1
|
Ao J, Zhang X, Zhu D. Sevoflurane Affects Myocardial Autophagy Levels After Myocardial Ischemia Reperfusion Injury via the microRNA-542-3p/ADAM9 Axis. Cardiovasc Toxicol 2024; 24:1226-1235. [PMID: 39126581 DOI: 10.1007/s12012-024-09908-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/31/2024] [Indexed: 08/12/2024]
Abstract
This research focused on investigating the effects of sevoflurane (Sev) on myocardial autophagy levels after myocardial ischemia reperfusion (I/R) injury via the microRNA-542-3p (miR-542-3p)/ADAM9 axis. Mice underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by echocardiography. Cardiac markers and oxidative stress factors were evaluated by ELISA. Autophagy-associated factors were detected by western blot. Relationship between miR-542-3p and ADAM9 was tested by dual-luciferase reporter gene assay, RT-qPCR, and western blot. Sev treatment ameliorated cardiac dysfunction, myocardial oxidative stress, and histopathological damages, decreased myocardial infarction size and myocardial apoptotic cells after myocardial I/R injury. Sev treatment elevated miR-542-3p expression and decreased ADAM9 expression in myocardial tissues after myocardial I/R injury. miR-542-3p overexpression could enhance the ameliorative effects of Sev on myocardial injury and myocardial autophagy in I/R mice. miR-542-3p targeted and negatively regulated ADAM9 expression. ADAM9 overexpression reversed the ameliorative effects of miR-542-3p up-regulation on myocardial injury and myocardial autophagy in Sev-treated I/R mice. Sev treatment could ameliorate myocardial injury and myocardial autophagy in I/R mice, mediated by mechanisms that include miR-542-3p up-regulation and ADAM9 down-regulation.
Collapse
Affiliation(s)
- Jiying Ao
- Department of Anesthesiology, Wuhan No.1 Hospital, 215 Zhongshan Dadao, Wuhan, 430030, Hubei, China
| | - Xueting Zhang
- Department of Anesthesiology, Wuhan No.1 Hospital, 215 Zhongshan Dadao, Wuhan, 430030, Hubei, China
| | - Degang Zhu
- Department of Anesthesiology, Wuhan No.1 Hospital, 215 Zhongshan Dadao, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Wu M, Wang X, Shuai J, Deng L, Lu H, Zhou Y, Wu M. Identification of key miRNAs in unilateral mastication-induced disruption of cartilage homeostasis. Oral Dis 2024; 30:551-561. [PMID: 36648372 DOI: 10.1111/odi.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/12/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The present study identified potentially pivotal miRNAs contributing to chondrogenic differentiation in temporomandibular joint suffering abnormal stress. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into control and experimental unilateral mastication (EUM) group. Bone micro-structure parameters was detected by micro-CT, and FGF-1 and MMP-1 expression was examined by immunohistochemistry. Differentially expressed miRNAs of bilateral condyle cartilage were screened via miRNA microarray at 4- and 8-week EUM, then further verified using quantitative reverse-transcription PCR. Over-expression of five differentially expressed miRNAs in chondrocytes was triggered by transfecting miRNA mimics. The expression of MMP-13, Col-II, OPN, and Runx2 was verified by western blotting. RESULTS Expressions of FGF-1 and MMP-1 in right condyles gradually increased from 2 to 6 weeks after EUM. A total of 20 differentially expressed miRNAs were regulated by EUM, which related to cell proliferation, invasion, and osteoblast differentiation pathways. The over-expression of miR-148a-3p and miR-1-3p led to down-regulation of Col-II, while MMP-13 and Runx2 were up-regulated by induction of hypotrophic differentiation or IL-1β stimulation. These findings suggested that miR-148a-3p and miR-1-3p promote chondrogenic differentiation. CONCLUSIONS Several pivotal miRNAs were found to be related to chondrogenic differentiation, which provides novel insight into pathogenic mechanisms of cartilage homeostasis.
Collapse
Affiliation(s)
- Mengjie Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xuebin Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing Shuai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Liquan Deng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiping Lu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqun Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Mengrui Wu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Li X, Zeng L, Qu Z, Zhang F. Huoxin pill protects verapamil-induced zebrafish heart failure through inhibition of oxidative stress-triggered inflammation and apoptosis. Heliyon 2024; 10:e23402. [PMID: 38169776 PMCID: PMC10758798 DOI: 10.1016/j.heliyon.2023.e23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure (HF) is a major and growing public health concern. Although advances in medical and surgical therapies have been achieved over the last decades, there is still no firmly evidence-based treatment with many traditional Chinese medicines (TCMs) for HF. Huoxin Pill (HXP), a TCM, has been widely used to treat patients with coronary heart disease and angina pectoris. However, the underlying molecular mechanism is poorly understood. In this study, using a verapamil-induced zebrafish HF model, we validated the efficacy and revealed the underlying mechanism of HXP in the treatment of HF. Zebrafish embryos were pretreated with different concentrations of HXP followed by verapamil administration, and we found that HXP significantly improved cardiac function in HF zebrafish, such as by effectively alleviating venous congestion and increasing heart rates. Mechanistically, HXP evidently inhibited verapamil-induced ROS and H2O2 production and upregulated CAT activity in HF zebrafish. Moreover, transgenic lines Tg(mpx:EGFP) and Tg(nfkb:EGFP) were administered for inflammation evaluation, and we found that neutrophil infiltration in HF zebrafish hearts and the activated NF-kB level could be reduced by HXP. Furthermore, HXP significantly downregulated the level of cell apoptosis in HF zebrafish hearts, as assessed by AO staining. Molecularly, RT‒qPCR results showed that pretreatment with HXP upregulated antioxidant-related genes such as gpx-1a and gss and downregulated the expression of the stress-related gene hsp70, proinflammatory genes such as tnf-α, il-6 and lck, and apoptosis-related indicators such as apaf1, puma and caspase9. In conclusion, HXP exerts a protective effect on verapamil-induced zebrafish HF through inhibition of oxidative stress-triggered inflammation and apoptosis.
Collapse
Affiliation(s)
- Xianmei Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Laifeng Zeng
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, PR China
| | - Zhixin Qu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| | - Fenghua Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, PR China
| |
Collapse
|
4
|
Zhang Y, Huang Y, Ma QX, Xu ST, Shen L, Xu YY, Hai-Ye T, Chen ML, Rong YL. Guanxinning tablets improve myocardial hypertrophy by inhibiting the activation of MEK-ERK1/2 signaling pathway. J Appl Biomed 2023; 21:137-149. [PMID: 37747313 DOI: 10.32725/jab.2023.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/26/2023] Open
Abstract
Myocardial hypertrophy may lead to heart failure and sudden death. As traditional Chinese medicine, Guanxinning tablets (GXN) have significant pharmacological effects in the prevention and treatment of cardiovascular diseases. However, the anti-cardiac hypertrophy efficacy of GXN and its mechanism of action are still unclear. Therefore, we established a heart failure rat model and isolated primary cardiomyocytes of neonatal rat to observe the protective effect of GXN on heart failure rat model and the intervention effect on myocardial cell hypertrophy, and to explore the possible mechanism of GXN preventing and treating myocardial hypertrophy. The results of in vivo experiments showed that GXN could significantly reduce the degree of cardiac hypertrophy, reduce the size of cardiomyocytes, inhibit the degree of myocardial remodeling and fibrosis, and improve cardiac function in rats with early heart failure. The results of in vitro experiments showed that GXN was safe for primary cardiomyocytes and could improve cardiomyocyte hypertrophy and reduce the apoptosis of cardiomyocytes in pathological state, which may be related to the inhibition of the over-activation of MEK-ERK1/2 signaling pathway. In conclusion, GXN may inhibit cardiac hypertrophy and improve early heart failure by inhibiting the over-activation of MEK-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314000, China
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| | - Yu Huang
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| | - Quan-Xin Ma
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| | - Song-Tao Xu
- Zhejiang Chinese Medical University, College of Pharmacy, Hangzhou 310053, China
| | - Liye Shen
- Zhejiang Chinese Medical University, College of Pharmacy, Hangzhou 310053, China
| | - Yan-Yun Xu
- Zhejiang Chinese Medical University, College of Pharmacy, Hangzhou 310053, China
| | - Tu Hai-Ye
- Zhejiang Chinese Medical University, College of Pharmacy, Hangzhou 310053, China
| | - Min-Li Chen
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| | - Yi-Li Rong
- Zhejiang Chinese Medical University, Academy of Chinese Medicine & Institute of Comparative Medicine, Hangzhou 310053, China
| |
Collapse
|
5
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
6
|
Klimczak-Tomaniak D, Haponiuk-Skwarlińska J, Kuch M, Pączek L. Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int J Mol Sci 2022; 23:15013. [PMID: 36499336 PMCID: PMC9736401 DOI: 10.3390/ijms232315013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Heart failure is defined as a clinical syndrome consisting of key symptoms and is due to a structural and/or functional alteration of the heart that results in increased intracardiac pressures and/or inadequate cardiac output at rest and/or during exercise. One of the key mechanisms determining myocardial dysfunction in heart failure is oxidative stress. MicroRNAs (miRNAs, miRs) are short, endogenous, conserved, single-stranded non-coding RNAs of around 21-25 nucleotides in length that act as regulators of multiple processes. A systematic review following the PRISMA guidelines was performed on the evidence on the interplay between microRNA and oxidative stress in heart failure. A search of Pubmed, Embase, Scopus, and Scopus direct databases using the following search terms: 'heart failure' AND 'oxidative stress' AND 'microRNA' or 'heart failure' AND 'oxidative stress' AND 'miRNA' was conducted and resulted in 464 articles. Out of them, 15 full text articles were eligible for inclusion in the qualitative analysis. Multiple microRNAs are involved in the processes associated with oxidative stress leading to heart failure development including mitochondrial integrity and function, antioxidant defense, iron overload, ferroptosis, and survival pathways.
Collapse
Affiliation(s)
- Dominika Klimczak-Tomaniak
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Julia Haponiuk-Skwarlińska
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Pediatric Cardiology and General Pediatrics, Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
7
|
Lv S, Wang Y, Zhang W, Shang H. The chemical components, action mechanisms, and clinical evidences of YiQiFuMai injection in the treatment of heart failure. Front Pharmacol 2022; 13:1040235. [PMID: 36506553 PMCID: PMC9729553 DOI: 10.3389/fphar.2022.1040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
YiQiFuMai injection (YQFM), derived from Shengmai Powder, is wildly applied in the treatment of cardiovascular diseases, such as coronary heart disease and chronic cardiac insufficiency. YiQiFuMai injection is mainly composed of Radix of Panax ginseng C.A. Mey. (Araliaceae), Radix of Ophiopogon japonicus (Thunb.) Ker Gawl (Liliaceae), and Fructus of Schisandra chinensis (Turcz.) Baill (Schisandraceae), and Triterpene saponins, steroidal saponins, lignans, and flavonoids play the vital role in the potency and efficacy. Long-term clinical practice has confirmed the positive effect of YiQiFuMai injection in the treatment of heart failure, and few adverse events have been reported. In addition, the protective effect of YiQiFuMai injection is related to the regulation of mitochondrial function, anti-apoptosis, amelioration of oxidant stress, inhibiting the expression of inflammatory mediators, regulating the expression of miRNAs, maintaining the balance of matrix metalloproteinases/tissue inhibitor of metalloproteinases (MMP/TIMP) and anti-hypoxia.
Collapse
Affiliation(s)
- Shichao Lv
- Key Laboratory of Chinese Internal Medicine of MOE, Dongzhimen Hospital, Beijing, China,Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunjiao Wang
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanqin Zhang
- Department of Geriatrics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of MOE, Dongzhimen Hospital, Beijing, China,*Correspondence: Hongcai Shang,
| |
Collapse
|
8
|
Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS. DISEASE MARKERS 2022; 2022:1614208. [PMID: 36246560 PMCID: PMC9553538 DOI: 10.1155/2022/1614208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 09/17/2022] [Indexed: 12/25/2022]
Abstract
Objective To analyze the differentially expressed genes (DEGs) in rats with endogenous acute respiratory distress syndrome (ARDS) lung injury and explore the pathogenesis and early diagnostic molecular markers using whole transcriptomic data. Methods Twelve 8-week-old male Sprague Dawley rats were selected and randomly and equally divided into ARDS lung injury group and normal control group. RNA was extracted from the left lung tissues of both the groups and sequenced using the paired-end sequencing mode of the Illumina Hiseq sequencing platform. The DEGs of miRNA, cirRNA, lncRNA, and mRNA were screened using DESeq2 software, and the ceRNA regulatory network was constructed using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the mRNA DEGs. STRING and Cytoscape software were used to construct the protein interaction network and identify the 15 key genes, which were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results Based on different screening conditions, and compared with the control group, the ARDS lung injury group showed 836 mRNA DEGs (386 upregulated and 450 downregulated), 110 lncRNA DEGs (53 upregulated and 57 downregulated), 19 circRNA DEGs (3 upregulated and 16 downregulated), and 6 miRNA DEGs (5 upregulated and 1 downregulated gene). GO showed that the DEGs of mRNA were mainly involved in biological processes, such as defense response to lipopolysaccharide and other organisms, leukocyte chemotaxis, neutrophil chemotaxis, and cytokine-mediated signaling. KEGG enrichment analysis showed that the DEGs played their biological roles mainly by participating in IL-17, TNF, and chemokine signaling pathways. The PPI analysis showed a total of 281 node proteins and 634 interaction edges. The top 15 key genes, which were screened, included Cxcl10, Mx1, Irf7, Isg15, Ifit3, Ifit2, Rsad2, Ifi47, Oasl, Dhx58, Usp18, Cmpk2, Herc6, Ifit1, and Gbp4. The ceRNA network analysis showed 69 nodes and 73 correlation pairs, where the key gene nodes were miR-21-3p, Camk2g, and Stx2. Conclusions The chemotaxis, migration, and degranulation of inflammatory cells, cytokine immune response, autophagy, and apoptosis have significant biological functions in the occurrence and development of endogenous acute lung injury during ARDS. Thus, the camk2g/miR-21-3p/lncRNA/circRNA network, CXCL10/CXCR3, and IL-17 signaling pathways might provide novel insights and targets for further studying the lung injury mechanism and clinical treatment.
Collapse
|
9
|
Shao-Mei W, Li-Fang Y, Li-Hong W. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2021; 146:112538. [PMID: 34922111 DOI: 10.1016/j.biopha.2021.112538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022] Open
Abstract
The prognosis of various cardiovascular diseases eventually leads to heart failure (HF). An energy metabolism disorder of cardiomyocytes is important in explaining the molecular basis of HF; this will aid global research regarding treatment options for HF from the perspective of myocardial metabolism. There are many drugs to improve myocardial metabolism for the treatment of HF, including angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors. Although Western medicine has made considerable progress in HF therapy, the morbidity and mortality of the disease remain high. Therefore, HF has attracted attention from researchers worldwide. In recent years, the application of traditional Chinese medicine (TCM) in HF treatment has been gradually accepted, and many studies have investigated the mechanism whereby TCM improves myocardial metabolism; the TCMs studied include Danshen yin, Fufang Danshen dripping pill, and Shenmai injection. This enables the clinical application of TCM in the treatment of HF by improving myocardial metabolism. We systematically reviewed the efficacy of TCM for improving myocardial metabolism during HF as well as the pharmacological effects of active TCM ingredients on the cardiovascular system and the potential mechanisms underlying their ability to improve myocardial metabolism. The results indicate that TCM may serve as a complementary and alternative approach for the prevention of HF. However, further rigorously designed randomized controlled trials are warranted to assess the effect of TCM on long-term hard endpoints in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Wang Shao-Mei
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Ye Li-Fang
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Wang Li-Hong
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
10
|
Han JY, Meininger G, Luo JC, Huang QB. Editorial: Traditional Chinese Medicine: Organ Vascular Injury - Volume II. Front Physiol 2021; 12:677858. [PMID: 34177621 PMCID: PMC8231435 DOI: 10.3389/fphys.2021.677858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Gerald Meininger
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Jin-Cai Luo
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qiao-Bing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Combined detection of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 for screening of early heart failure diseases. Biosci Rep 2021; 40:222270. [PMID: 32124924 PMCID: PMC7080642 DOI: 10.1042/bsr20191653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
The use of circulating microRNAs as biomarkers opens up new opportunities for the diagnosis of cardiovascular diseases because of their specific expression profiles. The aim of the present study was to identify circulating microRNAs in human plasma as potential biomarkers of heart failure and related diseases. We used real-time quantitative PCR to screen microRNA in plasma samples from 62 normal controls and 62 heart failure samples. We found that circulating miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 expressed differently between healthy controls and heart failure patients. Plasma levels of miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 were unaffected by hemolysis. Correlation analysis showed any two of these miRNAs possess a strong correlation, indicating a possibility of combined analysis. MiR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 could be combined in two or three or more combinations. The results suggest that miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217 may be a new diagnostic biomarker for heart failure and related diseases.
Collapse
|
12
|
Gholaminejad A, Zare N, Dana N, Shafie D, Mani A, Javanmard SH. A meta-analysis of microRNA expression profiling studies in heart failure. Heart Fail Rev 2021; 26:997-1021. [PMID: 33443726 DOI: 10.1007/s10741-020-10071-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a major consequence of many cardiovascular diseases with high rate of morbidity and mortality. Early diagnosis and prevention are hampered by the lack of informative biomarkers. The aim of this study was to perform a meta-analysis of the miRNA expression profiling studies in HF to identify novel candidate biomarkers or/and therapeutic targets. A comprehensive literature search of the PubMed for miRNA expression studies related to HF was carried out. The vote counting and robust rank aggregation meta-analysis methods were used to identify significant meta-signatures of HF-miRs. The targets of HF-miRs were identified, and network construction and gene set enrichment analysis (GSEA) were performed to identify the genes and cognitive pathways most affected by the dysregulation of the miRNAs. The literature search identified forty-five miRNA expression studies related to CHF. Shared meta-signature was identified for 3 up-regulated (miR-21, miR-214, and miR-27b) and 13 down-regulated (miR-133a, miR-29a, miR-29b, miR-451, miR-185, miR-133b, miR-30e, miR-30b, miR-1, miR-150, miR-486, miR-149, and miR-16-5p) miRNAs. Network properties showed miR-29a, miR-21, miR-29b, miR-1, miR-16, miR-133a, and miR-133b have the most degree centrality. GESA identified functionally related sets of genes in signaling and community pathways in HF that are the targets of HF-miRs. The miRNA expression meta-analysis identified sixteen highly significant HF-miRs that are differentially expressed in HF. Further validation in large patient cohorts is required to confirm the significance of these miRs as HF biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Zare
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arya Mani
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical, Isfahan, Iran. .,Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Shao X, Zhang X, Yang L, Zhang R, Zhu R, Feng R. Integrated analysis of mRNA and microRNA expression profiles reveals differential transcriptome signature in ischaemic and dilated cardiomyopathy induced heart failure. Epigenetics 2020; 16:917-932. [PMID: 33016206 DOI: 10.1080/15592294.2020.1827721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Cardiac remodelling is widely accepted as a common characteristic for many heart diseases, especially in heart failure (HF). Ischaemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are associated with cardiac remodelling. Both mRNA and microRNA are potential diagnostic markers and therapeutic targets of cardiac remodelling in HF. However, the mechanisms of microRNA-mRNA joint regulation in HF are still unclear. In this study, 3 gene expression profiles from patients with and without HF were analysed to harvest shared differentially expressed genes (microRNA and mRNA) with significant major biological function. Moreover, key genes highly related to ICM and DCM-induced HF were screened out through a Weighted Genes Co-Expression Network Analysis (WGCNA). Based on microRNA-mRNA analysis, several microRNAs and target genes were identified. Combined with pathway analysis, we found that miR-542-3p and its target gene CILP were likely involved in the regulation of TGF-β signalling pathway in ICM induced HF. Collectively, the microRNA-mRNA interaction network analysis revealed that miR-542-3p-CILP as mediator of TGF-β signalling pathway might be a new mechanism to mediate ICM induced HF. This study provides certain novel targets for diagnosis and therapeutic treatment of ICM- and DCM-induced HF.
Collapse
Affiliation(s)
- Xiuli Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lei Yang
- Tianjin Customs, Technical Center for Safety of Industrial Products, Tianjin, China
| | - Ruijia Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rongli Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Gu Y, Ju A, Jiang B, Zhang J, Man S, Liu C, Gao W. Yiqi Fumai lyophilized injection attenuates doxorubicin-induced cardiotoxicity, hepatotoxicity and nephrotoxicity in rats by inhibition of oxidative stress, inflammation and apoptosis. RSC Adv 2018; 8:40894-40911. [PMID: 35557896 PMCID: PMC9091596 DOI: 10.1039/c8ra07163b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Doxorubicin (DOX) is one of the most effective antineoplastic drugs, however, its organ toxicity inhibits the clinical utility. This study was aimed at investigating the protective effects of Yiqi Fumai lyophilized injection (YQFM) against DOX-induced tissue injury and exploring the mechanisms which mediated reactive oxygen species (ROS), inflammation and apoptosis. The experiment was as follows: rats were subjected to an intraperitoneal injection (i.p.) of YQFM (0.481 g kg-1, i.p.) for 12 days; DOX (5 mg kg-1, i.p.) was administered on the 4th, 8th and 12th days to achieve a cumulative dose of 15 mg kg-1. Pretreatment of YQFM significantly ameliorated intracellular damage and dysfunction of the heart, liver and kidneys via decreasing activities of injury indexes. The levels of lipid peroxidation and glutathione depletion were clearly reduced following YQFM pretreatment, meanwhile the activities of glutathione peroxidase, superoxide dismutase, and catalase were elevated. Additionally administering YQFM could mitigate the cardiotoxicity, hepatotoxicity and nephrotoxicity via reducing levels of inflammatory factors and decreasing apoptosis. Accordingly, this study indicated that YQFM attenuated DOX-induced toxicity by ameliorating organ function, decreasing ROS production, and preventing excessive inflammation and apoptosis.
Collapse
Affiliation(s)
- Yue Gu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| | - Aichun Ju
- Tasly Pride Pharmaceutical Company Limited Tianjin 300410 China
| | - Bingjie Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| | - Jingze Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces Tianjin 300309 China +86-22-84876773
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China +86-22-60601265
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics Tianjin 300193 China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| |
Collapse
|
15
|
Li B, Meng X, Zhang L. microRNAs and cardiac stem cells in heart development and disease. Drug Discov Today 2018; 24:233-240. [PMID: 29852125 DOI: 10.1016/j.drudis.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/24/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022]
Abstract
Cumulative evidence has proven that proliferation, differentiation and migration of cardiac stem cells (CSCs) dominate early heart development and contribute to the later occurrence of heart disease. Among other mechanisms, microRNAs work as the 'fine-tuning' to modulate the levels of target genes in a specific cell type. The distinct microRNA signatures in CSCs reveal the stages and functions of CSCs. The focus of this review is to summarize recent knowledge advances in CSC proliferation, differentiation and migration and to discuss how microRNAs regulate these processes during heart development and in heart disease. Better understanding of microRNA regulation on CSCs under different situations will enable the unveiling of the mechanisms of heart disease and open new avenues in the therapeutic potentials of microRNA modulation to treat heart disease.
Collapse
Affiliation(s)
- Bo Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Xianmei Meng
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|