1
|
Lei CL, Whittaker DG, Mirams GR. The impact of uncertainty in hERG binding mechanism on in silico predictions of drug-induced proarrhythmic risk. Br J Pharmacol 2024; 181:987-1004. [PMID: 37740435 DOI: 10.1111/bph.16250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Drug-induced reduction of the rapid delayed rectifier potassium current carried by the human Ether-à-go-go-Related Gene (hERG) channel is associated with increased risk of arrhythmias. Recent updates to drug safety regulatory guidelines attempt to capture each drug's hERG binding mechanism by combining in vitro assays with in silico simulations. In this study, we investigate the impact on in silico proarrhythmic risk predictions due to uncertainty in the hERG binding mechanism and physiological hERG current model. EXPERIMENTAL APPROACH Possible pharmacological binding models were designed for the hERG channel to account for known and postulated small molecule binding mechanisms. After selecting a subset of plausible binding models for each compound through calibration to available voltage-clamp electrophysiology data, we assessed their effects, and the effects of different physiological models, on proarrhythmic risk predictions. KEY RESULTS For some compounds, multiple binding mechanisms can explain the same data produced under the safety testing guidelines, which results in different inferred binding rates. This can result in substantial uncertainty in the predicted torsade risk, which often spans more than one risk category. By comparison, we found that the effect of a different hERG physiological current model on risk classification was subtle. CONCLUSION AND IMPLICATIONS The approach developed in this study assesses the impact of uncertainty in hERG binding mechanisms on predictions of drug-induced proarrhythmic risk. For some compounds, these results imply the need for additional binding data to decrease uncertainty in safety-critical applications.
Collapse
Affiliation(s)
- Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Dominic G Whittaker
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Pesti K, Földi MC, Zboray K, Toth AV, Lukacs P, Mike A. Characterization of Compound-Specific, Concentration-Independent Biophysical Properties of Sodium Channel Inhibitor Mechanism of Action Using Automated Patch-Clamp Electrophysiology. Front Pharmacol 2021; 12:738460. [PMID: 34497526 PMCID: PMC8419314 DOI: 10.3389/fphar.2021.738460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
We have developed an automated patch-clamp protocol that allows high information content screening of sodium channel inhibitor compounds. We have observed that individual compounds had their specific signature patterns of inhibition, which were manifested irrespective of the concentration. Our aim in this study was to quantify these properties. Primary biophysical data, such as onset rate, the shift of the half inactivation voltage, or the delay of recovery from inactivation, are concentration-dependent. We wanted to derive compound-specific properties, therefore, we had to neutralize the effect of concentration. This study describes how this is done, and shows how compound-specific properties reflect the mechanism of action, including binding dynamics, cooperativity, and interaction with the membrane phase. We illustrate the method using four well-known sodium channel inhibitor compounds, riluzole, lidocaine, benzocaine, and bupivacaine. Compound-specific biophysical properties may also serve as a basis for deriving parameters for kinetic modeling of drug action. We discuss how knowledge about the mechanism of action may help to predict the frequency-dependence of individual compounds, as well as their potential persistent current component selectivity. The analysis method described in this study, together with the experimental protocol described in the accompanying paper, allows screening for inhibitor compounds with specific kinetic properties, or with specific mechanisms of inhibition.
Collapse
Affiliation(s)
- Krisztina Pesti
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Mátyás C. Földi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Katalin Zboray
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Adam V. Toth
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Peter Lukacs
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Arpad Mike
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
3
|
Baracaldo-Santamaría D, Llinás-Caballero K, Corso-Ramirez JM, Restrepo CM, Dominguez-Dominguez CA, Fonseca-Mendoza DJ, Calderon-Ospina CA. Genetic and Molecular Aspects of Drug-Induced QT Interval Prolongation. Int J Mol Sci 2021; 22:8090. [PMID: 34360853 PMCID: PMC8347245 DOI: 10.3390/ijms22158090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
Long QT syndromes can be either acquired or congenital. Drugs are one of the many etiologies that may induce acquired long QT syndrome. In fact, many drugs frequently used in the clinical setting are a known risk factor for a prolonged QT interval, thus increasing the chances of developing torsade de pointes. The molecular mechanisms involved in the prolongation of the QT interval are common to most medications. However, there is considerable inter-individual variability in drug response, thus making the application of personalized medicine a relevant aspect in long QT syndrome, in order to evaluate the risk of every individual from a pharmacogenetic standpoint.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (D.B.-S.); (J.M.C.-R.); (C.A.D.-D.)
| | - Kevin Llinás-Caballero
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (K.L.-C.); (C.M.R.); (D.J.F.-M.)
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia
| | - Julián Miguel Corso-Ramirez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (D.B.-S.); (J.M.C.-R.); (C.A.D.-D.)
| | - Carlos Martín Restrepo
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (K.L.-C.); (C.M.R.); (D.J.F.-M.)
| | | | - Dora Janeth Fonseca-Mendoza
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (K.L.-C.); (C.M.R.); (D.J.F.-M.)
| | - Carlos Alberto Calderon-Ospina
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (K.L.-C.); (C.M.R.); (D.J.F.-M.)
| |
Collapse
|
4
|
Michaud V, Dow P, Al Rihani SB, Deodhar M, Arwood M, Cicali B, Turgeon J. Risk Assessment of Drug-Induced Long QT Syndrome for Some COVID-19 Repurposed Drugs. Clin Transl Sci 2020; 14:20-28. [PMID: 32888379 PMCID: PMC7877829 DOI: 10.1111/cts.12882] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
The risk-benefit ratio associated with the use of repurposed drugs to treat severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2)-related infectious coronavirus disease 2019 (COVID-19) is complicated because benefits are awaited, not proven. A thorough literature search was conducted to source information on the pharmacological properties of 5 drugs and 1 combination (azithromycin, chloroquine, favipiravir, hydroxychloroquine, remdesivir, and lopinavir/ritonavir) repurposed to treat COVID-19. A risk assessment of drug-induced long QT syndrome (LQTS) associated with COVID-19 repurposed drugs was performed and compared with 23 well-known torsadogenic and 10 low torsadogenic risk compounds. Computer calculations were performed using pharmacokinetic and pharmacodynamic data, including affinity to block the rapid component of the delayed rectifier cardiac potassium current (IKr ) encoded by the human ether-a-go-go gene (hERG), propensity to prolong cardiac repolarization (QT interval) and cause torsade de pointes (TdP). Seven different LQTS indices were calculated and compared. The US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database was queried with specific key words relating to arrhythmogenic events. Estimators of LQTS risk levels indicated a very high or moderate risk for all COVID-19 repurposed drugs with the exception for azithromycin, although cases of TdP have been reported with this drug. There was excellent agreement among the various indices used to assess risk of drug-induced LQTS for the 6 repurposed medications and 23 torsadogenic compounds. Based on our results, monitoring of the QT interval shall be performed when some COVID-19 repurposed drugs are used, as such monitoring is possible for hospitalized patients or with the use of biodevices for outpatients.
Collapse
Affiliation(s)
- Veronique Michaud
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, Florida, USA.,Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Pamela Dow
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, Florida, USA
| | - Sweilem B Al Rihani
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, Florida, USA
| | - Malavika Deodhar
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, Florida, USA
| | - Meghan Arwood
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, Florida, USA
| | - Brian Cicali
- College of Pharmacy, Lake Nona Campus, University of Florida, Orlando, Florida, USA
| | - Jacques Turgeon
- Tabula Rasa HealthCare Precision Pharmacotherapy Research & Development Institute, Orlando, Florida, USA.,Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Skarsfeldt MA, Liin SI, Larsson HP, Bentzen BH. Polyunsaturated fatty acid-derived I Ks channel activators shorten the QT interval ex-vivo and in-vivo. Acta Physiol (Oxf) 2020; 229:e13471. [PMID: 32223014 PMCID: PMC8633721 DOI: 10.1111/apha.13471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022]
Abstract
AIM We aimed to assess the ability of natural and modified polyunsaturated fatty acids (PUFAs) to shorten QT interval in ex-vivo and in-vivo guinea pig hearts. METHODS The effect of one natural (docosahexaenoic acid [DHA]) and three modified (linoleoyl glycine [Lin-GLY], docosahexaenoyl glycine [DHA-GLY], N-arachidonoyl taurine [N-AT]) PUFAs on ventricular action potential duration (APD) and QT interval was studied in a E4031 drug-induced long QT2 model of ex-vivo guinea pig hearts. The effect of DHA-GLY on QT interval was also studied in in-vivo guinea pig hearts upon intravenous administration. The effect of modified PUFAs on IKs was studied using Xenopus laevis oocytes expressing human KCNQ1 and KCNE1. RESULTS All tested PUFAs shortened ADP and QT interval in ex-vivo guinea pig hearts, however, with different ability in restoring baseline APD/QT interval with specific modified PUFAs being most efficacious. Despite comparable ability in activating the human KCNQ1/KCNE1 channel, Lin-GLY was not as effective in shortening APD/QT interval as DHA-GLY in ex-vivo hearts. By constructing a guinea pig-like KCNE1, we found Lin-GLY to induce less activating effect compared with DHA-GLY on human KCNQ1 co-expressed with guinea pig-like KCNE1. Docosahexaenoyl glycine was studied in more detail and was found to shorten QT interval in in-vivo guinea pig hearts. CONCLUSION Our results show that specific PUFAs shorten QT interval in guinea pig hearts. The tendency of modified PUFAs with pronounced IKs channel activating effect to better restore QT interval suggests that modifying PUFAs to target the IKs channel is a means to improve the QT-shortening effect.
Collapse
Affiliation(s)
- Mark A Skarsfeldt
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hans P Larsson
- Department of Physiology and Biophysics, University of Miami, Miami, FL, USA
| | - Bo H Bentzen
- The Danish Arrhythmia Research Centre and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Chan XHS, Win YN, Haeusler IL, Tan JY, Loganathan S, Saralamba S, Chan SKS, Ashley EA, Barnes KI, Baiden R, Bassi PU, Djimde A, Dorsey G, Duparc S, Hanboonkunupakarn B, ter Kuile FO, Lacerda MVG, Nasa A, Nosten FH, Onyeji CO, Pukrittayakamee S, Siqueira AM, Tarning J, Taylor WRJ, Valentini G, van Vugt M, Wesche D, Day NPJ, Huang CLH, Brugada J, Price RN, White NJ. Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data. PLoS Med 2020; 17:e1003040. [PMID: 32134952 PMCID: PMC7058280 DOI: 10.1371/journal.pmed.1003040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria. METHODS AND FINDINGS We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials. CONCLUSIONS Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options.
Collapse
Affiliation(s)
- Xin Hui S. Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Yan Naung Win
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Health and Diseases Control Unit, Naypyidaw, Myanmar
| | - Ilsa L. Haeusler
- WorldWide Antimalarial Research Network, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jireh Y. Tan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shanghavie Loganathan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Christ Church College, University of Oxford, Oxford, United Kingdom
| | - Sompob Saralamba
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Shu Kiat S. Chan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Singapore Armed Forces Medical Corps, Singapore
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Karen I. Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
| | | | - Peter U. Bassi
- Department of Internal Medicine, Faculty of Clinical Sciences, College of Health Sciences, University of Abuja, Abuja, Nigeria
| | - Abdoulaye Djimde
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | | | - Borimas Hanboonkunupakarn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Feiko O. ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marcus V. G. Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Fundação Oswaldo Cruz, Manaus, Brazil
| | - Amit Nasa
- Sun Pharmaceutical Industries Ltd, Gurgaon, Haryana, India
| | - François H. Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Sasithon Pukrittayakamee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - André M. Siqueira
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Research Network, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Walter R. J. Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Michèle van Vugt
- Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - David Wesche
- Certara, Princeton, New Jersey, United States of America
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Josep Brugada
- Cardiovascular Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Goversen B, Jonsson MK, van den Heuvel NH, Rijken R, Vos MA, van Veen TA, de Boer TP. The influence of hERG1a and hERG1b isoforms on drug safety screening in iPSC-CMs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:86-98. [PMID: 30826123 DOI: 10.1016/j.pbiomolbio.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 01/03/2023]
Abstract
The human Ether-à-go-go Related Gene (hERG) encodes the pore forming subunit of the channel that conducts the rapid delayed rectifier potassium current IKr. IKr drives repolarization in the heart and when IKr is dysfunctional, cardiac repolarization delays, the QT interval on the electrocardiogram (ECG) prolongs and the risk of developing lethal arrhythmias such as Torsade de Pointes (TdP) increases. TdP risk is incorporated in drug safety screening for cardiotoxicity where hERG is the main target since the IKr channels appear highly sensitive to blockage. hERG block is also included as an important read-out in the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative which aims to combine in vitro and in silico experiments on induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to screen for cardiotoxicity. However, the hERG channel has some unique features to consider for drug safety screening, which we will discuss in this study. The hERG channel consists of different isoforms, hERG1a and hERG1b, which individually influence the kinetics of the channel and the drug response in the human heart and in iPSC-CMs. hERG1b is often underappreciated in iPSC-CM studies, drug screening assays and in silico models, and the fact that its contribution might substantially differ between iPSC-CM and healthy but also diseased human heart, adds to this problem. In this study we show that the activation kinetics in iPSC-CMs resemble hERG1b kinetics using Cs+ as a charge carrier. Not including hERG1b in drug safety testing might underestimate the actual role of hERG1b in repolarization and drug response, and might lead to inappropriate conclusions. We stress to focus more on including hERG1b in drug safety testing concerning IKr.
Collapse
Affiliation(s)
- Birgit Goversen
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, the Netherlands
| | - Malin Kb Jonsson
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, the Netherlands; Bioscience Heart Failure, Cardiovascular, Renal and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Nikki Hl van den Heuvel
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, the Netherlands
| | - Rianne Rijken
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, the Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, the Netherlands
| | - Toon Ab van Veen
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
8
|
Lee W, Windley MJ, Perry MD, Vandenberg JI, Hill AP. Protocol-Dependent Differences in IC 50 Values Measured in Human Ether-Á-Go-Go-Related Gene Assays Occur in a Predictable Way and Can Be Used to Quantify State Preference of Drug Binding. Mol Pharmacol 2019; 95:537-550. [PMID: 30770456 DOI: 10.1124/mol.118.115220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/10/2019] [Indexed: 12/22/2022] Open
Abstract
Current guidelines around preclinical screening for drug-induced arrhythmias require the measurement of the potency of block of voltage-gated potassium channel subtype 11.1 (Kv11.1) as a surrogate for risk. A shortcoming of this approach is that the measured IC50 of Kv11.1 block varies widely depending on the voltage protocol used in electrophysiological assays. In this study, we aimed to investigate the factors that contribute to these differences and to identify whether it is possible to make predictions about protocol-dependent block that might facilitate the comparison of potencies measured using different assays. Our data demonstrate that state preferential binding, together with drug-binding kinetics and trapping, is an important determinant of the protocol dependence of Kv11.1 block. We show for the first time that differences in IC50 measured between protocols occurs in a predictable way, such that machine-learning algorithms trained using a selection of simple voltage protocols can indeed predict protocol-dependent potency. Furthermore, we also show that the preference of a drug for binding to the open versus the inactivated state of Kv11.1 can also be inferred from differences in IC50 values measured between protocols. Our work therefore identifies how state preferential drug binding is a major determinant of the protocol dependence of IC50 values measured in preclinical Kv11.1 assays. It also provides a novel method for quantifying the state dependence of Kv11.1 drug binding that will facilitate the development of more complete models of drug binding to Kv11.1 and improve our understanding of proarrhythmic risk associated with compounds that block Kv11.1.
Collapse
Affiliation(s)
- William Lee
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Monique J Windley
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Matthew D Perry
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute (W.L., M.J.W., M.D.P., J.I.V., A.P.H.) and St Vincent's Clinical School (W.L., M.J.W., M.D.P., J.I.V., A.P.H.), University of New South Wales, Darlinghurst, New South Wales, Australia
| |
Collapse
|
9
|
Grandi E. Keeping it short and (not so) simple: characterizing hERG kinetics with sinusoidal waves. J Physiol 2018. [PMID: 29521425 DOI: 10.1113/jp276068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|