA
| | - Victor Ibeanusi
- School of the Environment, Florida A&M University, Tallahassee, FL 32307, USA
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Anisimova AS, Alexandrov AI, Makarova NE, Gladyshev VN, Dmitriev SE. Protein synthesis and quality control in aging. Aging (Albany NY) 2019; 10:4269-4288. [PMID: 30562164 PMCID: PMC6326689 DOI: 10.18632/aging.101721] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of functionality and fitness. Age-related changes occur at most levels of organization of a living organism (molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is necessary for understanding the aging process, as well as for developing approaches to target dysfunction in translation as a strategy for extending lifespan.
Collapse
Affiliation(s)
- Aleksandra S Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Alexander I Alexandrov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Bach Institute of Biochemistry of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nadezhda E Makarova
- School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vadim N Gladyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,School of Bioengineering and Bioinformatics Lomonosov Moscow State University, Moscow 119234, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
14
|
Roberts MD, Mobley CB, Vann CG, Haun CT, Schoenfeld BJ, Young KC, Kavazis AN. Synergist ablation-induced hypertrophy occurs more rapidly in the plantaris than soleus muscle in rats due to different molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 2019; 318:R360-R368. [PMID: 31850817 DOI: 10.1152/ajpregu.00304.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined molecular mechanisms that were altered during rapid soleus (type I fiber-dominant) and plantaris (type II fiber-dominant) hypertrophy in rats. Twelve Wistar rats (3.5 mo old; 6 female, 6 male) were subjected to surgical right-leg soleus and plantaris dual overload [synergist ablation (SA)], and sham surgeries were performed on left legs (CTL). At 14 days after surgery, the muscles were dissected. Plantaris mass was 27% greater in the SA than CTL leg (P < 0.001), soleus mass was 13% greater in the SA than CTL leg (P < 0.001), and plantaris mass was higher than soleus mass in the SA leg (P = 0.001). Plantaris total RNA concentrations and estimated total RNA levels (suggestive of ribosome density) were 19% and 47% greater in the SA than CTL leg (P < 0.05), protein synthesis levels were 64% greater in the SA than CTL leg (P = 0.038), and satellite cell number per fiber was 60% greater in the SA than CTL leg (P = 0.003); no differences in these metrics were observed between soleus SA and CTL legs. Plantaris, as well as soleus, 20S proteasome activity was lower in the SA than CTL leg (P < 0.05), although the degree of downregulation was greater in the plantaris than soleus muscle (-63% vs. -20%, P = 0.001). These data suggest that early-phase plantaris hypertrophy occurs more rapidly than soleus hypertrophy, which coincided with greater increases in ribosome biogenesis, protein synthesis, and satellite cell density, as well as greater decrements in 20S proteasome activity, in the plantaris muscle.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Veterinary Medicine, Auburn, Alabama
| | - Christopher B Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | | | - Cody T Haun
- Department of Exercise Science, LaGrange College, LaGrange, Georgia
| | - Brad J Schoenfeld
- Department of Health Sciences, City University of New York Lehman College, Bronx, New York
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Veterinary Medicine, Auburn, Alabama
| | | |
Collapse
|
15
|
Davuluri G, Giusto M, Chandel R, Welch N, Alsabbagh K, Kant S, Kumar A, Kim A, Gangadhariah M, Ghosh PK, Tran U, Krajcik DM, Vasu K, DiDonato AJ, DiDonato JA, Willard B, Monga SP, Wang Y, Fox PL, Stark GR, Wessely O, Esser KA, Dasarathy S. Impaired Ribosomal Biogenesis by Noncanonical Degradation of β-Catenin during Hyperammonemia. Mol Cell Biol 2019; 39:e00451-18. [PMID: 31138664 PMCID: PMC6664607 DOI: 10.1128/mcb.00451-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of β-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of β-catenin via glycogen synthase kinase 3β (GSK3β)-dependent degradation, GSK3β expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3β did not prevent ammonia-induced degradation of β-catenin. Overexpression of GSK3β-resistant variants, genetic depletion of IκB kinase β (IKKβ) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKβ phosphorylated β-catenin directly. Overexpressing β-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3β-independent, IKKβ-dependent impairment of the β-catenin-cMYC axis.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michela Giusto
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rajeev Chandel
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Khaled Alsabbagh
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sashi Kant
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Avinash Kumar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Kim
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Prabar K Ghosh
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Uyen Tran
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel M Krajcik
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kommireddy Vasu
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anthony J DiDonato
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joseph A DiDonato
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Belinda Willard
- Proteomics Research Core Services, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuxin Wang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul L Fox
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - George R Stark
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Oliver Wessely
- Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, Institute of Myology, University of Florida, Gainesville, Florida, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Mumford PW, Romero MA, Osburn SC, Roberson PA, Vann CG, Mobley CB, Brown MD, Kavazis AN, Young KC, Roberts MD. Skeletal muscle LINE-1 retrotransposon activity is upregulated in older versus younger rats. Am J Physiol Regul Integr Comp Physiol 2019; 317:R397-R406. [PMID: 31188650 DOI: 10.1152/ajpregu.00110.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long interspersed element-1 (LINE-1) is a retrotransposon capable of replicating and inserting LINE-1 copies into the genome. Others have reported skeletal muscle LINE-1 markers are higher in older versus younger mice, but data are lacking in other species. Herein, gastrocnemius muscle from male Fischer 344 rats that were 3, 12, and 24 mo old (n = 9 per group) were analyzed for LINE-1 mRNA, DNA, promoter methylation and DNA accessibility. qPCR primers were designed for active (L1.3) and inactive (L1.Tot) LINE-1 elements as well as part of the ORF1 sequence. L1.3, L1.Tot, and ORF1 mRNAs were higher (P < 0.05) in 12/24 versus 3-mo-old rats. L1.3 DNA was higher in the 24-mo-old rats versus other groups, and ORF1 DNA was greater in 12/24 versus 3-mo-old rats. ORF1 protein was higher in 12/24 versus 3-mo-old rats. RNA-sequencing indicated mRNAs related to DNA methylation (Tet1) and histone acetylation (Hdac2) were lower in 24 versus 3-mo-old rats. L1.3 DNA accessibility was higher in 24-mo-old versus 3-mo-old rats. No age-related differences in nuclear histone deacetylase (HDAC) activity existed, although nuclear DNA methyltransferase (DNMT) activity was lower in 12/24 versus 3-mo-old rats (P < 0.05). In summary, markers of skeletal muscle LINE-1 activity increase across the age spectrum of rats, and this may be related to deficits in DNMT activity and/or increased LINE-1 DNA accessibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Christopher B Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | | | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama.,Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, Alabama.,Edward Via College of Osteopathic Medicine, Auburn, Alabama
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Edward Via College of Osteopathic Medicine, Auburn, Alabama
| |
Collapse
|
17
|
Haun CT, Vann CG, Osburn SC, Mumford PW, Roberson PA, Romero MA, Fox CD, Johnson CA, Parry HA, Kavazis AN, Moon JR, Badisa VLD, Mwashote BM, Ibeanusi V, Young KC, Roberts MD. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS One 2019; 14:e0215267. [PMID: 31166954 PMCID: PMC6550381 DOI: 10.1371/journal.pone.0215267] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/22/2019] [Indexed: 01/10/2023] Open
Abstract
Cellular adaptations that occur during skeletal muscle hypertrophy in response to high-volume resistance training are not well-characterized. Therefore, we sought to explore how actin, myosin, sarcoplasmic protein, mitochondrial, and glycogen concentrations were altered in individuals that exhibited mean skeletal muscle fiber cross-sectional area (fCSA) hypertrophy following 6 weeks of high-volume resistance training. Thirty previously resistance-trained, college-aged males (mean ± standard deviation: 21±2 years, 5±3 training years) had vastus lateralis (VL) muscle biopsies obtained prior to training (PRE), at week 3 (W3), and at week 6 (W6). Muscle tissue from 15 subjects exhibiting PRE to W6 VL mean fCSA increases ranging from 320–1600 μm2 was further interrogated using various biochemical and histological assays as well as proteomic analysis. Seven of these individuals donated a VL biopsy after refraining from training 8 days following the last training session (W7) to determine how deloading affected biomarkers. The 15 fCSA hypertrophic responders experienced a +23% increase in mean fCSA from PRE to W6 (p<0.001) and, while muscle glycogen concentrations remained unaltered, citrate synthase activity levels decreased by 24% (p<0.001) suggesting mitochondrial volume decreased. Interestingly, repeated measures ANOVAs indicated that p-values approached statistical significance for both myosin and actin (p = 0.052 and p = 0.055, respectively), and forced post hoc tests indicated concentrations for both proteins decreased ~30% from PRE to W6 (p<0.05 for each target). Phalloidin-actin staining similarly revealed actin concentrations per fiber decreased from PRE to W6. Proteomic analysis of the sarcoplasmic fraction from PRE to W6 indicated 40 proteins were up-regulated (p<0.05), KEGG analysis indicated that the glycolysis/gluconeogenesis pathway was upregulated (FDR sig. <0.001), and DAVID indicated that the following functionally-annotated pathways were upregulated (FDR value <0.05): a) glycolysis (8 proteins), b) acetylation (23 proteins), c) gluconeogenesis (5 proteins) and d) cytoplasm (20 proteins). At W7, sarcoplasmic protein concentrations remained higher than PRE (+66%, p<0.05), and both actin and myosin concentrations remained lower than PRE (~-50%, p<0.05). These data suggest that short-term high-volume resistance training may: a) reduce muscle fiber actin and myosin protein concentrations in spite of increasing fCSA, and b) promote sarcoplasmic expansion coincident with a coordinated up-regulation of sarcoplasmic proteins involved in glycolysis and other metabolic processes related to ATP generation. Interestingly, these effects seem to persist up to 8 days following training.
Collapse
Affiliation(s)
- Cody T. Haun
- Department of Exercise Science, LaGrange College, LaGrange, GA, United States of America
| | - Christopher G. Vann
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Shelby C. Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Petey W. Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Paul A. Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Matthew A. Romero
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Carlton D. Fox
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Christopher A. Johnson
- School of Medicine, University of Alabama Birmingham, Birmingham, AL, United States of America
| | - Hailey A. Parry
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | - Andreas N. Kavazis
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
| | | | - Veera L. D. Badisa
- School of the Environment, Florida A&M University, Tallahassee, FL, United States of America
| | - Benjamin M. Mwashote
- School of the Environment, Florida A&M University, Tallahassee, FL, United States of America
| | - Victor Ibeanusi
- School of the Environment, Florida A&M University, Tallahassee, FL, United States of America
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine—Auburn Campus, Auburn, AL, United States of America
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States of America
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine—Auburn Campus, Auburn, AL, United States of America
- * E-mail:
| |
Collapse
|
18
|
Parry HA, Mobley CB, Mumford PW, Romero MA, Haun CT, Zhang Y, Roberson PA, Zempleni J, Ferrando AA, Vechetti IJ, McCarthy JJ, Young KC, Roberts MD, Kavazis AN. Bovine Milk Extracellular Vesicles (EVs) Modification Elicits Skeletal Muscle Growth in Rats. Front Physiol 2019; 10:436. [PMID: 31040795 PMCID: PMC6476979 DOI: 10.3389/fphys.2019.00436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
The current study investigated how bovine milk extracellular vesicles (EVs) affected rotarod performance and biomarkers of skeletal muscle physiology in young, growing rats. Twenty-eight-day Fisher 344 rats were provided an AIN-93G-based diet for 4 weeks that either remained unadulterated [EVs and RNA-sufficient (ERS; n = 12)] or was sonicated [EVs and RNA-depleted (ERD; n = 12)]. Prior to (PRE) and on the last day of the intervention (POST), animals were tested for maximal rotarod performance. Following the feeding period, the gastrocnemius muscle was analyzed at the histological, biochemical, and molecular levels and was also used to measure mitochondrial function and reactive oxygen species (ROS) emission. A main effect of time was observed for rotarod time (PRE > POST, p = 0.001). Terminal gastrocnemius mass was unaffected by diet, although gastrocnemius muscle fiber cross sectional area was 11% greater (p = 0.018) and total RNA (a surrogate of ribosome density) was 24% greater (p = 0.001) in ERD. Transcriptomic analysis of the gastrocnemius indicated that 22 mRNAs were significantly greater in ERS versus ERD (p < 0.01), whereas 55 mRNAs were greater in ERD versus ERS (p < 0.01). There were no differences in gastrocnemius citrate synthase activity or mitochondrial coupling (respiratory control ratio), although mitochondrial ROS production was lower in ERD gastrocnemius (p = 0.016), which may be explained by an increase in glutathione peroxidase protein levels (p = 0.020) in ERD gastrocnemius. Dietary EVs profiling confirmed that sonication in the ERD diet reduced EVs content by ∼60%. Our findings demonstrate that bovine milk EVs depletion through sonication elicits anabolic and transcriptomic effects in the gastrocnemius muscle of rapidly maturing rats. While this did not translate into a functional outcome between diets (i.e., rotarod performance), longer feeding periods may be needed to observe such functional effects.
Collapse
Affiliation(s)
- Hailey A. Parry
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - C. Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Petey W. Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Cody T. Haun
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Yufeng Zhang
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paul A. Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Arny A. Ferrando
- Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Ivan J. Vechetti
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - John J. McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, United States
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, United States
| | - Andreas N. Kavazis
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL, United States
| |
Collapse
|
19
|
Kim HG, Guo B, Nader GA. Regulation of Ribosome Biogenesis During Skeletal Muscle Hypertrophy. Exerc Sport Sci Rev 2019; 47:91-97. [DOI: 10.1249/jes.0000000000000179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Haun CT, Vann CG, Mobley CB, Osburn SC, Mumford PW, Roberson PA, Romero MA, Fox CD, Parry HA, Kavazis AN, Moon JR, Young KC, Roberts MD. Pre-training Skeletal Muscle Fiber Size and Predominant Fiber Type Best Predict Hypertrophic Responses to 6 Weeks of Resistance Training in Previously Trained Young Men. Front Physiol 2019; 10:297. [PMID: 30971942 PMCID: PMC6445136 DOI: 10.3389/fphys.2019.00297] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/06/2019] [Indexed: 12/24/2022] Open
Abstract
Limited evidence exists regarding differentially expressed biomarkers between previously-trained low versus high hypertrophic responders in response to resistance training. Herein, 30 college-aged males (training age 5 ± 3 years; mean ± SD) partook in 6 weeks of high-volume resistance training. Body composition, right leg vastus lateralis (VL) biopsies, and blood were obtained prior to training (PRE) and at the 3-week (W3) and 6-week time points (W6). The 10 lowest (LOW) and 10 highest (HIGH) hypertrophic responders were clustered based upon a composite hypertrophy score of PRE-to-W6 changes in right leg VL mean muscle fiber cross-sectional area (fCSA), VL thickness assessed via ultrasound, upper right leg lean soft tissue mass assessed via dual x-ray absorptiometry (DXA), and mid-thigh circumference. Two-way ANOVAs were used to compare biomarker differences between the LOW and HIGH clusters over time, and stepwise linear regression was performed to elucidate biomarkers that explained significant variation in the composite hypertrophy score from PRE to W3, W3 to W6, and PRE to W6 in all 30 participants. PRE-to-W6 HIGH and LOW responders exhibited a composite hypertrophy change of +10.7 ± 3.2 and -2.1 ± 1.6%, respectively (p < 0.001). Compared to HIGH responders, LOW responders exhibited greater PRE type II fCSA (+18%, p = 0.022). Time effects (p < 0.05) existed for total RNA/mg muscle (W6 > W3 > PRE), phospho (p)-4EBP1 (PRE > W3&W6), pan-mTOR (PRE > W3 < W6), p-mTOR (PRE > W3 < W6), pan-AMPKα (PRE > W3 < W6), pan-p70s6k (PRE > W3), muscle ubiquitin-labeled proteins (PRE > W6), mechano growth factor mRNA (W6 > W3&PRE), 45S rRNA (PRE > W6), and muscle citrate synthase activity (PRE > W3&W6). No interactions existed for the aforementioned biomarkers and/or other assayed targets (muscle 20S proteasome activity, serum total testosterone, muscle androgen receptor protein levels, muscle glycogen, or serum creatine kinase). Regression analysis indicated PRE type II fiber percentage (R2 = 0.152, β = 0.390, p = 0.033) and PRE type II fCSA (R2 = 0.207, β = -0.455, p = 0.019) best predicted the PRE-to-W6 change in the composite hypertrophy score. While our sample size is limited, these data suggest: (a) HIGH responders may exhibit more growth potential given that they possessed lower PRE type II fCSA values and (b) possessing a greater type II fiber percentage as a trained individual may be advantageous for hypertrophy in response to resistance training.
Collapse
Affiliation(s)
- Cody T Haun
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Exercise Science, LaGrange College, LaGrange, GA, United States
| | | | - C Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Petey W Mumford
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paul A Roberson
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Matthew A Romero
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Hailey A Parry
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, United States
| |
Collapse
|
21
|
Mumford PW, Romero MA, Mao X, Mobley CB, Kephart WC, Haun CT, Roberson PA, Young KC, Martin JS, Yarrow JF, Beck DT, Roberts MD. Cross talk between androgen and Wnt signaling potentially contributes to age-related skeletal muscle atrophy in rats. J Appl Physiol (1985) 2018; 125:486-494. [PMID: 29722624 DOI: 10.1152/japplphysiol.00768.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to determine whether age-related gastrocnemius muscle mass loss was associated with parallel decrements in androgen receptor (AR) or select Wnt signaling markers. To test this hypothesis, serum-free and total testosterone (TEST) and gastrocnemius AR and Wnt signaling markers were analyzed in male Fischer 344 rats that were 3, 6, 12, 18, and 24 mo (mo) old ( n = 9 per group). Free and total TEST was greatest in 6 mo rats, and AR protein and Wnt5 protein levels linearly declined with aging. There were associations between Wnt5 protein levels and relative gastrocnemius mass ( r = 0.395, P = 0.007) as well as AR and Wnt5 protein levels (r = 0.670, P < 0.001). We next tested the hypothesis that Wnt5 affects muscle fiber size by treating C2C12-derived myotubes with lower (75 ng/ml) and higher (150 ng/ml) concentrations of recombinant Wnt5a protein. Both treatments increased myotube size ( P < 0.05) suggesting this ligand may affect muscle fiber size in vivo. We next tested if Wnt5a protein levels were androgen-modulated by examining 10-mo-old male Fischer 344 rats ( n = 10-11 per group) that were orchiectomized and treated with testosterone-enanthate (TEST-E); trenbolone enanthate (TREN), a nonaromatizable synthetic testosterone analogue; or a vehicle (ORX only) for 4 wk. Interestingly, TEST-E and TREN treatments increased Wnt5a protein in the androgen-sensitive levator ani/bulbocavernosus muscle compared with ORX only ( P < 0.05). To summarize, aromatizable and nonaromatizable androgens increase Wnt5a protein expression in skeletal muscle, age-related decrements in muscle AR may contribute Wnt5a protein decrements, and our in vitro data imply this mechanism may contribute to age-related muscle loss. NEW & NOTEWORTHY Results from this study demonstrate androgen and Wnt5 protein expression decrease with aging, and this may be a mechanism involved with age-related muscle loss.
Collapse
Affiliation(s)
| | | | - Xuansong Mao
- School of Kinesiology, Auburn University , Auburn, Alabama
| | | | | | - Cody T Haun
- School of Kinesiology, Auburn University , Auburn, Alabama
| | | | - Kaelin C Young
- School of Kinesiology, Auburn University , Auburn, Alabama.,Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| | - Jeffrey S Martin
- School of Kinesiology, Auburn University , Auburn, Alabama.,Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| | - Joshua F Yarrow
- North Florida/South Georgia Veterans Health System, Malcom Randall Veterans Affairs Medical Center , Gainesville, Florida.,Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine , Gainesville, Florida
| | - Darren T Beck
- School of Kinesiology, Auburn University , Auburn, Alabama.,Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| | - Michael D Roberts
- School of Kinesiology, Auburn University , Auburn, Alabama.,Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| |
Collapse
|