1
|
Zhang X, Li F, Ji C, Wu H. Toxicological mechanism of cadmium in the clam Ruditapes philippinarum using combined ionomic, metabolomic and transcriptomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121286. [PMID: 36791949 DOI: 10.1016/j.envpol.2023.121286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination in marine environment poses great risks to the organisms due to its potential adverse effects. In the present study, the toxicological effects and mechanisms of Cd at environmentally relevant concentrations (5 and 50 μg/L) on clam Ruditapes philippinarum after 21 days were investigated by combined ionomic, metabolomic, and transcriptomic analyses. Results showed that the uptake of Cd significantly decreased the concentrations of Cu, Zn, Sr, Se, and Mo in the whole soft tissue from 50 μg/L Cd-treated clams. Significantly negative correlations were observed between Cd and essential elements (Zn, Sr, Se, and Mo). Altered essential elements homeostasis was associated with the gene regulation of transport and detoxification, including ATP-binding cassette protein subfamily B member 1 (ABCB1) and metallothioneins (MT). The crucial contribution of Se to Cd detoxification was also found in clams. Additionally, gene set enrichment analysis showed that Cd could interfere with proteolysis by peptidases and decrease the translation efficiency at 50 μg/L. Cd inhibited lipid metabolism in clams and increased energy demand by up-regulating glycolysis and TCA cycle. Osmotic pressure was regulated by free amino acids, including alanine, glutamate, taurine, and homarine. Meanwhile, significant alterations of some differentially expressed genes, such as dopamine-β-hydroxylase (DBH), neuroligin (NLGN), NOTCH 1, and chondroitin sulfate proteoglycan 1 (CSPG1) were observed in clams, which implied potential interference with synaptic transmission. Overall, through integrating multiple omics, this study provided new insights into the toxicological mechanisms of Cd, particularly in those mediated by dysregulation of essential element homeostasis.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China.
| |
Collapse
|
2
|
López-Pedrouso M, Lorenzo JM, Varela Z, Fernández JÁ, Franco D. Finding Biomarkers in Antioxidant Molecular Mechanisms for Ensuring Food Safety of Bivalves Threatened by Marine Pollution. Antioxidants (Basel) 2022; 11:antiox11020369. [PMID: 35204251 PMCID: PMC8868406 DOI: 10.3390/antiox11020369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aquaculture production as an important source of protein for our diet is sure to continue in the coming years. However, marine pollution will also likely give rise to serious problems for the food safety of molluscs. Seafood is widely recognized for its high nutritional value in our diet, leading to major health benefits. However, the threat of marine pollution including heavy metals, persistent organic pollutants and other emerging pollutants is of ever-growing importance and seafood safety may not be guaranteed. New approaches for the search of biomarkers would help us to monitor pollutants and move towards a more global point of view; protocols for the aquaculture industry would also be improved. Rapid and accurate detection of food safety problems in bivalves could be carried out easily by protein biomarkers. Hence, proteomic technologies could be considered as a useful tool for the discovery of protein biomarkers as a first step to improve the protocols of seafood safety. It has been demonstrated that marine pollutants are altering the bivalve proteome, affecting many biological processes and molecular functions. The main response mechanism of bivalves in a polluted marine environment is based on the antioxidant defense system against oxidative stress. All these proteomic data provided from the literature suggest that alterations in oxidative stress due to marine pollution are closely linked to robust and confident biomarkers for seafood safety.
Collapse
Affiliation(s)
- María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Zulema Varela
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - J. Ángel Fernández
- CRETUS, Ecology Unit, Department of Functional Biology, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain; (Z.V.); (J.Á.F.)
| | - Daniel Franco
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence:
| |
Collapse
|
3
|
Zhu L, Duan P, Hu X, Wang Y, Chen C, Wan J, Dai M, Liang X, Li J, Tan Y. Exposure to cadmium and mono-(2-ethylhexyl) phthalate induce biochemical changes in rat liver, spleen, lung and kidney as determined by attenuated total reflection-Fourier transform infrared spectroscopy. J Appl Toxicol 2019; 39:783-797. [PMID: 30680743 DOI: 10.1002/jat.3767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 01/30/2023]
Abstract
Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is a label-free, non-destructive analytical technique for biochemical analysis of macromolecular components within tissue samples. Cadmium (Cd) and mono-(2-ethylhexyl) phthalate (MEHP), a primary metabolite of di-(2-ethylhexyl) phthalate, are present ubiquitously in the environment and in organisms, and have adverse impacts on ecosystems and human health. Herein we employed ATR-FTIR analysis to identify biomolecular changes in rat liver, spleen, lung and kidney after prepubertal exposure to Cd and MEHP. Our results showed clear segregations between the 3 mg/kg Cd-, 10 mg/kg, 50 mg/kg, 250 mg/kg MEHP- and binary mixture-treated groups vs. the solvent control group. Following principal components analysis coupled with linear discriminant analysis, biochemical alterations associated with different doses of Cd and MEHP were attributed mainly to lipids, proteins, phosphates and carbohydrates. In addition, the ratios of lipid/protein, C=O stretching/CH2 methylene (lipid oxidation level), amide I/amide II, α-helix/β-sheet and CH3 methyl/CH2 methylene (acetylation level) in target organs were affected by these toxicants. There seems to be no dose-response effect of Cd and MEHP on target organs. We observed hardly any joint toxic action of these toxicants. This is the first study showing the application of ATR-FTIR spectroscopy to the assessment of toxicity of Cd and MEHP. Possibly, destruction of cell membrane structure and integrity could be the common mechanism of Cd and MEHP toxicity in liver, spleen, lung and kidney.
Collapse
Affiliation(s)
- Li Zhu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,Department of Andrology, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Peng Duan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Center for Reproductive Medicine, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang, China
| | - Xiuxue Hu
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Wang
- Department of Ultrasound, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang, China
| | - Chunling Chen
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Wan
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyi Dai
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Liang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Yan Tan
- Department of Andrology, Shiyan Renmin Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
4
|
Song D, Lin Z, Yuan Y, Qian G, Li C, Bao Y. DPEP1 Balance GSH Involve in Cadmium Stress Response in Blood Clam Tegillarca granosa. Front Physiol 2018; 9:964. [PMID: 30079033 PMCID: PMC6062768 DOI: 10.3389/fphys.2018.00964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
The blood clam, Tegillarca granosa, is a benthic filter feeder with a strong capacity to accumulate and tolerate cadmium (Cd). In our previous study, DPEP1 was shown to be significantly up-regulated under Cd stress based on proteomic analysis. To investigate whether DPEP1 is involved in Cd-induced response, the function of DPEP1 in T. granosa was investigated by integrated molecular and protein approaches. Rapid amplification cDNA end (RACE) assay was established to achieve the complete cDNA sequence of DPEP1 from T. granosa. The full-length cDNA of DPEP1 was 1811 bp, and it contained a 1359-bp open reading frame (ORF), including a 22-amino acid signal peptide. qRT-PCR analysis revealed that DPEP1 was expressed in all examined tissues with the highest expression in gills. At the same time, we investigated DPEP1 gene expression changes after Cd stress at different time points over 96 h. We found that the expression of DPEP1 increased upon initial Cd stress, then it was inhibited, and finally, it was maintained at a low level. Moreover, recombinant DPEP1 showed that higher glutathione (GSH) hydrolysis activity in the temperature range of 30–40°C, and its maximum activity was at pH = 6. Additionally, the results of immunohistochemistry also confirmed that DPEP1 protein was expressed in all test tissues with the highest expression in gills. In addition, there was a positive correlation between QRT-PCR and immunohistochemistry. These results suggested that DPEP1 is probably involved in Cd-induced response by balancing GSH.
Collapse
Affiliation(s)
- Danli Song
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yongjun Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Guang Qian
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China.,School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|