1
|
Cebral JR, Mut F, Löhner R, Marsh L, Chitsaz A, Bilgin C, Bayraktar E, Kallmes D, Kadirvel R. Modeling Fibrin Accumulation on Flow-Diverting Devices for Intracranial Aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3883. [PMID: 39501466 PMCID: PMC11618230 DOI: 10.1002/cnm.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 12/06/2024]
Abstract
The mechanisms leading to aneurysm occlusion after treatment with flow-diverting devices are not fully understood. Flow modification induces thrombus formation within the aneurysm cavity, but fibrin can simultaneously accumulate and cover the device scaffold, leading to further flow modification. However, the interplay and relative importance of these processes are not clearly understood. A computational model of fibrin accumulation and flow modification after flow diversion treatment of cerebral aneurysms has been developed under the guidance of in vitro experiments and observations. The model is based on the loose coupling of flow and transport-reaction equations that are solved separately by independent codes. Interaction or reactive terms account for thrombin production from prothrombin stimulated by thrombogenic metallic wires and inhibition by antithrombin as well as fibrin production from fibrinogen stimulated by thrombin and flow shear stress, and fibrin adhesion to device wires and already attached fibrin. The computational model was demonstrated and tested on idealized vessel and aneurysm geometries. The model was able to reproduce the salient features of fibrin accumulation after the deployment of flow-diverting devices in idealized in vitro models of cerebral aneurysms. Namely, fibrin production in regions of high shear stress, initial accumulation at the inflow zone, and progressive occlusion of the device and corresponding flow attenuation. The computational model linking flow dynamics to fibrin production, transport, and adhesion can be used to investigate and better understand the effects that lead to fibrin accumulation and the resulting aneurysm inflow reduction and intra-aneurysmal flow modulation.
Collapse
Affiliation(s)
- Juan R. Cebral
- Bioengineering DepartmentGeorge Mason UniversityFairfaxVirginiaUSA
| | - Fernando Mut
- Bioengineering DepartmentGeorge Mason UniversityFairfaxVirginiaUSA
| | - Rainald Löhner
- Physics DepartmentGeorge Mason UniversityFairfaxVirginiaUSA
| | - Laurel Marsh
- Bioengineering DepartmentGeorge Mason UniversityFairfaxVirginiaUSA
| | - Alireza Chitsaz
- Bioengineering DepartmentGeorge Mason UniversityFairfaxVirginiaUSA
| | - Cem Bilgin
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - David Kallmes
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Ramanathan Kadirvel
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
- Department of NeurosurgeryMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
2
|
Holzberger F, Muhr M, Wohlmuth B. A comprehensive numerical approach to coil placement in cerebral aneurysms: mathematical modeling and in silico occlusion classification. Biomech Model Mechanobiol 2024; 23:2063-2089. [PMID: 39162857 PMCID: PMC11554728 DOI: 10.1007/s10237-024-01882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Endovascular coil embolization is one of the primary treatment techniques for cerebral aneurysms. Although it is a well-established and minimally invasive method, it bears the risk of suboptimal coil placement which can lead to incomplete occlusion of the aneurysm possibly causing recurrence. One of the key features of coils is that they have an imprinted natural shape supporting the fixation within the aneurysm. For the spatial discretization, our mathematical coil model is based on the discrete elastic rod model which results in a dimension-reduced 1D system of differential equations. We include bending and twisting responses to account for the coils natural curvature and allow for the placement of several coils having different material parameters. Collisions between coil segments and the aneurysm wall are handled by an efficient contact algorithm that relies on an octree based collision detection. In time, we use a standard symplectic semi-implicit Euler time stepping method. Our model can be easily incorporated into blood flow simulations of embolized aneurysms. In order to differentiate optimal from suboptimal placements, we employ a suitable in silico Raymond-Roy-type occlusion classification and measure the local packing density in the aneurysm at its neck, wall region and core. We investigate the impact of uncertainties in the coil parameters and embolization procedure. To this end, we vary the position and the angle of insertion of the micro-catheter, and approximate the local packing density distributions by evaluating sample statistics.
Collapse
Affiliation(s)
- Fabian Holzberger
- Department of Mathematics, Technical University of Munich, Boltzmannstr. 3/III, 85748, Garching b. München, Germany.
| | - Markus Muhr
- Department of Mathematics, Technical University of Munich, Boltzmannstr. 3/III, 85748, Garching b. München, Germany
| | - Barbara Wohlmuth
- Department of Mathematics, Technical University of Munich, Boltzmannstr. 3/III, 85748, Garching b. München, Germany
| |
Collapse
|
3
|
Satoh T. Hemodynamic analysis of a thrombosed bleb in an unruptured cerebral aneurysm. Surg Neurol Int 2024; 15:357. [PMID: 39524583 PMCID: PMC11544510 DOI: 10.25259/sni_584_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Background The intricate hemodynamic mechanisms of thrombosis in the bleb and/or dome of cerebral aneurysms remain unresolved. We encountered a unique case where the bleb of an unruptured internal carotid-posterior communicating artery (IC-PC) aneurysm underwent thrombosis over 7 years. Complete spontaneous thrombosis of a bleb in an unruptured cerebral aneurysm has not been previously reported. Therefore, a hemodynamic evaluation using computational fluid dynamics (CFD) analysis was conducted to examine the thrombotic development within the bleb of this aneurysm. Case Description We observed a case in which thrombosis led to the disappearance of a bleb in the dome of an unruptured IC-PC aneurysm over 7 years. CFD analysis was employed to investigate the hemodynamics of bleb thrombosis and the thrombosed bleb-neck regions of the dome in this IC-PC aneurysm. The reduction and disappearance of the bleb were associated with a decreased flow rate within the bleb, reduced magnitude of wall shear stress (WSSm), a lower WSSm ratio between the bleb and dome, increased vector direction of wall shear stress (WSSv), and discrete streamlines entering the bleb-neck region, resulting in stasis and subsequent thrombosis within the bleb. Seven years later, the dome region corresponding to the thrombosed bleb-neck exhibited localized areas with low WSSm and high WSSv along the dome wall. Conclusion Hemodynamically, spontaneously thrombosed bleb and thrombosed post-bleb-neck dome walls were characterized by low WSSm and high WSSv. These findings underscore the importance of CFD analysis in predicting thrombotic events in cerebral aneurysms, which can inform better clinical management strategies.
Collapse
Affiliation(s)
- Toru Satoh
- Department of Neurological Surgery, Ryofukai Satoh Neurosurgical Hospital, Fukuyama, Japan
| |
Collapse
|
4
|
Korte J, Gaidzik F, Larsen N, Schütz E, Damm T, Wodarg F, Hövener JB, Jansen O, Janiga G, Berg P, Pravdivtseva MS. In vitro and in silico assessment of flow modulation after deploying the Contour Neurovascular System in intracranial aneurysm models. J Neurointerv Surg 2024; 16:815-823. [PMID: 37852752 PMCID: PMC11287554 DOI: 10.1136/jnis-2023-020403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/15/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The novel Contour Neurovascular System (Contour) has been reported to be efficient and safe for the treatment of intracranial, wide-necked bifurcation aneurysms. Flow in the aneurysm and posterior cerebral arteries (PCAs) after Contour deployment has not been analyzed in detail yet. However, this information is crucial for predicting aneurysm treatment outcomes. METHODS Time-resolved three-dimensional velocity maps in 14 combinations of patient-based basilar tip aneurysm models with and without Contour devices (sizes between 5 and 14 mm) were analyzed using four-dimensionsal (4D) flow MRI and numerical/image-based flow simulations. A complex virtual processing pipeline was developed to mimic the experimental shape and position of the Contour together with the simulations. RESULTS On average, the Contour significantly reduced intra-aneurysmal flow velocity by 67% (mean w/ = 0.03m/s; mean w/o = 0.12m/s; p-value=0.002), and the time-averaged wall shear stress by more than 87% (mean w/ = 0.17Pa; mean w/o = 1.35Pa; p-value=0.002), as observed by numerical simulations. Furthermore, a significant reduction in flow (P<0.01) was confirmed by the neck inflow rate, kinetic energy, and inflow concentration index after Contour deployment. Notably, device size has a stronger effect on reducing flow than device positioning. However, positioning affected flow in the PCAs, while being robust in effectively reducing flow. CONCLUSIONS This study showed the high efficacy of the Contour device in reducing flow within aneurysms regardless of the exact position. However, we observed an effect on the flow in PCAs, which needs to be investigated further.
Collapse
Affiliation(s)
- Jana Korte
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
- Research campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Franziska Gaidzik
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
- Research campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Erik Schütz
- Research campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Timo Damm
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Fritz Wodarg
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Gábor Janiga
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
- Research campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Philipp Berg
- Research campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Healthcare Telematics and Medical Engineering, University of Magdeburg, Magdeburg, Germany
| | - Mariya S Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Bogicevic D, Vitosevic F, Milosevic Medenica S, Kalousek V, Vukicevic M, Rasulic L. Direct Aspiration Thrombectomy in the Management of Procedural Thromboembolic Complications Related to Endovascular Brain Aneurysm Treatment. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1034. [PMID: 39064463 PMCID: PMC11278664 DOI: 10.3390/medicina60071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024]
Abstract
Despite growing evidence over the last few years of the efficacy and safety of direct thrombus aspiration using a large bore distal access catheter as a type of mechanical thrombectomy procedure in acute stroke large-vessel occlusion patients, the experience and evidence of this technique for managing thromboembolic complications in endovascular aneurysm treatment is still limited and little research is available regarding this topic. We present a case of a thromboembolic occlusion of the left middle cerebral artery during the preprocedural angiograms of a large and fusiform left internal carotid artery aneurysm. This complication was successfully managed by navigating an already-placed distal access catheter intended for support during the opening of the flow-diverting stent; therefore, the thrombus was manually aspirated for two minutes, and Thrombolysis in Cerebral Infarction (TICI) scale 3 flow was restored. This case should encourage the use of a distal access catheter, already placed for aneurysm treatment, to perform zero-delay direct thrombus aspiration as a rescue approach for thromboembolic complications during endovascular treatments.
Collapse
Affiliation(s)
- Damljan Bogicevic
- Special Hospital for Cerebrovascular Diseases “Sveti Sava”, 11000 Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Filip Vitosevic
- Special Hospital for Cerebrovascular Diseases “Sveti Sava”, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Vladimir Kalousek
- University Clinical Hospital Center ‘Sisters of Mercy’, 10000 Zagreb, Croatia
| | - Marjana Vukicevic
- Special Hospital for Cerebrovascular Diseases “Sveti Sava”, 11000 Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Lukas Rasulic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic for Neurosurgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Alnaaim SA, Al-Kuraishy HM, Zailaie MM, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential link between acromegaly and risk of acute ischemic stroke in patients with pituitary adenoma: a new perspective. Acta Neurol Belg 2024; 124:755-766. [PMID: 37584889 PMCID: PMC11139727 DOI: 10.1007/s13760-023-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023]
Abstract
Acromegaly is an endocrine disorder due to the excess production of growth hormone (GH) from the anterior pituitary gland after closed epiphyseal growth plates. Acromegaly is mainly caused by benign GH-secreting pituitary adenoma. Acute ischemic stroke (AIS) is one of the most common cardiovascular complications. It ranks second after ischemic heart disease (IHD) as a cause of disability and death in high-income countries globally. Thus, this review aimed to elucidate the possible link between acromegaly and the development of AIS. The local effects of acromegaly in the development of AIS are related to the development of pituitary adenoma and associated surgical and radiotherapies. Pituitary adenoma triggers the development of AIS through different mechanisms, particularly aneurysmal formation, associated thrombosis, and alteration of cerebral microcirculation. Cardiovascular complications and mortality were higher in patients with pituitary adenoma. The systemic effect of acromegaly-induced cardio-metabolic disorders may increase the risk for the development of AIS. Additionally, acromegaly contributes to the development of endothelial dysfunction (ED), inflammatory and oxidative stress, and induction of thrombosis that increases the risk for the development of AIS. Moreover, activated signaling pathways, including activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB), nod-like receptor pyrin 3 (NLRP3) inflammasome, and mitogen-activated protein kinase (MAPK) in acromegaly may induce systemic inflammation with the development of cardiovascular complications mainly AIS. Taken together, acromegaly triggers the development of AIS through local and systemic effects by inducing the formation of a cerebral vessel aneurysm, the release of pro-inflammatory cytokines, the development of oxidative stress, ED, and thrombosis correspondingly.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, PO Box 14132, Baghdad, Iraq
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
7
|
Ngwenya T, Grundlingh D, Ngoepe MN. Influence of vortical structures on fibrin clot formation in cerebral aneurysms: A two-dimensional computational study. J Biomech 2024; 165:111994. [PMID: 38394954 DOI: 10.1016/j.jbiomech.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Thrombosis is an important contributor to cerebral aneurysm growth and progression. A number of sophisticated multiscale and multiphase in silico models have been developed with a view towards interventional planning. Many of these models are able to account for clotting outcomes, but do not provide detailed insight into the role of flow during clot development. In this study, we present idealised, two-dimensional in silico cerebral fibrin clot model based on computational fluid dynamics (CFD), biochemical modelling and variable porosity, permeability, and diffusivity. The model captures fibrin clot growth in cerebral aneurysms over a period at least 1000 s in five different geometries. The fibrin clot growth results were compared to an experiment presented in literature. The biochemistry was found to be more sensitive to mesh size compared to the haemodynamics, while larger timesteps overpredicted clot size in pulsatile flow. When variable diffusivity was used, the predicted clot size was 25.4% lesser than that with constant diffusivity. The predicted clot size in pulsatile flow was 14.6% greater than in plug flow. Different vortex modes were observed in plug and pulsatile flow; the latter presented smaller intermediate modes where the main vortex was smaller and less likely to disrupt the growing fibrin clot. Furthermore, smaller vortex modes were seen to support fibrin clot propagation across geometries. The model clearly demonstrates how the growing fibrin clot alters vortical structures within the aneurysm sac and how this changing flow, in turn, shapes the growing fibrin clot.
Collapse
Affiliation(s)
- Tinashe Ngwenya
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, South Africa; Department of Mechanical Engineering, University of Cape Town, South Africa
| | - Divan Grundlingh
- Department of Mechanical Engineering, University of Cape Town, South Africa
| | - Malebogo N Ngoepe
- Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, South Africa; Department of Mechanical Engineering, University of Cape Town, South Africa.
| |
Collapse
|
8
|
Semin KS, Demyashkin GA, Zakharova NE, Eliava SS, Kheireddin AS, Konovalov AN, Kalaeva DB, Batalov AI, Pronin IN. [Analysis of intracranial saccular aneurysm wall: neuroimaging and histopathological correlates]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:52-58. [PMID: 38881016 DOI: 10.17116/neiro20248803152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
BACKGROUND Contrast enhancement of intracranial aneurysm wall during MRI with targeted visualization of vascular wall correlates with previous aneurysm rupture and, according to some data, may be a predictor of further rupture of unruptured aneurysms. OBJECTIVE To analyze possible causes of aneurysm contrast enhancement considering morphological data of aneurysm walls. MATERIAL AND METHODS The study included 44 patients with intracranial aneurysms who underwent preoperative MRI between November 2020 and September 2022. Each aneurysm was assessed regarding contrast enhancement pattern. Microsurgical treatment of aneurysm was accompanied by resection of its wall for subsequent histological and immunohistochemical analysis regarding thrombosis, inflammation and neovascularization. Specimens were subjected to histological and immunochemical analysis. Immunohistochemical analysis was valuable to estimate inflammatory markers CD68 and CD3, as well as neurovascularization marker SD31. RESULTS Aneurysms with contrast-enhanced walls were characterized by higher number of CD3+, CD68+, CD31+ cells and parietal clots. Intensity of contrast enhancement correlated with aneurysm wall abnormalities. CONCLUSION Contrast enhancement of aneurysm wall can characterize various morphological abnormalities.
Collapse
Affiliation(s)
- K S Semin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - G A Demyashkin
- Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | | | - D B Kalaeva
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
9
|
Matsukawa S, Ishii A, Fushimi Y, Abekura Y, Nagahori T, Kikuchi T, Okawa M, Yamao Y, Sasaki N, Tsuji H, Akiyama R, Miyamoto S. Partially thrombosed giant basilar artery aneurysm with attenuated contrast enhancement of the intraluminal thrombus on vessel wall MRI after flow diversion treatment: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 6:CASE23307. [PMID: 37782963 PMCID: PMC10555602 DOI: 10.3171/case23307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND The effect of vessel wall magnetic resonance imaging (VW-MRI) enhancement in partially thrombosed aneurysms has previously indicated aneurysmal instability and a rupture risk. However, whether the contrast effect of the wall changes before or after flow diversion treatment is still under investigation. OBSERVATIONS The authors report a case of a partially thrombosed basilar artery aneurysm that increased in size over a short period, worsened brainstem compression symptoms, and was treated with a flow diverter stent with good results. In this case, VW-MRI after surgery showed a reduced contrast effect on the intraluminal thrombus within the aneurysm. The aneurysm thrombosed and markedly regressed over the next 5 months, with remarkable improvement in the brainstem compression symptoms. LESSONS This finding on VW-MRI may indicate an attenuation of neovascularization in the thrombus wall and be a sign of aneurysm stabilization.
Collapse
Affiliation(s)
| | | | - Yasutaka Fushimi
- Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Faculty of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Guerrero-Hurtado M, Garcia-Villalba M, Gonzalo A, Martinez-Legazpi P, Kahn AM, McVeigh E, Bermejo J, del Alamo JC, Flores O. Efficient multi-fidelity computation of blood coagulation under flow. PLoS Comput Biol 2023; 19:e1011583. [PMID: 37889899 PMCID: PMC10659216 DOI: 10.1371/journal.pcbi.1011583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/20/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Clot formation is a crucial process that prevents bleeding, but can lead to severe disorders when imbalanced. This process is regulated by the coagulation cascade, a biochemical network that controls the enzyme thrombin, which converts soluble fibrinogen into the fibrin fibers that constitute clots. Coagulation cascade models are typically complex and involve dozens of partial differential equations (PDEs) representing various chemical species' transport, reaction kinetics, and diffusion. Solving these PDE systems computationally is challenging, due to their large size and multi-scale nature. We propose a multi-fidelity strategy to increase the efficiency of coagulation cascade simulations. Leveraging the slower dynamics of molecular diffusion, we transform the governing PDEs into ordinary differential equations (ODEs) representing the evolution of species concentrations versus blood residence time. We then Taylor-expand the ODE solution around the zero-diffusivity limit to obtain spatiotemporal maps of species concentrations in terms of the statistical moments of residence time, [Formula: see text], and provide the governing PDEs for [Formula: see text]. This strategy replaces a high-fidelity system of N PDEs representing the coagulation cascade of N chemical species by N ODEs and p PDEs governing the residence time statistical moments. The multi-fidelity order (p) allows balancing accuracy and computational cost providing a speedup of over N/p compared to high-fidelity models. Moreover, this cost becomes independent of the number of chemical species in the large computational meshes typical of the arterial and cardiac chamber simulations. Using a coagulation network with N = 9 and an idealized aneurysm geometry with a pulsatile flow as a benchmark, we demonstrate favorable accuracy for low-order models of p = 1 and p = 2. The thrombin concentration in these models departs from the high-fidelity solution by under 20% (p = 1) and 2% (p = 2) after 20 cardiac cycles. These multi-fidelity models could enable new coagulation analyses in complex flow scenarios and extensive reaction networks. Furthermore, it could be generalized to advance our understanding of other reacting systems affected by flow.
Collapse
Affiliation(s)
| | | | - Alejandro Gonzalo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Pablo Martinez-Legazpi
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Spain
- CIBERCV, Madrid, Spain
| | - Andrew M. Kahn
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Elliot McVeigh
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Javier Bermejo
- CIBERCV, Madrid, Spain
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan C. del Alamo
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Division of Cardiology, University of Washington, Seattle, Washington, United States of America
| | - Oscar Flores
- Department of Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| |
Collapse
|
11
|
van de Velde L, Groot Jebbink E, Hagmeijer R, Versluis M, Reijnen MMPJ. Computational Fluid Dynamics for the Prediction of Endograft Thrombosis in the Superficial Femoral Artery. J Endovasc Ther 2023; 30:615-627. [DOI: https:/doi.org/10.1177/15266028221091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Purpose: Contemporary diagnostic modalities, including contrast-enhanced computed tomography (CTA) and duplex ultrasound, have been insufficiently able to predict endograft thrombosis. This study introduces an implementation of image-based computational fluid dynamics (CFD), by exemplification with 4 patients treated with an endograft for occlusive disease of the superficial femoral artery (SFA). The potential of personalized CFD for predicting endograft thrombosis is investigated. Materials and Methods: Four patients treated with endografts for an occluded SFA were retrospectively included. CFD simulations, based on CTA and duplex ultrasound, were compared for patients with and without endograft thrombosis to investigate potential flow-related causes of endograft thrombosis. Time-averaged wall shear stress (TAWSS) was computed, which highlights areas of prolonged residence times of coagulation factors in the graft. Results: CFD simulations demonstrated normal TAWSS (>0.4 Pa) in the SFA for cases 1 and 2, but low levels of TAWSS (<0.4 Pa) in cases 3 and 4, respectively. Primary patency was achieved in cases 1 and 2 for over 2 year follow-up. Cases 3 and 4 were complicated by recurrent endograft thrombosis. Conclusion: The presence of a low TAWSS was associated with recurrent endograft thrombosis in subjects with otherwise normal anatomic and ultrasound assessment and a good distal run-off.
Collapse
Affiliation(s)
- Lennart van de Velde
- Department of Surgery, Ziekenhuis Rijnstate, Arnhem, The Netherlands
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Physics of Fluids Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Department of Surgery, Ziekenhuis Rijnstate, Arnhem, The Netherlands
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Rob Hagmeijer
- Engineering Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Michel M. P. J. Reijnen
- Department of Surgery, Ziekenhuis Rijnstate, Arnhem, The Netherlands
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
12
|
Bouchal SM, Patra DP, Qazi Z, Bendok BR. Commentary: Common Carotid Artery to Middle Cerebral Artery Bypass With Radial Interposition Graft for Internal Carotid Artery (ICA) Occlusion After Stent-Coil Embolization of Giant ICA Terminus Aneurysm: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown) 2023; 25:e113-e114. [PMID: 37195048 DOI: 10.1227/ons.0000000000000768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/18/2023] Open
Affiliation(s)
| | - Devi P Patra
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona, USA
- Precision Neuro-therapeutics Innovation Lab, Mayo Clinic, Phoenix, Arizona, USA
| | - Zeeshan Qazi
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona, USA
- Precision Neuro-therapeutics Innovation Lab, Mayo Clinic, Phoenix, Arizona, USA
| | - Bernard R Bendok
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona, USA
- Precision Neuro-therapeutics Innovation Lab, Mayo Clinic, Phoenix, Arizona, USA
- Neurosurgery Simulation and Innovation Lab, Mayo Clinic, Phoenix, Arizona, USA
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
- Department of Otolaryngology-Head & Neck Surgery, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
13
|
Guerrero-Hurtado M, Garcia-Villalba M, Gonzalo A, Martinez-Legazpi P, Kahn AM, McVeigh E, Bermejo J, Del Alamo JC, Flores O. Efficient multi-fidelity computation of blood coagulation under flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542763. [PMID: 37398367 PMCID: PMC10312426 DOI: 10.1101/2023.05.29.542763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Clot formation is a crucial process that prevents bleeding, but can lead to severe disorders when imbalanced. This process is regulated by the coagulation cascade, a biochemical network that controls the enzyme thrombin, which converts soluble fibrinogen into the fibrin fibers that constitute clots. Coagulation cascade models are typically complex and involve dozens of partial differential equations (PDEs) representing various chemical species' transport, reaction kinetics, and diffusion. Solving these PDE systems computationally is challenging, due to their large size and multi-scale nature. We propose a multi-fidelity strategy to increase the efficiency of coagulation cascade simulations. Leveraging the slower dynamics of molecular diffusion, we transform the governing PDEs into ordinary differential equations (ODEs) representing the evolution of species concentrations versus blood residence time. We then Taylor-expand the ODE solution around the zero-diffusivity limit to obtain spatiotemporal maps of species concentrations in terms of the statistical moments of residence time, , and provide the governing PDEs for . This strategy replaces a high-fidelity system of N PDEs representing the coagulation cascade of N chemical species by N ODEs and p PDEs governing the residence time statistical moments. The multi-fidelity order( p ) allows balancing accuracy and computational cost, providing a speedup of over N/p compared to high-fidelity models. Using a simplified coagulation network and an idealized aneurysm geometry with a pulsatile flow as a benchmark, we demonstrate favorable accuracy for low-order models of p = 1 and p = 2. These models depart from the high-fidelity solution by under 16% ( p = 1) and 5% ( p = 2) after 20 cardiac cycles. The favorable accuracy and low computational cost of multi-fidelity models could enable unprecedented coagulation analyses in complex flow scenarios and extensive reaction networks. Furthermore, it can be generalized to advance our understanding of other systems biology networks affected by blood flow.
Collapse
|
14
|
Mezali F, Naima K, Benmamar S, Liazid A. Study and modeling of the thrombosis of small cerebral aneurysms, with and without flow diverter, by the lattice Boltzmann method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107456. [PMID: 36924532 DOI: 10.1016/j.cmpb.2023.107456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Small cerebral aneurysms are currently commonly treated non-invasively by flow diverter device. These stents lead to thrombotic occlusion of the aneurysm soon after their placement. The purpose of this work is to model clotting into intracranial aneurysms with and without stents, using a non-Newtonian of blood behavior, and to investigate the importance of stent to generate desired thrombus in intracranial aneurysms. METHOD The description of blood flow is made by the Boltzmann lattice equations, while thrombosis is modeled by the "fluid age" model. The lattice Boltzmann method is a computational technique for simulating fluid dynamics. The method is based on a mesoscopic approach, where the fluid is represented by a set of particles that move and interact on a grid. The model for blood coagulation is described by lattice Boltzmann Method, and it doesn't take into account the complicated coagulation pathway, this main idea is developed using the model of residence time of blood: all fluid in the domain is assumed to be capable of clotting, given enough time. The fluid age is measured by a passive scalar using a transport equation, and the node coagulates if the fluid age increases enough. Three small aneurysms of different sizes and shapes with three stents of various porosities were used to test the ability of the model to predict thrombosis. The "occlusion rate" parameter is used to assess the effectiveness of the flow diverter device. RESULTS For the large aspect ratio factor, the occlusion is: 91% for flow diverter devise with seven struts. For medium aspect ratio, a rate of 80% is achieved. An occlusion rate of slightly more than 30% is obtained for very small aneurysms with low aspect ratio. The Newtonian model underestimates the volume of thrombosis generated. The difference in the prediction of the thrombosis volume between the Newtonian and no-Newtonian Carreau-Yasuda models is approximately 10%. CONCLUSION The occlusion rate is proportional to the aspect ratio form factor. For the large and medium aspect ratio factors, the occlusion is satisfactory. Concerning very small aneurysms with low aspect ratio, aneurysm occlusion is low. This rate can be improved to almost complete occlusion if the flow diverter device is doubled. The generality of the model suggests its extensibility toward any other type of thrombosis (stenosis, thrombosis in aortic aneurysms).
Collapse
Affiliation(s)
- Farouk Mezali
- Water Sciences Research laboratory: LRS-Eau, National Polytechnic School, El Harrach, Algiers; Hydraulics department, Faculty of Technology, BP 166, M'sila 28000, Algeria
| | - Khatir Naima
- Department of Technology, University Centre of Naama (Ctr Univ Naama), P.O. Box 66, Naama 45000, Algeria.
| | - Saida Benmamar
- Water Sciences Research laboratory: LRS-Eau, National Polytechnic School, El Harrach, Algiers
| | - Abdelkrim Liazid
- Departement of physics, Faculty of Technology Faculty, Abou Bekr Belkaid University, 22 Rue Abi Ayed Abdelkrim, Tlemcen 13000, Algeria
| |
Collapse
|
15
|
Muacevic A, Adler JR, Laskay N, Hale AT, Fisher WS. Transpetrosal Approach to a Ruptured Distal Basilar Perforating Artery Aneurysm. Cureus 2023; 15:e34273. [PMID: 36860217 PMCID: PMC9969324 DOI: 10.7759/cureus.34273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
Basilar perforating artery aneurysms are rare and underreported vascular anomalies in the cerebrovascular literature. Various open and endovascular treatment approaches can be employed to treat these aneurysms based on several patient- and aneurysm-specific factors. Some authors have even advocated for conservative, nonoperative management. Here, we report a case of a ruptured distal basilar perforating artery aneurysm secured by an open transpetrosal approach. A 67-year-old male presented to our institution with a Hunt-Hess grade 2, modified Fisher grade 3 subarachnoid hemorrhage (SAH). Initial cerebral digital subtraction angiography (DSA) did not identify an intracranial aneurysm or other vascular lesions. However, the patient had a re-rupture event several days after presentation. DSA at this time revealed a posteriorly projecting distal basilar perforating artery aneurysm. Initial attempts with endovascular coil embolization were unsuccessful. Thus, an open transpetrosal approach was taken to gain access to the middle and distal basilar trunk to secure the aneurysm. This case underscores the unpredictability of basilar perforating artery aneurysms and the challenges encountered when considering active treatment. We demonstrate an open surgical approach with an intraoperative video for definitive management after failed attempted endovascular treatment.
Collapse
Affiliation(s)
- Alexander Muacevic
- Neurological Surgery, University of Alabama at Birmingham, Birmingham, USA
| | - John R Adler
- Neurological Surgery, University of Alabama at Birmingham, Birmingham, USA
| | | | | | | |
Collapse
|
16
|
Goh EJH, Ngo WK. Paracentral acute middle maculopathy secondary to retinal artery macroaneurysm. CANADIAN JOURNAL OF OPHTHALMOLOGY 2022; 58:e124-e126. [PMID: 36209836 DOI: 10.1016/j.jcjo.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
|
17
|
Sirakova K, Penkov M, Matanov S, Minkin K, Ninov K, Hadzhiyanev A, Karakostov V, Ivanova I, Sirakov S. Progressive volume reduction and long-term aneurysmal collapse following flow diversion treatment of giant and symptomatic cerebral aneurysms. Front Neurol 2022; 13:972599. [PMID: 36034286 PMCID: PMC9403733 DOI: 10.3389/fneur.2022.972599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe primary goal of conventional endovascular and microvascular approaches is the clinical and radiological resolution of the symptomatic aneurysm-induced mass effect. This study assessed the volume changes and mass effect reduction due to sac shrinkage after treatment with flow diverter stents (FD) for unruptured cerebral aneurysms.MethodsWe analyzed retrospectively 36 symptomatic aneurysms that were larger or equal to 25 mm in diameter in patients treated at our center from January 2016 to April 2022. Radiological and clinical outcomes were analyzed, including aneurysmal volume changes and resolution of aneurysm-related symptoms.ResultsAt 6 months, 25 aneurysms decreased in size, 2 remained unchanged, and 9 aneurysms demonstrated a post-treatment dimensional increase. At 12 months, 30 aneurysms showed a progressive radiological volume reduction. Either no change or negligible shrinkage was observed in the remaining six aneurysms. At 24 months, 32 aneurysms showed aneurysmal shrinkage by a mean 47% volume loss with respect to baseline. At the last follow-up, all 13 patients who had presented with third cranial nerve palsy showed improvements. Complete reversal of the pretreatment edematous changes was confirmed in all cases. The overall post-treatment complication rate was 8.3%, as 3 patients experienced non-fatal delayed rupture of their aneurysm. There was no mortality in this study.ConclusionFlow diversion could effectively induce progressive aneurysmal shrinkage and resolution of the mass effect associated with giant symptomatic cerebral aneurysms.
Collapse
Affiliation(s)
| | - Marin Penkov
- Radiology Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
| | - Svetozar Matanov
- Radiology Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
| | - Krasimir Minkin
- Neurosurgery Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
| | - Kristian Ninov
- Neurosurgery Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
| | - Asen Hadzhiyanev
- Neurosurgery Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
| | - Vasil Karakostov
- Neurosurgery Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
| | - Irena Ivanova
- Clinical Laboratory Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
| | - Stanimir Sirakov
- Radiology Department, University Hospital St Ivan Rilski, Sofia, Bulgaria
- *Correspondence: Stanimir Sirakov
| |
Collapse
|
18
|
Flow residence time in intracranial aneurysms evaluated by in vitro 4D flow MRI. J Biomech 2022; 141:111211. [DOI: 10.1016/j.jbiomech.2022.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/15/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022]
|
19
|
Mezali F, Benmamar S, Naima K, Ameur H, Rafik O. Evaluation of stent effect and thrombosis generation with different blood rheology on an intracranial aneurysm by the Lattice Boltzmann method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106757. [PMID: 35338884 DOI: 10.1016/j.cmpb.2022.106757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Treatment of intracranial aneurysms with flow-diverting stents prevents rupture by reducing blood flow and creating thrombosis within the aneurysm. This paper aims to assess the hemodynamic effect of placing stents with different struts (0, 3, 5, 7 struts) on intracranial aneurysms and to propose a simple prediction model of thrombosis zone without any further computational cost. METHOD Lattice Boltzmann method with different rheological models (Newtonian, Carreau-Yasuda, KL) of blood are used to study the hemodynamic effect of flow-diverting stents in the aneurysm. Pulsatile flow boundary conditions were applied in the inlet of the artery. The average Reynolds number was resulting Re = 111. The Lagrangian tracking of the particle was developed to assess the intra-aneurysmal blood stagnation. To predict the probable thrombose zone induced by flow-diverting stents, the shear rate threshold is utilized to determine the nodes of fluid to clot. RESULTS The results show that the flow patterns into the aneurysmal sac develop a vortex, decreasing after stent placement until disappearance for the stent with seven struts (porosity 71.4%). Velocity, shear rate, shear stress, trajectory, path length, and occlusion rate are compared before and after stent placement. These parameters decrease inversely with the porosity of the stent. The three models yield a closes result of the (velocity, shear rate, occlusion rate). Tracking the fluid-particle trajectory shows that the length of the particle paths decreases with the number of struts causing fluid to slow down and increase, consequently, the residence time into the sac. CONCLUSION The flow-diverting stents placement cause the reduction of dynamic flow within aneurysm. The reduction effect is almost the same below five struts (80% of porosity). The results show that, if our objective is restricted to estimating the hemodynamic effect, measured by (velocity, shear rate, occlusion rate), the differences between rheological behavior models are, practically, not significant, and the models can be used indifferently.
Collapse
Affiliation(s)
- Farouk Mezali
- Water Sciences Research laboratory: LRS-Eau, National Polytechnic School, El harrach, Algiers; Hydraulics department, Faculty of Technology-BP 166 M'sila 28000 Algeria.
| | - Saida Benmamar
- Water Sciences Research laboratory: LRS-Eau, National Polytechnic School, El harrach, Algiers.
| | - Khatir Naima
- Department of Technology, University Centre of Naama (Ctr Univ Naama), P.O. Box 66, Naama 45000, Algeria.
| | - Houari Ameur
- Department of Technology, University Centre of Naama (Ctr Univ Naama), P.O. Box 66, Naama 45000, Algeria.
| | - Ouared Rafik
- Water Sciences Research laboratory: LRS-Eau, National Polytechnic School, El harrach, Algiers
| |
Collapse
|
20
|
van de Velde L, Groot Jebbink E, Hagmeijer R, Versluis M, Reijnen MMPJ. Computational Fluid Dynamics for the Prediction of Endograft Thrombosis in the Superficial Femoral Artery. J Endovasc Ther 2022:15266028221091890. [PMID: 35466777 DOI: 10.1177/15266028221091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Contemporary diagnostic modalities, including contrast-enhanced computed tomography (CTA) and duplex ultrasound, have been insufficiently able to predict endograft thrombosis. This study introduces an implementation of image-based computational fluid dynamics (CFD), by exemplification with 4 patients treated with an endograft for occlusive disease of the superficial femoral artery (SFA). The potential of personalized CFD for predicting endograft thrombosis is investigated. MATERIALS AND METHODS Four patients treated with endografts for an occluded SFA were retrospectively included. CFD simulations, based on CTA and duplex ultrasound, were compared for patients with and without endograft thrombosis to investigate potential flow-related causes of endograft thrombosis. Time-averaged wall shear stress (TAWSS) was computed, which highlights areas of prolonged residence times of coagulation factors in the graft. RESULTS CFD simulations demonstrated normal TAWSS (>0.4 Pa) in the SFA for cases 1 and 2, but low levels of TAWSS (<0.4 Pa) in cases 3 and 4, respectively. Primary patency was achieved in cases 1 and 2 for over 2 year follow-up. Cases 3 and 4 were complicated by recurrent endograft thrombosis. CONCLUSION The presence of a low TAWSS was associated with recurrent endograft thrombosis in subjects with otherwise normal anatomic and ultrasound assessment and a good distal run-off.
Collapse
Affiliation(s)
- Lennart van de Velde
- Department of Surgery, Ziekenhuis Rijnstate, Arnhem, The Netherlands.,Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Physics of Fluids Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Department of Surgery, Ziekenhuis Rijnstate, Arnhem, The Netherlands.,Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Rob Hagmeijer
- Engineering Fluid Dynamics, University of Twente, Enschede, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Michel M P J Reijnen
- Department of Surgery, Ziekenhuis Rijnstate, Arnhem, The Netherlands.,Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
21
|
Sato T, Matsushige T, Chen B, Gembruch O, Dammann P, Jabbarli R, Forsting M, Junker A, Maderwald S, Quick HH, Ladd ME, Sure U, Wrede KH. Correlation Between Thrombus Signal Intensity and Aneurysm Wall Thickness in Partially Thrombosed Intracranial Aneurysms Using 7T Magnetization-Prepared Rapid Acquisition Gradient Echo Magnetic Resonance Imaging. Front Neurol 2022; 13:758126. [PMID: 35250805 PMCID: PMC8894319 DOI: 10.3389/fneur.2022.758126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The objective of this study is to investigate the relationship between the thrombus signal intensity and aneurysm wall thickness in partially thrombosed intracranial aneurysms in vivo with magnetization-prepared rapid acquisition gradient echo (MPRAGE) taken using 7T magnetic resonance imaging (MRI) and correlate the findings to wall instability. Methods Sixteen partially thrombosed intracranial aneurysms were evaluated using a 7T whole-body MR system with nonenhanced MPRAGE. To normalize the thrombus signal intensity, its highest signal intensity was compared to that of the anterior corpus callosum of the same subject, and the signal intensity ratio was calculated. The correlation between the thrombus signal intensity ratio and the thickness of the aneurysm wall was analyzed. Furthermore, aneurysmal histopathological specimens from six tissue samples were compared with radiological findings to detect any correlation. Results The mean thrombus signal intensity ratio was 0.57 (standard error of the mean [SEM] 0.06, range 0.25–1.01). The mean thickness of the aneurysm wall was 1.25 (SEM 0.08, range 0.84–1.55) mm. The thrombus signal intensity ratio significantly correlated with the aneurysm wall thickness (p < 0.01). The aneurysm walls with the high thrombus signal intensity ratio were significantly thicker. In histopathological examinations, three patients with a hypointense thrombus had fewer macrophages infiltrating the thrombus and a thin degenerated aneurysmal wall. In contrast, three patients with a hyperintense thrombus had abundant macrophages infiltrating the thrombus. Conclusion The thrombus signal intensity ratio in partially thrombosed intracranial aneurysms correlated with aneurysm wall thickness and histologic features, indicating wall instability.
Collapse
Affiliation(s)
- Taku Sato
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
- *Correspondence: Taku Sato
| | - Toshinori Matsushige
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Neurosurgery and Interventional Neuroradiology, Hiroshima City Asa Citizens Hospital, Hiroshima, Japan
| | - Bixia Chen
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Oliver Gembruch
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karsten H. Wrede
- Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Berod A, Chnafa C, Mendez S, Nicoud F. A heterogeneous model of endovascular devices for the treatment of intracranial aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3552. [PMID: 34806847 DOI: 10.1002/cnm.3552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/25/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Numerical computations of hemodynamics inside intracranial aneurysms treated by endovascular braided devices such as flow-diverters contribute to understanding and improving such treatment procedures. Nevertheless, these simulations yield high computational and meshing costs due to the heterogeneity of length scales between the dense weave of the fine struts of the device and the arterial volume. Homogeneous strategies developed over the last decade to circumvent this issue substitute local dissipations due to the wires with a global effect in the form of a pressure-drop across the device surface. However, these methods cannot accurately reproduce the flow-patterns encountered near the struts, the latter strongly dictating the intra-saccular flow environment. In this work, a versatile theoretical framework which aims at correctly reproducing the local flow heterogeneities due to the wires while keeping memory consumption, meshing and computational times as low as possible is introduced. This model reproduces the drag forces exerted by the device struts onto the fluid, thus producing local and heterogeneous effects on the flow. Extensive validation for various flow and geometric configurations using an idealized device is performed. To further illustrate the method capabilities, a real patient-specific aneurysm endovascularly treated with a flow-diverter is used, enabling quantitative comparisons with classical approaches for both intra-saccular velocities and computational costs reduction. The proposed heterogeneous model endeavors to bridge the gap between computational fluid dynamics and clinical applications and ushers in a new era of numerical treatment planning with minimally costing computational tools.
Collapse
Affiliation(s)
- Alain Berod
- IMAG, Univ Montpellier, CNRS, Montpellier, France
- Sim&Cure, Montpellier, France
| | | | - Simon Mendez
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
23
|
Effect of Pulsatility on the Transport of Thrombin in an Idealized Cerebral Aneurysm Geometry. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Computational models of cerebral aneurysm thrombosis are designed for use in research and clinical applications. A steady flow assumption is applied in many of these models. To explore the accuracy of this assumption a pulsatile-flow thrombin-transport computational fluid dynamics (CFD) model, which uses a symmetrical idealized aneurysm geometry, was developed. First, a steady-flow computational model was developed and validated using data from an in vitro experiment, based on particle image velocimetry (PIV). The experimental data revealed an asymmetric flow pattern in the aneurysm. The validated computational model was subsequently altered to incorporate pulsatility, by applying a data-derived flow function at the inlet boundary. For both the steady and pulsatile computational models, a scalar function simulating thrombin generation was applied at the aneurysm wall. To determine the influence of pulsatility on thrombin transport, the outputs of the steady model were compared to the outputs of the pulsatile model. The comparison revealed that in the pulsatile case, an average of 10.2% less thrombin accumulates within the aneurysm than the steady case for any given time, due to periodic losses of a significant amount of thrombin-concentrated blood from the aneurysm into the parent vessel’s bloodstream. These findings demonstrate that pulsatility may change clotting outcomes in cerebral aneurysms.
Collapse
|
24
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
25
|
Li H, Deng Y, Sampani K, Cai S, Li Z, Sun JK, Karniadakis GE. Computational investigation of blood cell transport in retinal microaneurysms. PLoS Comput Biol 2022; 18:e1009728. [PMID: 34986147 PMCID: PMC8730408 DOI: 10.1371/journal.pcbi.1009728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). MA leakage or rupture may precipitate local pathology in the surrounding neural retina that impacts visual function. Thrombosis in MAs may affect their turnover time, an indicator associated with visual and anatomic outcomes in the diabetic eyes. In this work, we perform computational modeling of blood flow in microchannels containing various MAs to investigate the pathologies of MAs in DR. The particle-based model employed in this study can explicitly represent red blood cells (RBCs) and platelets as well as their interaction in the blood flow, a process that is very difficult to observe in vivo. Our simulations illustrate that while the main blood flow from the parent vessels can perfuse the entire lumen of MAs with small body-to-neck ratio (BNR), it can only perfuse part of the lumen in MAs with large BNR, particularly at a low hematocrit level, leading to possible hypoxic conditions inside MAs. We also quantify the impacts of the size of MAs, blood flow velocity, hematocrit and RBC stiffness and adhesion on the likelihood of platelets entering MAs as well as their residence time inside, two factors that are thought to be associated with thrombus formation in MAs. Our results show that enlarged MA size, increased blood velocity and hematocrit in the parent vessel of MAs as well as the RBC-RBC adhesion promote the migration of platelets into MAs and also prolong their residence time, thereby increasing the propensity of thrombosis within MAs. Overall, our work suggests that computational simulations using particle-based models can help to understand the microvascular pathology pertaining to MAs in DR and provide insights to stimulate and steer new experimental and computational studies in this area.
Collapse
Affiliation(s)
- He Li
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Yixiang Deng
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shengze Cai
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George E. Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
26
|
Al Saiegh F, Velagapudi L, Khanna O, Sweid A, Mouchtouris N, Baldassari MP, Theofanis T, Tahir R, Schunemann V, Andrews C, Philipp L, Chalouhi N, Tjoumakaris SI, Hasan D, Gooch MR, Herial NA, Rosenwasser RH, Jabbour P. Predictors of aneurysm occlusion following treatment with the WEB device: systematic review and case series. Neurosurg Rev 2021; 45:925-936. [PMID: 34480649 DOI: 10.1007/s10143-021-01638-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
The Woven EndoBridge (WEB) device is becoming increasingly popular for treatment of wide-neck aneurysms. As experience with this device grows, it is important to identify factors associated with occlusion following WEB treatment to guide decision making and screen patients at high risk for recurrence. The aim of this study was to identify factors associated with adequate aneurysm occlusion following WEB device treatment in the neurosurgical literature and in our case series. A systematic review of the present literature was conducted to identify studies related to the prediction of WEB device occlusion. In addition, a retrospective review of our institutional data for patients treated with the WEB device was performed. Demographics, aneurysm characteristics, procedural variables, and 6-month follow-up angiographic outcomes were recorded. Seven articles totaling 450 patients with 456 aneurysms fit our criteria. Factors in the literature associated with inadequate occlusion included larger size, increased neck width, partial intrasaccular thrombosis, irregular shape, and tobacco use. Our retrospective review identified 43 patients with 45 aneurysms. A total of 91.1% of our patients achieved adequate occlusion at a mean follow-up time of 7.32 months. Increasing degree of contrast stasis after WEB placement on the post-deployment angiogram was significantly associated with adequate occlusion on follow-up angiogram (p = 0.005) and with Raymond-Roy classification (p = 0.048), but not with retreatment (p = 0.617). In our systematic review and case series totaling 450 patients with 456 aneurysms, contrast stasis on post-deployment angiogram was identified as a predictor of adequate aneurysm occlusion, while morphological characteristics such as larger size and wide neck negatively impact occlusion.
Collapse
Affiliation(s)
- Fadi Al Saiegh
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lohit Velagapudi
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Omaditya Khanna
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ahmad Sweid
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nikolaos Mouchtouris
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael P Baldassari
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thana Theofanis
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rizwan Tahir
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Victoria Schunemann
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Carrie Andrews
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucas Philipp
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nohra Chalouhi
- Department of Neurological Surgery, University of Florida, Gainesville, FL, USA
| | | | - David Hasan
- Department of Neurological Surgery, University of Iowa Hospitals, Iowa City, IA, USA
| | - M Reid Gooch
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nabeel A Herial
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert H Rosenwasser
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pascal Jabbour
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Aghli Y, Dayyani M, Golparvar B, Baharvahdat H, Blanc R, Piotin M, Niazmand H. Image-based computational hemodynamic analysis of an anterior communicating aneurysm treated with the Woven EndoBridge device. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Chassagne F, Barbour MC, Chivukula VK, Machicoane N, Kim LJ, Levitt MR, Aliseda A. The effect of Dean, Reynolds, and Womersley number on the flow in a spherical cavity on a curved round pipe. Part 1. Fluid mechanics in the cavity as a canonical flow representing intracranial aneurysms. JOURNAL OF FLUID MECHANICS 2021; 915:A123. [PMID: 34024939 PMCID: PMC8136084 DOI: 10.1017/jfm.2020.1114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flow in side-wall cerebral aneurysms can be ideally modelled as the combination of flow over a spherical cavity and flow in a curved circular pipe, two canonical flows. Flow in a curved pipe is known to depend on the Dean number De, combining the effects of Reynolds number, Re, and of the curvature along the pipe centreline, κ. Pulsatility in the flow introduces a dependency on the Womersley number Wo. Using stereo PIV measurements, this study investigated the effect of these three key non-dimensional parameters, by modifying pipe curvature (De), flow-rate (Re), and pulsatility frequency (Wo), on the flow patterns in a spherical cavity. A single counter-rotating vortex was observed in the cavity for all values of pipe curvature κ and Re, for both steady and pulsatile inflow conditions. Increasing the pipe curvature impacted both the flow patterns in the pipe and the cavity, by shifting the velocity profile towards the cavity opening and increasing the flow rate into the cavity. The circulation in the cavity was found to collapse well with only the Dean number, for both steady and pulsatile inflows. For pulsatile inflow, the counter-rotating vortex was unstable and the location of its centre over time was impacted by the curvature of the pipe, as well as the Re and the Wo in the freestream. The circulation in the cavity was higher for steady inflow than for the equivalent average Reynolds and Dean number pulsatile inflow, with very limited impact of the Womersley in the range studied.
Collapse
Affiliation(s)
- Fanette Chassagne
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Michael C. Barbour
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Venkat K. Chivukula
- Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | | | - Louis J. Kim
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
- Department of Radiology, University of Washington, Seattle, WA 98107, USA
| | - Michael R. Levitt
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
- Department of Radiology, University of Washington, Seattle, WA 98107, USA
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
| |
Collapse
|
29
|
Barbour MC, Chassagne F, Chivukula VK, Machicoane N, Kim LJ, Levitt MR, Aliseda A. The effect of Dean, Reynolds and Womersley numbers on the flow in a spherical cavity on a curved round pipe. Part 2. The haemodynamics of intracranial aneurysms treated with flow-diverting stents. JOURNAL OF FLUID MECHANICS 2021; 915:A124. [PMID: 34658417 PMCID: PMC8519511 DOI: 10.1017/jfm.2020.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The flow in a spherical cavity on a curved round pipe is a canonical flow that describes well the flow inside a sidewall aneurysm on an intracranial artery. Intracranial aneurysms are often treated with a flow-diverting stent (FDS), a low-porosity metal mesh that covers the entrance to the cavity, to reduce blood flow into the aneurysm sac and exclude it from mechanical stresses imposed by the blood flow. Successful treatment is highly dependent on the degree of reduction of flow inside the cavity, and the resulting altered fluid mechanics inside the aneurysm following treatment. Using stereoscopic particle image velocimetry, we characterize the fluid mechanics in a canonical configuration representative of an intracranial aneurysm treated with a FDS: a spherical cavity on the side of a curved round pipe covered with a metal mesh formed by an actual medical FDS. This porous mesh coverage is the focus of Part 2 of the paper, characterizing the effects of parent vessel Re, De and pulsatility, Wo, on the fluid dynamics, compared with the canonical configuration with no impediments to flow into the cavity that is described in Part 1 (Chassagne et al., J. Fluid Mech., vol. 915, 2021, A123). Coverage with a FDS markedly reduces the flow Re in the aneurysmal cavity, creating a viscous-dominated flow environment despite the parent vessel Re > 100. Under steady flow conditions, the topology that forms inside the cavity is shown to be a function of the parent vessel De. At low values of De, flow enters the cavity at the leading edge and remains attached to the wall before exiting at the trailing edge, a novel behaviour that was not found under any conditions of the high-Re, unimpeded cavity flow described in Part 1. Under these conditions, flow in the cavity co-rotates with the direction of the free-stream flow, similar to Stokes flow in a cavity. As De increases, the flow along the leading edge begins to separate, and the recirculation zone grows with increasing De, until, above De ≈ 180, the flow inside the cavity is fully recirculating, counter-rotating with respect to the free-stream flow. Under pulsatile flow conditions, the vortex inside the cavity progresses through the same cycle - switching from attached and co-rotating with the free-stream flow at the beginning of the cycle (low velocity and positive acceleration) to separated and counter-rotating as De reaches a critical value. The location of separation within the harmonic cycle is shown to be a function of both De and Wo. The values of aneurysmal cavity Re based on both the average velocity and the circulation inside the cavity are shown to increase with increasing values of De, while Wo is shown to have little influence on the time-averaged metrics. As De increases, the strength of the secondary flow in the parent vessel grows, due to the inertial instability in the curved pipe, and the flow rate entering the cavity increases. Thus, the effectiveness of FDS treatment to exclude the aneurysmal cavity from the haemodynamic stresses is compromised for aneurysms located on high-curvature arteries, i.e. vessels with high De, and this can be a fluid mechanics criterion to guide treatment selection.
Collapse
Affiliation(s)
- Michael C. Barbour
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98107, USA
| | - Fanette Chassagne
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98107, USA
| | - Venkat K. Chivukula
- Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | | | - Louis J. Kim
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
- Department of Radiology, University of Washington, Seattle, WA 98107, USA
| | - Michael R. Levitt
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98107, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
- Department of Radiology, University of Washington, Seattle, WA 98107, USA
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98107, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98107, USA
| |
Collapse
|
30
|
Ngoepe MN, Pretorius E, Tshimanga IJ, Shaikh Z, Ventikos Y, Ho WH. Thrombin-Fibrinogen In Vitro Flow Model of Thrombus Growth in Cerebral Aneurysms. TH OPEN 2021; 5:e155-e162. [PMID: 34007954 PMCID: PMC8116173 DOI: 10.1055/s-0041-1728790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Cerebral aneurysms are balloon-like structures that develop on weakened areas of cerebral artery walls, with a significant risk of rupture. Thrombi formation is closely associated with cerebral aneurysms and has been observed both before and after intervention, leading to a wide variability of outcomes in patients with the condition. The attempt to manage the outcomes has led to the development of various computational models of cerebral aneurysm thrombosis. In the current study, we developed a simplified thrombin–fibrinogen flow system, based on commercially available purified human-derived plasma proteins, which enables thrombus growth and tracking in an idealized cerebral aneurysm geometry. A three-dimensional printed geometry of an idealized cerebral aneurysm and parent vessel configuration was developed. An unexpected outcome was that this phantom-based flow model allowed us to track clot growth over a period of time, by using optical imaging to record the progression of the growing clot into the flow field. Image processing techniques were subsequently used to extract important quantitative metrics from the imaging dataset, such as end point intracranial thrombus volume. The model clearly demonstrates that clot formation, in cerebral aneurysms, is a complex interplay between mechanics and biochemistry. This system is beneficial for verifying computational models of cerebral aneurysm thrombosis, particularly those focusing on initial angiographic occlusion outcomes, and will also assist manufacturers in optimizing interventional device designs.
Collapse
Affiliation(s)
- Malebogo N Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Cape Town, South Africa.,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ilunga J Tshimanga
- Department of Mechanical Engineering, University of South Africa, Johannesburg, South Africa
| | - Zahra Shaikh
- Department of Mechanical Engineering, University of South Africa, Johannesburg, South Africa
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Wei Hua Ho
- Department of Mechanical Engineering, University of South Africa, Johannesburg, South Africa.,School of Mechanical, Industrial and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
31
|
Rikhtegar R, Mosimann PJ, Rothaupt J, Mirza-Aghazadeh-Attari M, Hallaj S, Yousefi M, Amiri A, Farashi E, Kheyrollahiyan A, Dolati S. Non-coding RNAs role in intracranial aneurysm: General principles with focus on inflammation. Life Sci 2021; 278:119617. [PMID: 34004250 DOI: 10.1016/j.lfs.2021.119617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Intracranial aneurysm (IA) is one of the most challenging vascular lesions in the brain for clinicians. It was reported that 1%-6% of the world's population is affected by IAs. Owing to serious complications arising from these lesions, much attention has been paid to better understand their pathophysiology. Non-coding RNAs including short non-coding RNAs and long non-coding RNAs, have critical roles in modulating physiologic and pathological processes. These RNAs are emerging as new fundamental regulators of gene expression, are related with the progression of IA. Non-coding RNAs act via multiple mechanisms and be involved in vascular development, growth and remodeling. Furthermore, these molecules are involved in the regulation of inflammation, a key process in the formation and rupture of IA. Studying non-coding RNAs can yield a hypothetical mechanism for better understanding IA. The present study aims to focus on the role of these non-coding RNAs in the pathogenesis of IA.
Collapse
Affiliation(s)
- Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Pascal J Mosimann
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Jan Rothaupt
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | | | - Shahin Hallaj
- Burn and Regenerative Medicine Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Amiri
- Department of Cardiology, Marien Marl Hospital, Marl, Germany
| | - Ebrahim Farashi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Li H, Sampani K, Zheng X, Papageorgiou DP, Yazdani A, Bernabeu MO, Karniadakis GE, Sun JK. Predictive modelling of thrombus formation in diabetic retinal microaneurysms. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201102. [PMID: 32968536 PMCID: PMC7481715 DOI: 10.1098/rsos.201102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). Vision can be reduced at any stage of DR by MAs, which may enlarge, rupture and leak fluid into the neural retina. Recent advances in ophthalmic imaging techniques enable reconstruction of the geometries of MAs and quantification of the corresponding haemodynamic metrics, such as shear rate and wall shear stress, but there is lack of computational models that can predict thrombus formation in individual MAs. In this study, we couple a particle model to a continuum model to simulate the platelet aggregation in MAs with different shapes. Our simulation results show that under a physiologically relevant blood flow rate, thrombosis is more pronounced in saccular-shaped MAs than fusiform-shaped MAs, in agreement with recent clinical findings. Our model predictions of the size and shape of the thrombi in MAs are consistent with experimental observations, suggesting that our model is capable of predicting the formation of thrombus for newly detected MAs. This is the first quantitative study of thrombosis in MAs through simulating platelet aggregation, and our results suggest that computational models can be used to predict initiation and development of intraluminal thrombus in MAs as well as provide insights into their role in the pathophysiology of DR.
Collapse
Affiliation(s)
- He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaoning Zheng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Dimitrios P. Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Brunasso L, Lo Bue E, Zingales M, Iacopino DG, Graziano F. Letter to the Editor. The missing piece to solve the equation. Neurosurg Focus 2020; 48:E12. [PMID: 31896086 DOI: 10.3171/2019.9.focus19573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Thrombus growth modelling and stenosis prediction in the cerebral microvasculature. J Theor Biol 2019; 478:1-13. [PMID: 31207204 DOI: 10.1016/j.jtbi.2019.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
Abstract
Cerebral microvascular occlusions cause restriction of blood supply to the brain, thus potentially severely impacting cognitive abilities. Thus, accurate prediction of thrombus growth in realistic geometries is important. Thrombi growth in an existing 13-generation cerebral microvasculature network is simulated here to study the haemodynamic effects of single and multiple blockages on the occlusion of the network. Compared to a single vessel, in a network, the occlusion probability is found to be different. It is the downstream/smaller arterioles (i.e. the 3rd, 4th, 5th, 6th generation arterioles in this study) that tend to reach occlusion first in a network and thus are the critical vessels. Simulations of simultaneous growth of two independent thrombi in the network (referred to here as the two-block case) show a close coupling between the locations of the various blocks in the network, each influencing the other's growth. The presence of the lead block (LB) slows the growth of the trailing block (TB). In some cases, it stops the TB's growth thereby preventing it from occluding the vessel. Findings in this work thus indicate that, to prevent ischaemia, blocks in the smaller arterioles need to be identified and treated first, and that this is more critical if the number of simultaneous blocks is higher.
Collapse
|
35
|
Marsh LMM, Barbour MC, Chivukula VK, Chassagne F, Kelly CM, Levy SH, Kim LJ, Levitt MR, Aliseda A. Platelet Dynamics and Hemodynamics of Cerebral Aneurysms Treated with Flow-Diverting Stents. Ann Biomed Eng 2019; 48:490-501. [PMID: 31549329 DOI: 10.1007/s10439-019-02368-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
Flow-diverting stents (FDS) are used to treat cerebral aneurysms. They promote the formation of a stable thrombus within the aneurysmal sac and, if successful, isolate the aneurysmal dome from mechanical stresses to prevent rupture. Platelet activation, a mechanism necessary for thrombus formation, is known to respond to biomechanical stimuli, particularly to the platelets' residence time and shear stress exposure. Currently, there is no reliable method for predicting FDS treatment outcomes, either a priori or after the procedure. Eulerian computational fluid dynamic (CFD) studies of aneurysmal flow have searched for predictors of endovascular treatment outcome; however, the hemodynamics of thrombus formation cannot be fully understood without considering the platelets' trajectories and their mechanics-triggered activation. Lagrangian analysis of the fluid mechanics in the aneurysmal vasculature provides novel metrics by tracking the platelets' residence time (RT) and shear history (SH). Eulerian and Lagrangian parameters are compared for 19 patient-specific cases, both pre- and post-treatment, to assess the degree of change caused by the FDS and subsequent treatment efficacy.
Collapse
Affiliation(s)
- Laurel M M Marsh
- Mechanical Engineering, University of Washington, 4000 15th Ave NE, Box 352600, Seattle, WA, 98195, USA
| | - Michael C Barbour
- Mechanical Engineering, University of Washington, 4000 15th Ave NE, Box 352600, Seattle, WA, 98195, USA
| | - Venkat Keshav Chivukula
- Mechanical Engineering, University of Washington, 4000 15th Ave NE, Box 352600, Seattle, WA, 98195, USA
| | - Fanette Chassagne
- Mechanical Engineering, University of Washington, 4000 15th Ave NE, Box 352600, Seattle, WA, 98195, USA
| | - Cory M Kelly
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Stroke & Applied NeuroScience Center, University of Washington, Seattle, WA, USA
| | - Samuel H Levy
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Stroke & Applied NeuroScience Center, University of Washington, Seattle, WA, USA
| | - Louis J Kim
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Stroke & Applied NeuroScience Center, University of Washington, Seattle, WA, USA.,Radiology, University of Washington, Seattle, WA, USA
| | - Michael R Levitt
- Mechanical Engineering, University of Washington, 4000 15th Ave NE, Box 352600, Seattle, WA, 98195, USA.,Neurological Surgery, University of Washington, Seattle, WA, USA.,Stroke & Applied NeuroScience Center, University of Washington, Seattle, WA, USA.,Radiology, University of Washington, Seattle, WA, USA
| | - Alberto Aliseda
- Mechanical Engineering, University of Washington, 4000 15th Ave NE, Box 352600, Seattle, WA, 98195, USA. .,Neurological Surgery, University of Washington, Seattle, WA, USA. .,Stroke & Applied NeuroScience Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
36
|
Méndez Rojano R, Mendez S, Lucor D, Ranc A, Giansily-Blaizot M, Schved JF, Nicoud F. Kinetics of the coagulation cascade including the contact activation system: sensitivity analysis and model reduction. Biomech Model Mechanobiol 2019; 18:1139-1153. [DOI: 10.1007/s10237-019-01134-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/16/2019] [Indexed: 12/14/2022]
|
37
|
Pasarikovski CR, Cardinell J, Yang VXD. Perspective review on applications of optics in cerebral endovascular neurosurgery. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-7. [PMID: 30915784 PMCID: PMC6975230 DOI: 10.1117/1.jbo.24.3.030601] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/19/2019] [Indexed: 05/20/2023]
Abstract
Cerebral endovascular neurosurgery has transformed the way we manage cerebrovascular disease. Several landmark trials have demonstrated the effectiveness of endovascular techniques leading to continued technological development and applications for various diseases. The utilization of optical technologies and devices is already underway in the field of endovascular neurosurgery. We discuss the contemporary paradigms, challenges, and current optical applications for the most common cerebrovascular diseases: carotid atherosclerotic disease, cerebral aneurysms, intracranial atherosclerosis, and dural arteriovenous fistulas. We also describe needs-based opportunities for future optical applications, with the goal of providing researchers a sense of where we feel optical technologies could impact the way we manage cerebral disease.
Collapse
Affiliation(s)
- Christopher R. Pasarikovski
- University of Toronto, Division of Neurosurgery, Department of Surgery, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, NeuroVascular Clinic, Toronto, Ontario, Canada
| | - Jillian Cardinell
- Ryerson University, Bioengineering and Biophotonics Laboratory, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Division of Neurosurgery, Toronto, Ontario, Canada
| | - Victor X. D. Yang
- University of Toronto, Division of Neurosurgery, Department of Surgery, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, NeuroVascular Clinic, Toronto, Ontario, Canada
- Ryerson University, Bioengineering and Biophotonics Laboratory, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Division of Neurosurgery, Toronto, Ontario, Canada
- Address all correspondence to Victor X. D. Yang, E-mail:
| |
Collapse
|
38
|
A Virtual Comparison of the eCLIPs Device and Conventional Flow-Diverters as Treatment for Cerebral Bifurcation Aneurysms. Cardiovasc Eng Technol 2019; 10:508-519. [PMID: 31286438 PMCID: PMC6715664 DOI: 10.1007/s13239-019-00424-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Effective, consistent, and complication-free treatment of cerebral bifurcation aneurysms remains elusive despite a pressing need, with the majority of lesions presenting in such locations. Current treatment options focus either on aneurysm coil retention, supported by a stent-like device positioned in the parent vessel lumen, or intrasaccular devices that disrupt flow within the aneurysm dome. A third alternative, i.e., the use of conventional (intraluminal) flow-diverters to treat such bifurcation aneurysms raises the problem that at least one daughter vessel needs to be jailed in such a deployment. The eCLIPs is a stent-like device that offers the possibility of flow-diversion at the aneurysm neck, without the drawbacks of daughter vessel occlusion or those of intrasaccular deployment. METHODS In this study the eCLIPs device was virtually deployed in five cerebral bifurcation aneurysms and compared with a conventional tubular flow-diverter device. Computational fluid dynamics (CFD) simulations of the aneurysm haemodynamic environment pre- and post-implantation were conducted, and focussed on metrics associated with successful aneurysm occlusion. Absolute and relative reductions in aneurysm inflow rate (Q) and time-averaged wall shear stress (TAWSS) were recorded. RESULTS The eCLIPs device was found to perform in a similar qualitative fashion to tubular flow-diverters, with overall reduction of metrics being somewhat more modest however, when compared to such devices. Aneurysm inflow reduction and TAWSS reduction were typically 10-20% lower for the eCLIPs, when compared to a generic flow diverter (FDBRAIDED) similar to devices currently in clinical use. The eCLIPs was less effective at diffusing inflow jets and at reducing the overall velocity of the flow, when compared to these devices. This result is likely due to the larger device pore size in the eCLIPs. Notably, it was found that the eCLIPs provided approximately equal resistance to flow entering and exiting the aneurysm, which was not true for the FDBRAIDED device, where high-speed concentrations of outflow were seen at the aneurysm neck along with local TAWSS elevation. The clinical implications of such behaviour are not examined in detail here but could be significant. CONCLUSIONS Our findings indicate that the eCLIPs device acts as a flow-diverter for bifurcation aneurysms, with somewhat diminished occlusion properties comparing to tubular flow diverters but without the jailing and diminished flow evident in a daughter vessel associated with use of conventional devices.
Collapse
|