1
|
Vetyskova V, Hubalek M, Sulc J, Prochazka J, Vondrasek J, Vydra Bousova K. Proteolytic profiles of two isoforms of human AMBN expressed in E. coli by MMP-20 and KLK-4 proteases. Heliyon 2024; 10:e24564. [PMID: 38298721 PMCID: PMC10828707 DOI: 10.1016/j.heliyon.2024.e24564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Ameloblastin is a protein in biomineralization of tooth enamel. However recent results indicate that this is probably not its only role in an organism. Enamel matrix formation represents a complex process enabled via specific crosslinking of two proteins - the most abundant amelogenin and the ameloblastin (AMBN). The human AMBN (hAMBN) gene possesses 13 protein coding exons with alternatively spliced transcripts and the longest isoform about 447 amino acid residues. It has been described that AMBN molecules in vitro assemble into oligomers via a sequence encoded by exon 5. Enamel is formed by the processing of enamel proteins by two specific proteases - enamelysin (MMP-20) and kallikrein 4 (KLK-4). The scaffold made of AMEL and non-amelogenin proteins is cleaved and removed from the developed tooth enamel. The hAMBN is expressed in two isoforms (ISO I and II), which could lead to their different utilization determined by distinct proteolytic profiles. In this study, we compared proteolytic profiles of both isoforms of hAMBN expressed in E. coli after proteolysis by MMP-20, KLK-4, and their 1:2 mixture. Proteolysis products were analysed and cleavage sites were identified by mass spectrometry. The proteolytic profiles of two AMBN isoforms showed different results, although we have to determine that the analysed AMBN was not post-translationally modified as expressed in prokaryotic cells. These results may lead to the suggestion of potentially divergent roles of AMBN isoforms cleavage products in various cell signalling pathways such as calcium buffering or signalling cascades.
Collapse
Affiliation(s)
- Veronika Vetyskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
| | - Josef Sulc
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Natural Sciences, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 5, 14000, Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
| | - Kristyna Vydra Bousova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 16000, Prague, Czech Republic
| |
Collapse
|
2
|
Hany U, Watson C, Liu L, Nikolopoulos G, Smith C, Poulter J, Brown C, Patel A, Rodd H, Balmer R, Harfoush A, Al-Jawad M, Inglehearn C, Mighell A. Novel Ameloblastin Variants, Contrasting Amelogenesis Imperfecta Phenotypes. J Dent Res 2024; 103:22-30. [PMID: 38058155 PMCID: PMC10734210 DOI: 10.1177/00220345231203694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Amelogenesis imperfecta (AI) comprises a group of rare, inherited disorders with abnormal enamel formation. Ameloblastin (AMBN), the second most abundant enamel matrix protein (EMP), plays a critical role in amelogenesis. Pathogenic biallelic loss-of-function AMBN variants are known to cause recessive hypoplastic AI. A report of a family with dominant hypoplastic AI attributed to AMBN missense change p.Pro357Ser, together with data from animal models, suggests that the consequences of AMBN variants in human AI remain incompletely characterized. Here we describe 5 new pathogenic AMBN variants in 11 individuals with AI. These fall within 3 groups by phenotype. Group 1, consisting of 6 families biallelic for combinations of 4 different variants, have yellow hypoplastic AI with poor-quality enamel, consistent with previous reports. Group 2, with 2 families, appears monoallelic for a variant shared with group 1 and has hypomaturation AI of near-normal enamel volume with pitting. Group 3 includes 3 families, all monoallelic for a fifth variant, which are affected by white hypoplastic AI with a thin intact enamel layer. Three variants, c.209C>G; p.(Ser70*) (groups 1 and 2), c.295T>C; p.(Tyr99His) (group 1), and c.76G>A; p.(Ala26Thr) (group 3) were identified in multiple families. Long-read AMBN locus sequencing revealed these variants are on the same conserved haplotype, implying they originate from a common ancestor. Data presented therefore provide further support for possible dominant as well as recessive inheritance for AMBN-related AI and for multiple contrasting phenotypes. In conclusion, our findings suggest pathogenic AMBN variants have a more complex impact on human AI than previously reported.
Collapse
Affiliation(s)
- U. Hany
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.M. Watson
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, St. James’s University Hospital, Leeds, UK
| | - L. Liu
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - G. Nikolopoulos
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.E.L. Smith
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - J.A. Poulter
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - C.J. Brown
- Birmingham Dental Hospital, Mill Pool Way, Edgbaston, Birmingham, UK
| | - A. Patel
- LCRN West Midlands Core Team, NIHR Clinical Research Network (CRN), Birmingham Research Park (West Wing), Edgbaston, Birmingham, UK
| | - H.D. Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, S Yorks, UK
| | - R. Balmer
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - A. Harfoush
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - M. Al-Jawad
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| | - C.F. Inglehearn
- Leeds Institute of Medical Research, University of Leeds, St. James’s University Hospital, Leeds, UK
| | - A.J. Mighell
- School of Dentistry, Clarendon Way, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Shao C, Bapat RA, Su J, Moradian-Oldak J. Regulation of Hydroxyapatite Nucleation In Vitro through Ameloblastin-Amelogenin Interactions. ACS Biomater Sci Eng 2023; 9:1834-1842. [PMID: 35068157 PMCID: PMC9308824 DOI: 10.1021/acsbiomaterials.1c01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amelogenin (Amel) and ameloblastin (Ambn) are two primary extracellular enamel matrix proteins that play crucial roles for proper thickness, prismatic structure, and robust mechanical properties. Previous studies have shown that Amel and Ambn bind to each other, but the effect of their coassembly on the nucleation of hydroxyapatite (HAP) is unclear. Here, we systematically investigated the coassembly of recombinant mouse Amel and Ambn in various ratios using in situ atomic force microscopy, dynamic light scattering, and transmission electron microscopy. The size of protein particles decreased as the Ambn:Amel ratio increased. To define the coassembly domain on Ambn, we used Ambn-derived peptides and Ambn variants to examine their effects on the amelogenin particle size distribution. We found that the peptide sequence encoded by exon 5 of Ambn affected Amel self-assembly but the variant lacking this sequence did not have any effect on Amel self-assembly. Furthermore, through monitoring the pH change in bulk mineralization solution, we tracked the nucleation behavior of HAP in the presence of Ambn and Amel and found that their coassemblies at different ratios showed varying abilities to stabilize amorphous calcium phosphate. These results demonstrated that Ambn and Amel coassemble with each other via a motif within the sequence encoded by exon 5 of Ambn and cooperate in regulating the nucleation of HAP crystals, enhancing our understanding of the important role of enamel matrix proteins in amelogenesis.
Collapse
Affiliation(s)
- Changyu Shao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Rucha Arun Bapat
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Jingtan Su
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90033, United States
| |
Collapse
|
4
|
Kegulian NC, Langen R, Moradian-Oldak J. The Dynamic Interactions of a Multitargeting Domain in Ameloblastin Protein with Amelogenin and Membrane. Int J Mol Sci 2023; 24:3484. [PMID: 36834897 PMCID: PMC9966149 DOI: 10.3390/ijms24043484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.
Collapse
Affiliation(s)
- Natalie C. Kegulian
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions. Sci Rep 2023; 13:1471. [PMID: 36702824 PMCID: PMC9879986 DOI: 10.1038/s41598-023-28388-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Highly specialized enamel matrix proteins (EMPs) are predominantly expressed in odontogenic tissues and diverged from common ancestral gene. They are crucial for the maturation of enamel and its extreme complexity in multiple independent lineages. However, divergence of EMPs occured already before the true enamel evolved and their conservancy in toothless species suggests that non-canonical functions are still under natural selection. To elucidate this hypothesis, we carried out an unbiased, comprehensive phenotyping and employed data from the International Mouse Phenotyping Consortium to show functional pleiotropy of amelogenin, ameloblastin, amelotin, and enamelin, genes, i.e. in sensory function, skeletal morphology, cardiovascular function, metabolism, immune system screen, behavior, reproduction, and respiratory function. Mice in all KO mutant lines, i.e. amelogenin KO, ameloblastin KO, amelotin KO, and enamelin KO, as well as mice from the lineage with monomeric form of ameloblastin were affected in multiple physiological systems. Evolutionary conserved motifs and functional pleiotropy support the hypothesis of role of EMPs as general physiological regulators. These findings illustrate how their non-canonical function can still effect the fitness of modern species by an example of influence of amelogenin and ameloblastin on the bone physiology.
Collapse
|
6
|
Vetyskova V, Zouharova M, Bousova K. Production of recombinant human ameloblastin by a fully native purification pathway. Protein Expr Purif 2022; 198:106133. [PMID: 35750297 DOI: 10.1016/j.pep.2022.106133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/29/2022]
Abstract
Ameloblastin (Ambn) is an intrinsically disordered protein (IDP) with a specific function of forming heterogenous homooligomers. The oligomeric function is led through a specific sequence encoded by exon 5 of Ambn. Due to the IDP character of Ambn to form oligomers, protein purification is subject to many challenges. Human ameloblastin (AMBN) and its two isoforms, I and II have already been purified as a recombinant protein in a bacterial expression system and functionally characterized in vitro. However, here we present a new purification protocol for the production of native AMBN in its original formation as a homooligomeric heterogeneous IDP. The purification process consists of three chromatographic steps utilizing His-tag and Twin Strep-tag affinity chromatography, along with size exclusion and reverse affinity chromatography. The presented workflow offers the production of AMBN in sufficient yield for in vitro protein characterizations and can be used to produce both AMBN isoforms I and II.
Collapse
Affiliation(s)
- V Vetyskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 2, 16000, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague, Czech Republic
| | - M Zouharova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 2, 16000, Prague, Czech Republic; Second Faculty of Medicine, Charles University, 150 06, Prague 5, V Uvalu 84, Czech Republic
| | - K Bousova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 2, 16000, Prague, Czech Republic.
| |
Collapse
|
7
|
Wang J, Liu Z, Ren B, Wang Q, Wu J, Yang N, Sui X, Li L, Li M, Zhang X, Li X, Wang B. Biomimetic mineralisation systems for in situ enamel restoration inspired by amelogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:115. [PMID: 34455518 PMCID: PMC8403113 DOI: 10.1007/s10856-021-06583-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/05/2021] [Indexed: 05/28/2023]
Abstract
Caries and dental erosion are common oral diseases. Traditional treatments involve the mechanical removal of decay and filling but these methods are not suitable for cases involving large-scale enamel erosion, such as hypoplasia. To develop a noninvasive treatment, promoting remineralisation in the early stage of caries is of considerable clinical significance. Therefore, biomimetic mineralisation is an ideal approach for restoring enamel. Biomimetic mineralisation forms a new mineral layer that is tightly attached to the surface of the enamel. This review details the state-of-art achievements on the application of amelogenin and non-amelogenin, amorphous calcium phosphate, ions flow and other techniques in the biomimetic mineralisation of enamel. The ultimate goal of this review was to shed light on the requirements for enamel biomineralisation. Hence, herein, we summarise two strategies of biological minimisation systems for in situ enamel restoration inspired by amelogenesis that have been developed in recent years and compare their advantages and disadvantages.
Collapse
Affiliation(s)
- Jue Wang
- Department of Obsterics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bingyu Ren
- Department of Thyroid surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qian Wang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jia Wu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Nan Yang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xin Sui
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingfeng Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Meihui Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiao Zhang
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xinyue Li
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bowei Wang
- Department of Obsterics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
Cell Differentiation and Replication during Postnatal Development of the Murine First Molar. BIOLOGY 2021; 10:biology10080776. [PMID: 34440008 PMCID: PMC8389692 DOI: 10.3390/biology10080776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Teeth are necessary to prepare food for swallowing. The process of teeth development before and after birth may be studied in normal mice and also by reproducing diseases or genetic conditions. However, mice teeth are different from human teeth, since mice have only permanent teeth. Moreover, their incisors continue to grow for the whole lifespan. Hence, it is important to know how the mouse teeth develop. We studied the development of the first molar in mice from birth to weaning and showed that dividing cells are located in a different part of the developing tooth according to age. Abstract Various signaling molecular pathways are involved in odontogenesis to promote cellular replication and differentiation. Tooth formation is controlled mainly by epithelial–mesenchymal interactions. The aim of this work was to investigate how cellular replication and differentiation ensue during the formation of the murine first molar in postnatal ages until eruption, focusing on morphogenesis, odontoblast differentiation and cellular replication. Wild-type CD1 mice were examined from birth to weaning. Morphogenesis and interaction between developing epithelial and mesenchymal tissues were evaluated in hematoxylin–eosin and Gomori trichome stained sections. Immunohistochemistry for nestin, which mediates the differentiation of odontoblasts, especially their polarization and elongation, showed that this intermediate filament was apparent already at postnatal day P1 in the apical region of odontoblasts and progressed apically from cusp tips, while it was not present in epithelial tissues. The expression of nuclear antigen Ki-67 highlighted dividing cells in both epithelial and mesenchymal tissues at P1, while one week later they were restricted to the cementoenamel junction, guiding root elongation. The link between odontoblast maturation and cellular replication in the different tooth tissues is essential to understand the development of tooth shape and dimension, to outline mechanisms of tooth morphogenesis and possibly eruption.
Collapse
|
9
|
Characterization of AMBN I and II Isoforms and Study of Their Ca 2+-Binding Properties. Int J Mol Sci 2020; 21:ijms21239293. [PMID: 33291486 PMCID: PMC7730623 DOI: 10.3390/ijms21239293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023] Open
Abstract
Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel—the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN—its oligomerization ability—is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.
Collapse
|
10
|
Intrinsically disordered protein domain of human ameloblastin in synthetic fusion with calmodulin increases calmodulin stability and modulates its function. Int J Biol Macromol 2020; 168:1-12. [PMID: 33290768 DOI: 10.1016/j.ijbiomac.2020.11.216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
Constantly increasing attention to bioengineered proteins has led to the rapid development of new functional targets. Here we present the biophysical and functional characteristics of the newly designed CaM/AMBN-Ct fusion protein. The two-domain artificial target consists of calmodulin (CaM) and ameloblastin C-terminus (AMBN-Ct). CaM as a well-characterized calcium ions (Ca2+) binding protein offers plenty of options in terms of Ca2+ detection in biomedicine and biotechnologies. Highly negatively charged AMBN-Ct belongs to intrinsically disordered proteins (IDPs). CaM/AMBN-Ct was designed to open new ways of communication synergies between the domains with potential functional improvement. The character and function of CaM/AMBN-Ct were explored by biophysical and molecular modelling methods. Experimental studies have revealed increased stability and preserved CaM/AMBN-Ct function. The results of molecular dynamic simulations (MDs) outlined different interface patterns between the domains with potential allosteric communication within the fusion.
Collapse
|
11
|
Kathuria A, Lopez-Lengowski K, Watmuff B, Karmacharya R. Comparative Transcriptomic Analysis of Cerebral Organoids and Cortical Neuron Cultures Derived from Human Induced Pluripotent Stem Cells. Stem Cells Dev 2020; 29:1370-1381. [PMID: 32862797 DOI: 10.1089/scd.2020.0069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can be differentiated along various neuronal lineages to generate two-dimensional neuronal cultures as well as three-dimensional brain organoids. Such iPSC-derived cellular models are being utilized to study the basic biology of human neuronal function and to interrogate the molecular underpinnings of disease biology. The different cellular models generated from iPSCs have varying properties in terms of the diversity and organization of the cells as well as the cellular functions that are present. To understand transcriptomic differences in iPSC-derived monolayer neuronal cultures and three-dimensional brain organoids, we differentiated eight human iPSC lines from healthy control subjects to generate cerebral organoids and cortical neuron monolayer cultures from the same set of iPSC lines. We undertook RNA-seq experiments in these model systems and analyzed the gene expression data to identify genes that are differentially expressed in cerebral organoids and two-dimensional cortical neuron cultures. In cerebral organoids, gene ontology analysis showed enrichment of genes involved in tissue development, response to stimuli, and the interferon-γ pathway, while two-dimensional cortical neuron cultures showed enrichment of genes involved in nervous system development and neurogenesis. We also undertook comparative analysis of these gene expression profiles with transcriptomic data from the human fetal prefrontal cortex (PFC). This analysis showed greater overlap of the fetal PFC transcriptome with cerebral organoid gene expression profiles compared to monolayer cortical neuron culture profiles. Our studies delineate the transcriptomic differences between cortical neuron monolayer cultures and three-dimensional cerebral organoids and can help inform the appropriate use of these model systems to address specific scientific questions.
Collapse
Affiliation(s)
- Annie Kathuria
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Kara Lopez-Lengowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| | - Bradley Watmuff
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Chemical Biology Program, Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, Massachusetts, USA.,Program in Neuroscience, Harvard University, Cambridge, Massachusetts, USA.,Program in Chemical Biology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Majerle A, Schmieden DT, Jerala R, Meyer AS. Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry 2019; 58:2095-2104. [PMID: 30957491 DOI: 10.1021/acs.biochem.8b00922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nature is based on complex self-assembling systems that span from the nanoscale to the macroscale. We have already begun to design biomimetic systems with properties that have not evolved in nature, based on designed molecular interactions and regulation of biological systems. Synthetic biology is based on the principle of modularity, repurposing diverse building modules to design new types of molecular and cellular assemblies. While we are currently able to use techniques from synthetic biology to design self-assembling molecules and re-engineer functional cells, we still need to use guided assembly to construct biological assemblies at the macroscale. We review the recent strategies for designing biological systems ranging from molecular assemblies based on self-assembly of (poly)peptides to the guided assembly of patterned bacteria, spanning 7 orders of magnitude.
Collapse
Affiliation(s)
- Andreja Majerle
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Dominik T Schmieden
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , 2629 HZ Delft , The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology , National Institute of Chemistry , Hajdrihova 19 , 1000 Ljubljana , Slovenia
| | - Anne S Meyer
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|